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ABSTRACT

INTRASEASONAL VARIABILITY IN THE DIURNAL CYCLE OF PRECIPITATION IN THE

PHILIPPINES

Precipitation in the region surrounding the South China Sea (SCS) over land and coastal wa-

ters exhibits a strong diurnal cycle associated with a land-sea temperature contrast that drives a

sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important mod-

ulator of the daily mean precipitation rate and the amplitude of the diurnal cycle. Using 19 years

of the CMORPH precipitation product for the Philippines, it is shown that in aggregate the diurnal

cycle amplitude is maximized before the arrival of the broader oceanic convective envelope asso-

ciated with the BSISO. Over Luzon Island in the northern Philippines, the diurnal cycle amplitude

is not in phase with daily mean precipitation, which peaks with the large-scale BSISO convec-

tion. An increase in nocturnal and morning precipitation more than compensates for the reduced

precipitation rates during the afternoon peak amidst the BSISO active period. This pattern is not

seen over Mindanao Island in the southern Philippines, where diurnal cycle amplitude tends to

determine daily mean precipitation. A strong diurnal cycle in coastal waters west of the Philip-

pines is evident in the transition from the inactive to active phase, due to offshore propagation of

convection generated over land.

This behavior is dramatically different on small spatial scales within the Philippine archipelago,

depending strongly on topography. For example, the BSISO influence on the diurnal cycle on the

eastern side of the high mountains of Luzon is nearly opposite to the western side. It is proposed,

using wind, moisture, and radiation budget products from the ERA-Interim reanalysis, that the en-

hanced diurnal cycle over land and coastal waters west of the mountains during BSISO suppressed

phases is a consequence of increased insolation and weaker prevailing onshore winds. Offshore

propagation, and thus the diurnal cycle over the coastal waters of the SCS, is suppressed until am-
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bient mid-level moisture increases during the transition to the active BSISO phase. In the BSISO

enhanced phases, strong low level winds out of the southwest combine with increased cloudiness

to suppress the sea-breeze circulation and thus the diurnal cycle of precipitation in the SCS region.

Strong frictional moisture convergence leading the BSISO is not found to be concurrent with the

peak in the diurnal cycle. Results are consistent when examined in other precipitation products or

BSISO indices, and support conclusions derived from studies focusing on intraseasonal modulation

of precipitation in other regions of the Maritime Continent, with some important local distinctions

owed to geography.
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Chapter 1

Introduction

1.1 Purpose

The Madden-Julian Oscillation (MJO) has extensive impacts over a vast portion of the world,

despite its convective signal being confined to a narrow band of the tropics (Madden and Julian

1972, Knutson and Weickmann 1987, Hendon and Salby 1994). The MJO is a large, slowly

eastward propagating area of active convection in the tropical atmosphere (Madden and Julian

1972, 1994). Enhanced convective activity leads to increased storminess, and thus elevated latent

heating to the troposphere via the condensation of water vapor. Potent heating in the tropical

atmosphere generates waves that reach across the planet, akin to the ripples created after dropping

a stone in a calm body of water. If a stone is instead dropped into a disturbed body of water, the

ripples may not be visible to the naked eye. The global climate system is more comparable to a

disturbed body of water, such that understanding the impact of one particular wave signal becomes

complicated, amidst all of the other signals and noise.

Despite decades of research and significant progress on the MJO, a complete understanding of

the phenomenon remains out of reach, particularly for the Northern Hemisphere summer (Jiang

et al. 2018). The MJO is also of particular interest because of its unique time-scale of about

30-60 days, providing the potential for prediction skill of remote weather patterns on subseasonal

to seasonal timescales (Zhang 2013). This study intends to add another piece of the MJO puzzle

by illuminating the impact on precipitation in the Philippines and South China Sea, in the hopes

of providing clarity for a largely overlooked component of the MJO system and inspiring future

research towards a comprehensive theory encompassing all seasons and all regions affected. This

firs chapter will include a discussion of the body of literature relating to the diurnal cycle of pre-

cipitation over land and ocean, the background state in the region of MJO activity, the dynamics
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of the MJO, and finally the interactions between the MJO and the diurnal cycle, highlighting along

the way the gaps in the collective knowledge of the field this study aims to fill.

