260 research outputs found

    Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach

    Get PDF
    The alternation of active and break phases in Indian summer monsoon (ISM) rainfall at intraseasonal timescales characterizes each ISM season. Both tropical and mid-latitude drivers influence this intraseasonal ISM variability. The circumglobal teleconnection observed in boreal summer drives intraseasonal variability across the mid-latitudes, and a two-way interaction between the ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test the ISM circumglobal teleconnection hypothesis in a causal framework. A robust causal link from the circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall is identified, and we estimate the normalized causal effect (CE) of this link to be about 0.2 (a 1 standard deviation shift in the circumglobal teleconnection causes a 0.2 standard deviation shift in the ISM rainfall 1 week later). The ISM rainfall feeds back on the circumglobal teleconnection pattern, however weakly. Moreover, we identify a negative feedback between strong updraft located over India and the Bay of Bengal and the ISM rainfall acting at a biweekly timescale, with enhanced ISM rainfall following strong updraft by 1 week. This mechanism is possibly related to the boreal summer intraseasonal oscillation. The updraft has the strongest CE of 0.5, while the Madden–Julian oscillation variability has a CE of 0.2–0.3. Our results show that most of the ISM variability on weekly timescales comes from these tropical drivers, though the mid-latitude teleconnection also exerts a substantial influence. Identifying these local and remote drivers paves the way for improved subseasonal forecasts

    Diagnosing ocean feedbacks to the BSISO: SST-modulated surface fluxes and the moist static energy budget

    Get PDF
    The oceanic feedback to the atmospheric boreal summer intraseasonal oscillation (BSISO) is examined by diagnosing the sea surface temperature (SST) modification of surface fluxes and the moist static energy (MSE) on intraseasonal scales. SST variability affects intraseasonal surface latent heat (LH) and sensible heat (SH) fluxes, through its influence on air-sea moisture and temperature gradients (delta-q and delta-T). According to bulk formula decomposition, LH is mainly determined by wind-driven flux perturbations, while SH is more sensitive to thermodynamic flux perturbations. SST fluctuations tend to increase the thermodynamic flux perturbations over active BSISO regions, but this is largely offset by the wind-driven flux perturbations. Enhanced surface fluxes induced by intraseasonal SST anomalies are located ahead (north) of the convective center over both the Indian Ocean and western Pacific, favoring BSISO northward propagation. Analysis of budgets of column-integrated MSE () and its time rate of change (d/dt) show that SST-modulated surface fluxes can influence the development and propagation of the BSISO, respectively. LH and SH variability induced by intraseasonal SSTs maintain 1-2% of /day over the equatorial western Indian Ocean, Arabian Sea and Bay of Bengal, but damp about 1% of /day over the western North Pacific. The contribution of intraseasonal SST variability to d/dt can reach 12-20% over active BSISO regions. These results suggest that SST variability is conducive, but perhaps not essential, for the propagation of convection during the BSISO life cycle

    Nonlinear intensification of monsoon low pressure systems by the BSISO

    Get PDF
    More than half of the rainfall brought to the Indian subcontinent by the summer monsoon is associated with low-pressure systems (LPSs). Yet their relationship with the Boreal Summer Intraseasonal Oscillation (BSISO) &ndash; the dominant intraseasonal forcing on the monsoon &ndash; is only superficially understood. Using reanalysis data, we explore the relationship between the BSISO and LPS intensity, propagation, and precipitation, and associated underlying mechanisms. The BSISO has a large impact on mean monsoon vorticity and rainfall as it moves northward &ndash; maximising both in phases 2&ndash;3 over southern India and phases 5&ndash;6 over northern India &ndash; but a much weaker relationship with total column water vapour. We present evidence that LPS genesis also preferentially follows these phases of the BSISO. We identify significant relationships between BSISO phase and LPS precipitation and propagation: for example, during BSISO phase 5, LPSs over north India produce 51 % heavier rainfall and propagate northwestward 20 % more quickly. Using a combination of moisture flux linearisation and quasigeostrophic theory, we show that these relationships are driven by changes to the underlying dynamics, rather than the moisture content or thermodynamic structure, of the monsoon. Using the example of LPSs over northern India during BSISO phase 5, we show that the vertical structure of anomalous vorticity can be split into contributions from the BSISO and the nonlinear response of the LPS to anomalous BSISO circulation. Complementary hypotheses emerge about the source of this nonlinear vorticity response: nonlinear frictional convergence and secondary barotropic growth. We show that both are important. The BSISO imparts greater meridional shear on the background state, supporting LPS intensification. The BSISO background and nonlinear LPS response both contribute significantly to anomalous boundary layer convergence, and we show through vortex budget arguments that the former supports additional LPS intensification in boundary layer while the latter supports faster westward propagation. This work therefore yields important insights into the scale interactions controlling one of the dominant synoptic systems contributing to rainfall during the monsoon.</p

    Intraseasonal variability in the diurnal cycle of precipitation in the Philippines