1.2 The Diurnal Cycle

1.2.1 The Oceanic Diurnal Cycle

The diurnal cycle of precipitation over tropical oceans has been of interest to the community for

much of the last century. Before the advent of satellite technology, this was a much more difficult

problem to address. Despite such challenges, several pioneering efforts were made to understand

these patterns. Kraus (1963) used observations from a number of weather ships operating across

the global oceans to estimate the diurnal cycle, and found a distinct nocturnal maximum in precip-

itation frequency, and related this to the diurnal cycle in radiation. While these observations were

outside of the tropics, they still mark a major step forward in studying the oceanic diurnal cycle.

Specifically, Kraus argued that there is more cooling at night from longwave radiation at cloud

top than at cloud base, which increases the instability and enhances convection. Additionally, he

proposed that during the day, shortwave radiation heats the cloud tops, providing a stabilizing in-

fluence. This direct radiation-convection interaction hypothesis has been explored extensively in

the literature and remains one of the major possible mechanisms today (Wallace 1975, Randall

et al. 1991). Another suggested mechanism was the semi-diurnal solar tide in surface pressure,

leading to modulation of convergence and divergence (Brier and Simpson 1969). Deser and Smith

(1998) later found that the semi-diurnal cycle dominates zonal wind, whereas the diurnal cycle

is most important for meridional wind, which is more important for convergence at the equator.

While Deser and Smith did not relate their findings back to precipitation, S. Yang and Smith (2006)

found that the oceanic diurnal cycle has a tendency for a primary and secondary maximum, but that

it is not semi-diurnal in nature, reducing the popularity of the solar tide hypothesis (Lindzen 1978).

Gray and Jacobson (1977) presented another alternative hypothesis based on an indirect inter-

action between radiation and convection. Their results corroborated the idea of a strong morning

maximum in deep convection over tropical oceans, reporting significantly greater precipitation in
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the morning compared to the evening, particularly over the West Pacific. They found a different

pattern over the region of study for the Global Atmospheric Research Program (GARP) Atlantic

Tropical Experiment (GATE) field campaign in the tropical Atlantic, with an afternoon precipita-

tion maximum, and minimum near midnight. To explain this, they suggested that the disparity in

the GATE region was a result of the high frequency of squall lines in that region initiated from

Africa in an environment of greater vertical wind shear. In the West Pacific, where squall lines

are infrequent, a different mechanism was required. They rejected the idea of radiation inducing

stability changes, asserting that these changes would be too small. Instead, they purported that

the cloud free region experiences more radiational cooling at night, which leads to compensating

subsidence warming, which further enhances convergence into the convective region. This hy-

pothesis has been supported by many studies since (e.g. Folz and Gray 1979, McBride and Gray

1980, Ackerman and Cox 1981) and remains in consideration today (Ruppert and R. Johnson 2016,

Klotzbach et al. 2017).

While the mechanism remained an area of debate, more evidence came out over the years to

support the idea of a morning precipitation maximum over open water, but with more nuance.

Satellite technology allowed for a novel look at the diurnal cycle using infrared retrievals, which

give an estimate of cloud top height, a proxy for rainfall. In a study of the diurnal cycle in August

of 1979, Augustine (1984) found that while the first harmonic of the diurnal cycle dominated, with

a maximum near dawn, a semi-diurnal cycle was also evident, adding to a secondary maximum

in the mid-afternoon. Albright et al. (1985) found two primary modes of convective variability

in January-February 1979 on diurnal time scales, one with an afternoon maximum found in the

South Pacific Convergence Zone (SPCZ) and GATE regions, and another in which convective

activity increases overnight towards a sunrise maximum, found in the Inter-Tropical Convergence

Zone (ITCZ). The dominance of the first harmonic over the second harmonic suggests that the

solar tide mechanism (Brier and Simpson 1969) could not be the primary driver. Furthermore,

the mechanisms of Kraus (1963) and Gray and Jacobson (1977), while plausible for the sunrise

maximum, are unable to explain the other mode of diurnal variability with an afternoon maximum.
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Hartmann and Recker (1986) analyzed outgoing longwave radiation retrievals from several

satellites and found that the diurnal cycle of high clouds is completely out of phase with the diurnal

cycle of mid-level and low clouds. Nevertheless, they found a maximum in OLR, corresponding to

a minimum in cloudiness in from 0600 to 1200, consistent with previous observations in the SPCZ.

This out of phase relationship was also seen to some extent by Gray and Jacobson (1977). As the

satellite era drew on, the community had access to longer time series of infrared observations of

tropical clouds, allowing some composite studies to add more to the story. Janowiak et al. (1994)

found that the diurnal cycle of oceanic brightness temperature was highly sensitive to the selection

of threshold used to define deep convection. The coldest (highest) cloud tops were found to peak in

the early morning, much earlier than the diurnal cycle of warmer (mid-level) cloud tops, supporting

the findings of Hartmann and Recker (1986). Nitta and Sekine (1994) used nine years of bright-

ness temperature retrievals from geostationary satellites to paint a comprehensive picture of the

global diurnal cycle. Over open ocean, they noted a weak diurnal cycle over the ITCZ and SPCZ,

peaking in the morning, with a secondary maximum in the afternoon. These authors also found

some seasonal variability in the character of the diurnal cycle. Evidence for a pronounced morn-

ing maximum in oceanic precipitation was supported by further studies of brightness temperature

retrievals and station observations (e.g. G.-Y. Yang and Slingo 2001, Dai 2001).

Concurrently, the community was building an understanding of the mechanisms that produce

this oceanic diurnal cycle with advances in modeling. Randall et al. (1991) simulated the diurnal

cycle of convection using a general circulation model GCM, finding that it can actually perform

quite well in replicating the observed diurnal cycle in a control run. Experiments showed that

the early morning maximum in rainfall over the open ocean, albeit weaker than observed, was

simulated by the model. When the radiative impacts of clouds were omitted from the model, a

diurnal cycle of the same phase was still simulated, but it was of much weaker amplitude. While

their results showed that the diurnal cycle over open ocean can be qualitatively explained by direct

interaction between radiation and convection (Kraus 1963), they noted that this is not mutually ex-

clusive with the indirect mechanism proposed by Gray and Jacobson (1977), which could also be
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important. The model of Liu and Moncrieff (1998) also suggested that direct radiation-convection

interaction was the primary modulator, but that the difference between cloud and cloud-free radia-

tion, proposed by Gray and Jacobson (1977) was less important.

The Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment

(TOGA COARE) field campaign in the equatorial west Pacific ocean in 1992-1993 added signif-

icantly to the collective understanding of the oceanic diurnal cycle. Sui et al. (1997) used obser-

vations collected during TOGA COARE augmented by satellite observations to demonstrate that

diurnal precipitation can be grouped into three stages: warm morning cumulus, afternoon convec-

tive showers, and nocturnal convective systems. They showed that while afternoon precipitation

comes from more scattered convective cells, the nocturnal rainfall maximum consists of deep con-

vection and broad stratiform precipitation. These stages also fit nicely into the trimodal distribution

of the cloud population proposed by R. Johnson et al. (1999). Chen and Houze (1997) found that

the prevalence of clouds in each of these stages varies on intra-seasonal time scales. This will be

further elaborated on in section 1.4.

As more precipitation estimates derived from satellite microwave retrievals became available,

many studies in the 21st Century took advantage of these rich datasets to explore the oceanic

diurnal cycle. Furthermore, microwave observations are generally more accurate than infrared

since they respond more directly to precipitation, rather than high clouds (Yamamoto et al. 2008).

These measurements also allowed researchers to explore some more detailed features of the cloud

population at different times of day. Nesbitt and Zipser (2003) found that the morning maximum

in oceanic precipitation is almost entirely due to mesoscale convective systems (MCS), and that

non-MCS precipitation contributes relatively little to the diurnal cycle. They showed that MCSs

are significantly more common during the early morning hours, and this drives the diurnal cycle

in precipitation, rather than more intense rainfall. Comparatively little signal was found in the

convective intensity as a function of time of day. Thus, they asserted that the nocturnal environment

is more suitable for the development of MCSs and for MCSs to last longer, which drives the
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observed pattern. These findings help explain the disparity in the diurnal cycle based on cloud

level considered found by Hartmann and Recker (1986) and Janowiak et al. (1994).