    Get PDF
    2019 Spring.Includes bibliographical references.Precipitation in the region surrounding the South China Sea (SCS) over land and coastal waters exhibits a strong diurnal cycle associated with a land-sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of the daily mean precipitation rate and the amplitude of the diurnal cycle. Using 19 years of the CMORPH precipitation product for the Philippines, it is shown that in aggregate the diurnal cycle amplitude is maximized before the arrival of the broader oceanic convective envelope associated with the BSISO. Over Luzon Island in the northern Philippines, the diurnal cycle amplitude is not in phase with daily mean precipitation, which peaks with the large-scale BSISO convection. An increase in nocturnal and morning precipitation more than compensates for the reduced precipitation rates during the afternoon peak amidst the BSISO active period. This pattern is not seen over Mindanao Island in the southern Philippines, where diurnal cycle amplitude tends to determine daily mean precipitation. A strong diurnal cycle in coastal waters west of the Philippines is evident in the transition from the inactive to active phase, due to offshore propagation of convection generated over land. This behavior is dramatically different on small spatial scales within the Philippine archipelago, depending strongly on topography. For example, the BSISO influence on the diurnal cycle on the eastern side of the high mountains of Luzon is nearly opposite to the western side. It is proposed, using wind, moisture, and radiation budget products from the ERA-Interim reanalysis, that the enhanced diurnal cycle over land and coastal waters west of the mountains during BSISO suppressed phases is a consequence of increased insolation and weaker prevailing onshore winds. Offshore propagation, and thus the diurnal cycle over the coastal waters of the SCS, is suppressed until ambient mid-level moisture increases during the transition to the active BSISO phase. In the BSISO enhanced phases, strong low level winds out of the southwest combine with increased cloudiness to suppress the sea-breeze circulation and thus the diurnal cycle of precipitation in the SCS region. Strong frictional moisture convergence leading the BSISO is not found to be concurrent with the peak in the diurnal cycle. Results are consistent when examined in other precipitation products or BSISO indices, and support conclusions derived from studies focusing on intraseasonal modulation of precipitation in other regions of the Maritime Continent, with some important local distinctions owed to geography

    QBO influence on MJO amplitude over the Maritime Continent: Physical mechanisms and seasonality

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 147(1), (2019): 389-406. doi: 10.1175/MWR-D-18-0158.1.The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.The authors are grateful for the funding provided by the Office of Naval Research Propagation of Intra-Seasonal Tropical Oscillations (ONR PISTON) Award N0001416WX01752 and the USNA Trident Scholar program. The authors also appreciate the helpful comments of the two external reviewers.2019-07-0

    Skillful long-range forecasts of North American heat waves from Pacific storm propagation

    Get PDF
    2017 Summer.Includes bibliographical references.Extreme heat poses major threats to public health and the economy. Long- range predictions of heat waves offer little improvement over climatology despite the continuing improvements of weather forecast models. Previous studies have hinted at possible relationships between tropical West Pacific convection and subsequent anomalous near-surface air temperature and rainfall over the North American Plains. We show that the later stages of propagation of the Boreal Summer Intraseasonal Oscillation (BSISO) can be used to skillfully hindcast a number of Great Plains heat waves between 1948 and 2016 with a three-month lead time. Possible teleconnection mechanisms are investigated, with the most likely being related to a BSISO-induced reduction in Plains spring rainfall and subsequent land-atmosphere feedbacks. Our results are the first to demonstrate that a West Pacific weather event can be used to skillfully forecast US Plains heat waves with a lead time of three months

    A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part II: intraseasonal variability

    Get PDF
    The causes of subseasonal precipitation variability in China are investigated using observations and reanalysis data for extended winter (November–April) and summer (May–October) seasons from 1982 to 2007. For each season, the three dominant regions of coherent intraseasonal variability are identified with Empirical Orthogonal Teleconnection (EOT) analysis. While previous studies have focused on particular causes for precipitation variability or on specific regions, here a comprehensive analysis is carried out with an objective method. Furthermore, the associated rainfall anomaly timeseries are tied to specific locations in China, which facilitates their interpretation. To understand the underlying processes associated with spatially coherent patterns of rainfall variability, fields from observations and reanalysis are regressed onto EOT timeseries. The three dominant patterns in winter together explain 43% of the total space–time variance and have their origins in midlatitude disturbances that appear two pentads in advance. Winter precipitation variability along the Yangtze River is associated with wave trains originating over the Atlantic and northern Europe, while precipitation variability in southeast China is connected to the Mediterranean storm track. In summer, all patterns have a strong relationship with the Boreal Summer Intraseasonal Oscillation and are modulated by the seasonal cycle of the East Asian summer monsoon. The wet and dry phases of the regional patterns can substantially modulate the frequency of daily rainfall across China. The discovered links between weather patterns, precursors, and effects on local and remote precipitation may provide a valuable basis for hydrological risk assessments and the evaluation of numerical weather prediction models
    • …
    corecore