Studies by S. Yang and Smith (2006, 2008) found that oceanic convective rainfall is 25%

greater at night with an early morning maximum, and a secondary maximum in the afternoon,

while the contributions from stratiform and convective processes are fairly consistent. While much

of the focus of the community was on deep, organized convection, the diurnal cycle of shallow

convection is also of interest. Ruppert and R. Johnson (2016) found that diurnal warm layers in

the ocean surface are important for forcing the afternoon mode of shallow convection previously

discussed. Diurnal warm layers preferentially form when the sky is clear and the winds are calm

(Matthews et al. 2014), and actually contribute a nonlinear process to the atmosphere, as removing

the diurnal cycle of SST significantly reduces rainfall and convection (Ruppert and R. Johnson

2016). Similar importance of the diurnal warm layer in undisturbed periods over open ocean in

driving the secondary afternoon maximum in precipitation is evident in other studies (e.g. Sui et al.

1997, Sakaeda et al. 2018). While there is now a consensus on the timing and convective make-up

of the oceanic diurnal cycle, the mechanism driving it is still somewhat of an open question. It

is unclear even after decades of research if the direct or indirect radiation-convection interaction

mechanism is most important, but both are still widely accepted as possibilities (Ruppert and R.

Johnson 2016, Klotzbach et al. 2017). In recent years, this question has fallen out of favor, and

more work has been dedicated to understanding the variability of the diurnal cycle, which will be

the subject of section 1.4.

1.2.2 The Continental Diurnal Cycle and Maritime Continent

Over land, measuring the diurnal cycle of precipitation is substantially easier since the signal

is generally stronger and stationary observations with long records are available. As a result, the

quest to understand continental diurnal cycle has a less dramatic history. The idea that land-based

convection peaks in the afternoon is more widely known by the scientific community and the gen-

eral public. Nevertheless, many studies over the years have worked to establish and understanding
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of the mechanisms that cause In coastal regions, the land heats up faster than nearby oceans due to

its lower thermal inertia, which leads to a sea-breeze circulation that then drives convergence and

convection over land (Pielke 1974). Similarly, mountain slopes heat up faster under the solar load

compared to the free-atmosphere above the valley. The more buoyant air on the mountain slopes

rises, forcing upslope flow (Rampanelli et al. 2004, Hughes et al. 2007). Kousky (1980) showed

that sea- and mountain-valley breezes contribute significantly to an observed afternoon maximum

in land-based precipitation over northeast Brazil over elevated terrain, with a nocturnal maximum

in mountainous valleys. Mapes et al. (2003a) demonstrated the presence of an afternoon peak in

precipitation over the high mountains of the Andes in Colombia, with nocturnal maxima observed

over low-lying terrain surrounded by mountains, such as Lake Maracaibo. This afternoon maxi-

mum was also observed over Australia both in the tropics and subtropics by Keenan and Carbone

(2008). Others have noted a favored afternoon maximum in the Rocky and Appalachian mountains

in North America (Carbone and Tuttle 2008). A series of global studies showed that this pattern is

found all across the world (Cairns 1995, Nitta and Sekine 1994, Dai 2001, G.-Y. Yang and Slingo

2001, Nesbitt and Zipser 2003, S. Yang and Smith 2006, 2008, Kikuchi and B. Wang 2008).

While the prevalence of this pattern all around the world is quite intriguing, that is not the focus

of this thesis. Instead, of greatest interest is the diurnal cycle of precipitation over the Maritime

Continent (MC), a major source of convective heating for the global atmosphere (Ramage 1968).

With its complex topography situated amongst some of the warmest sea surface temperatures (SST)

on Earth, the MC makes understanding precipitation patterns much more difficult. To accurately

capture the detailed features of the diurnal cycle over this region in a model, high enough resolution

to resolve clouds is often required (Birch et al. 2015). Furthermore, errors in a global climate

model in this region cascade into immense errors from pole to pole (Neale and Slingo 2003). An

understanding of the variability of the diurnal cycle is still incomplete, so this thesis aims to add

new information to the body of work, focusing on the less studied boreal summer season. The rest

of this section will summarize the body of work on the MC diurnal cycle to date.
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Qian (2008) succinctly described the mechanisms controlling the mean state diurnal cycle over

the MC. Their model runs showed that daytime differential heating of the landmass causes sea-

breeze circulations that later converge near the center of the the MC islands, and combine with

mountain-valley breezes to enhance convection over mountains. Cells begin to merge and organize,

particularly over larger islands. This study also demonstrated that the representation of the complex

topography of the MC is very important, by showing a significant underestimation of precipitation

when topography was removed, and dramatic impacts on the general circulation of the atmosphere

due to the loss in latent heating. These findings have also been corroborated by many other studies

using radar, satellite observations, and models (Cairns 1995, Dai 2001, Nesbitt and Zipser 2003,

Mori et al. 2004, Tabata et al. 2011, Biasutti et al. 2012). Mori et al. (2004) also went further

to show the diurnal cycle of convective and stratiform precipitation, showing that over Sumatra

island, the convective peak is brief and comes early, followed by a peak in stratiform rainfall later

in the evening, indicating a transition from convective to stratiform after peak precipitation.

Numerical simulations by Saito et al. (2001) showed some disparity between the windward and

leeward sides of the Tiwi Islands near Australia. On the windward side, the sea-breeze front moves

faster, but convection is shallower and less organized. Conversely, convection on the leeward side

of terrain is more well defined, with stronger updrafts. They note that the convergence zone sets

up leeward of the island’s center, and invigorates the updrafts. It is unclear if the results can be

generalized to the rest of the MC. This subject will be explored in later chapters of this thesis. Dai

(2007) used satellite derived precipitation estimates to show that the diurnal cycle over MC islands

is primarily due to changes in the frequency of precipitation, not the convective intensity, similar

to the findings of Chen and Houze (1997) over open water, and supported by gauge analysis by

Kanamori et al. (2013). While examining the diurnal cycle over tropical landmasses, a number of

studies have also noted a pronounced tendency for offshore propagation of convective systems into

near coastal waters overnight (e.g. G.-Y. Yang and Slingo 2001, Mapes et al. 2003a, Kikuchi and

B. Wang 2008).
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1.2.3 The Coastal Diurnal Cycle

After a field campaign studying the boreal winter monsoon in the Maritime Continent, Houze

et al. (1981) presented new observations from Borneo, one of the largest islands of the MC. The

authors presented evidence for an extremely regular diurnal cycle over both land and ocean. They

proposed that the diurnal cycle offshore was initiated by the overnight land breeze converging

with the background northeasterly winds associated with the monsoon system. Later in the night,

convective cells merge and consolidate, continuing until the land breeze ceases during the morning

hours. Then, convection decays over the ocean and shifts to the island.

This hypothesis has been explored extensively in the literature, frequently using the island

of Sumatra as a case study. Mori et al. (2004) used microwave-derived satellite precipitation

estimates to argue that diurnal convection over Sumatra propagates both directions away from the

peak topography in the center of the island. Convection is initiated by the sea-breeze, and then

propagates to the northeast in the evening hours, which they propose is because of the background

westerly wind in the lower troposphere. Anvils are sheared off to the west by easterlies in the

upper troposphere. Similarly, the land-breeze initiates further convection on the southwest coast

of the island, which then propagates further offshore, but a different mechanism (to be discussed

later) is proposed to explain this. Notably, they also indicate that the amplitude of the diurnal cycle

decreases as convection gets further from shore.

Sakurai et al. (2005) employed satellite infrared retrievals to paint a similar picture. They note

propagation in both directions from the initiation over Sumatra’s high topography, up to 500-km

away, with the westward direction dominating. The authors argued that westward propagation

was due to the upper-tropospheric easterlies, and noted that eastward propagation occurs most

frequently when the low level flow has an easterly component, similar to the hypothesis of Mori

et al. (2004). Similarly, Yanase et al. (2017) used composites from nearly two decades of satellite

retrievals to argue that when the entire profile consists of easterlies, convective and stratiform

rainfall propagate westward. However, when lower-tropospheric winds are westerly, convective

systems are advected eastward, while stratiform precipitation is still sheared off to the west. Tulich
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and Kiladis (2012) suggested that it is the wind shear, not the mean flow at any layer, that favors

predominant propagation to the west.

While compelling, the argument that this apparent propagation of diurnal convection is driven

by the land and sea breezes interacting with the background flow cannot fully explain the obser-

vations. Ohsawa et al. (2001) showed that the land breeze is too weak, and it begins too late in

the night to be the sole mechanism. They also note that an offshore maximum in precipitation

is evident even when the prevailing monsoonal flow is offshore. G.-Y. Yang and Slingo (2001)

performed an exhaustive analysis of the global diurnal cycle, and noticed a dramatic tendency for

offshore propagation around the MC islands. An estimation of the propagation speed of these

features lead them to hypothesize that gravity waves were responsible.

In a study focusing on the Andes mountains of Colombia near the eastern Pacific ocean, Mapes

et al. (2003b) used a mesoscale model to propose gravity waves as the the main mechanism

driving offshore propagation, and hypothesized that this mechanism could play a role in other

regions, like the MC. They postulated that gravity waves are initiated in the presence of elevated

heating over high topography amongst the surrounding stratified layers. The wave propagates

offshore at about 15 ms−1, close to the pace of offshore propagation of diurnal convection. As the

gravity wave passes, there are small changes in temperature in the low to mid-troposphere that are

enough to change the sign of the buoyancy of low-level air after midnight. While they believed

that waves should propagate both west and east, they argued that the lack of eastward propagation

could be explained by interference from other convective patterns over the Amazon. In their 2004

study, Mori et al. also proposed gravity waves as a potential driver of propagation offshore to the

southwest of Sumatra. Tulich and Kiladis (2012) argued that some diurnally propagating squall

lines fit the dispersion curves of convectively coupled intertia-gravity waves.

Love et al. (2011) provided convincing evidence that gravity waves are an important contrib-

utor to diurnal phase propagation over Sumatra island using satellite observations in addition to

a regional model run at varying resolutions. They proposed that the transition to a convective

heating profile over high topography in the early afternoon initiates a deep gravity wave that prop-
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agates rapidly offshore, inducing downwelling and thus adiabatic warming and stabilization in the

mid-levels. When the heating profile over land transitions back to one of stratiform precipitation,

another shallower gravity wave is ignited. This wave induces cooling in the mid-troposphere which

destabilizes the atmosphere and primes it for convection. They argued that the inability of models

to accurately represent the diurnal cycle could be due to an inability to capture gravity waves in

lower resolution models or convective parameterizations. Similar results were presented by Has-

sim et al. (2016) for the island of New Guinea. While they found that convection propagates

offshore too slowly to be directly coupled to the gravity wave, they hypothesized that the gravity

wave destabilizes the atmosphere offshore and increases the convective available potential energy

(CAPE) before convection arrives.

Much of the body of work on the diurnal cycle near the MC has focused on the boreal winter

season, and on the largest islands near the equator. However, during the boreal summer season,

the background monsoon state shifts much of the convection away from the equator, towards the

Indian subcontinent, southeast Asia, the South China Sea (SCS), and the Philippines (Biasutti et

al. 2012). This thesis will explore this part of the world in an effort to show how off-equatorial

land-masses in boreal summer fit in with the established theory of the MC diurnal cycle.

1.3 The Madden-Julian Oscillation

1.3.1 Discovery and Early Work

In addition to small scale features largely on the mesoscale like the diurnal cycle, there has also

been considerable interest in large-scale disturbances in the tropics. Matsuno (1966) developed

a theory for waves in the equatorial atmosphere based on a shallow water system of equations.

However, in the early 1970s, two scientists found something that didn’t quite fit. Madden and Julian

(1971) stumbled upon a statistically significant oscillatory pattern in zonal wind and pressure at

Canton Island in the equatorial pacific with a period of 40-50 days. They had no reason to suspect

the existence of such a phenomena, as it didn’t fit in with established equatorial wave theory

(Wheeler and Kiladis 1999). In their 1972 follow-up, Madden and Julian elaborated further on this
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novel discovery, describing the existence of a global-scale oscillation in winds and surface pressure

with a 40-50 day period, which would later be dubbed the Madden-Julian Oscillation (MJO) after

its discoverers.

The MJO is an area of enhanced convection concentrated over the Indo-Pacific warm pool

that propagates slowly eastward with a phase speed of about 5 ms−1 (Madden and Julian 1994).

Anomalous convection is associated with anomalous divergence (convergence) in the upper (lower)

troposphere, which drives an out-of-phase relationship between zonal winds in the upper and lower

troposphere (Madden and Julian 1971). This pattern is mirrored by a correspondent suppressed

convection anomaly associated with circulation anomalies of the opposite sign. Taken together, the

suppressed and enhanced convective anomalies appear as a zonal wavenumber 2 pattern over the

warm pool (Hendon and Liebmann 1994). Hendon and Salby (1994) used observations and reanal-

ysis to show close correlations between outgoing longwave radiation (OLR), temperature, vertical

velocity, and surface convergence. Knutson and Weickmann (1987) found that while anomalies

in convection propagate only over the warm SSTs of the Indo-Pacific warm pool, the circulation

cells tracked through upper-tropospheric velocity potential (a measure of large-scale divergence),

circumnavigate the globe at a much faster speed than when they are coupled to convection. While

the convective anomaly is confined to the tropics (Madden and Julian 1972), the MJO has impacts

globally via forcing of a wave train into the winter hemisphere (Knutson and Weickmann 1987,

Matthews et al. 2004).

Gill (1980) used an idealized model to show that an anomalous heating source along the equa-

tor creates equatorially trapped waves that correspond to Matsuno’s (1966) shallow water theory.

He proposed broad latent heating associated with enhanced convection on the equator forces an

eastward propagating Kelvin wave on the eastern front, and Rossby gyres manifest as low-level

cyclonic anomalies and upper-level anti-cyclonic anomalies, on the western front. These results

are summarized in Gill’s Figure 1, which is included here as Figure 1.1. In this figure, the heating

anomaly is centered at 0 in the x-direction. Strong vertical motion is indicated centered on the

heating anomaly, with weak subsidence on the western flank behind the Rossby gyres. Low level
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winds are predominantly easterly to the east, associated with the Kelvin wave response. To the

west, cyclonic wind anomalies appear. While not shown here, anti-cyclonic circulation anoma-

lies in the upper troposphere are also forced on the western side of heating in both hemispheres.

Knutson and Weickmann (1987) used observations to argue that these circulation anomalies are

present off the equator in both hemispheres but are stronger in the winter hemisphere. In addition,

circulation anomalies of the opposite sign to those in Figure 1.1 are forced by the MJO suppressed

convection. These Rossby gyres can help initiate wave-trains that travel primarily into the winter

hemisphere, modulating surface weather in the mid- and high-latitudes (Hendon and Salby 1994,

Matthews et al. 2004). These authors collectively contributed a significant body of knowledge

of the MJO to the community, but underlying questions regarding MJO dynamics remain. A few

ground-breaking field programs that established a firmer understanding of the structure and char-

acter of the MJO are discussed next. Then, theory that attempts to explain what the MJO is, why it

exists, and why it looks the way it does will be reviewed with a focus on moisture mode theory. Fi-

nally, this chapter will section will conclude with an overview of the boreal summer-time behavior

of the MJO.

1.3.2 Field Observations and the Convective Cloud Population of the MJO

In addition to contributing immensely to the understanding of the oceanic diurnal cycle, the The

Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA

COARE) field campaign was one of the first to extensively document intra-seasonal variability

related to the MJO. While not designed as an MJO experiment, researchers found that the MJO

was fundamental in modulating the precipitation patterns observed. Lin and R. Johnson (1996)

found a that a gradual buildup in tropospheric moisture was observed before an MJO event, and

a rapid drying the lower troposphere occurred near the end of the event as strong westerlies took

over. Chen and Houze (1997) showed using TOGA COARE observations that the MJO suppressed

period consisted of short-lived, small, and shallow convective systems that peak in the afternoon

13



and decay overnight. Alternatively, the MJO active phase brings favors upscale development into

MCSs overnight, leading to a morning maximum in precipitation.

Sui et al. (1997) took a different approach, but also concluded that diurnal warm layers in

the ocean during the suppressed period help to drive an afternoon convective maximum. For the

enhanced phase, they argued that precipitable water is more available, which allows for growth

overnight, and the observed morning maximum. R. Johnson et al. (1999) made a novel finding,

that contrary to conventional wisdom, the distribution of the cloud population in the tropical oceans

is trimodal, with shallow cumulus, cumulus congestus, and deep convective clouds. The cloud

tops in these modes are typically found near the trade wind inversion, 0C stable layer, and the

tropopause, respectively. The authors argued that the previously overlooked cumulus congestus

clouds are actually very important for the development of the MJO, via the moistening of the

mid-troposphere caused by detrainment.

A more recent major field campaign was specifically designed to target the MJO. The Coopera-

tive Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY)/Dynamics of

the MJO (DYNAMO) field campaign took place in the central Indian Ocean in the boreal autumn

and winter season of 2011-2012. Observations were collected for three strong MJO events, one in

each of the last three months of the 2011 calendar year. These three events became the subject of

extensive research in the seven years since. R. Johnson and Ciesielski (2013) found that the active

MJO convective envelope of the October 2011 event largely consisted of westward propagating

disturbances with a period of two days, while the November 2011 was dominated by two Kelvin

waves. Soundings taken in the region showed a gradual moistening of the low- to mid-troposphere

in the approximately two weeks leading up to each event. Other studies have supporting this find-

ing using satellite estimates of column water vapor, as well as reanalysis (e.g. Myers and Waliser

2003, Kiladis et al. 2005). Sobel at al. (2014) used reanalysis data from these events to argue

that this moistening was driven by horizontal advection across the mean moisture gradient by the

MJO winds, which also assists in the drying process after peak precipitation. These findings were

corroborated by Ruppert and R. Johnson (2015) and Tseng et al. (2015), who also indicated the
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importance of vertical advection in driving these events. Moistening processes will be a focus of

the next subsection.

DYNAMO also inspired work on exploring the convective cloud population of the MJO and

transition from suppressed to active MJO state. Addressing the dynamics side of the make-up of

the DYNAMO MJO events, Zuluaga and Houze (2013) proposed that the active phase of the MJO

was largely dominated by westward propagating inertia-gravity waves, lasting 2-4 days. Kikuchi

et al. (2018) explored the wide variety of convectively coupled equatorial waves found during the

DYNAMO events in order to establish a general structure common to all events. They advocated

for the existence of a hierarchy of convective structures making up the MJO. The DYNAMO events

largely consisted of eastward propagating convectively coupled Kelvin waves, each composed of

westward propagating cloud clusters, some of which could be classified as westward inertia-gravity

waves.

A series of studies used radar observations to explore the synoptic and mesoscale features

present in the MJO envelope. Zuluaga and Houze (2013) composited short periods of active rain-

fall within the MJO to learn that shallow convective cores peak before the rainfall maximum, fol-

lowed by deep convective cores, and wide convective cores during peak rainfall. Afterwards, broad

stratiform regions became more prevalent. Xu and Rutledge (2014) composited several events in

the DYNAMO period to show that the pre-onset period is characterized by high CAPE, moist

low-levels, dry mid- to upper-levels, and reduced wind shear, which promotes isolated, shallow

convection. Over a period of two weeks, shallow convection moistens the mid-troposphere, which

allows for deep convection, which then moistens the upper-troposphere. When upper-tropospheric

moisture is maximized, there is a tendency towards MCSs and stratiform rainfall.

Powell and Houze (2013, 2015) concluded using shipborne and spaceborne radars that the con-

gestus mode helps drive the transition from the suppressed to active MJO state in about 3-7 days.

Increasing convective activity creates a positive feedback since intersecting cold pools further in-

vigorate convection (Feng et al. 2015, Rowe and Houze 2015). Thorough analysis of data collected

during these important field campaigns have more conclusively demonstrated that isolated, shallow
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convection driven by diurnal warm layers in the sea-surface dominates the inactive MJO period,

while the active period is characterized by deep convection, broad stratiform precipitation, and

MCSs. Dias et al. (2013) found that there is considerable variability in the convective organization

of the MJO from event to event. Furthermore, while variance of higher frequency waves increases

in the MJO active period, they do not change character. (Dias et al. 2017). In other words, the

exact level of organization of smaller-scale phenomena is not critical for MJO dynamics. However,

the general signal of moistening pre-onset, and the preference for different modes of convection

in the active phase, was observed in numerous longer climatological studies as well (Barnes and

Houze 2013, Yuan and Houze 2013). While the exact make-up may not be important, small-scale

features in general have implications for MJO propagation, which will be discussed in the next

subsection.

1.3.3 Moisture Mode Theory for MJO Propagation

Madden and Julian (1971, 1972) noted that the MJO exhibits slow, eastward propagation. Many

theories have been proposed to explain the maintenance and propagation of the MJO over the

years, both as a dry wave, and one where moisture is required. D. Yang and Ingersoll (2011,

2013) attempted to explain the MJO as Mixed-Rossby Gravity wave packet, propagating with

the eastward group velocity of these waves, or as an interference pattern between westward and

eastward propagating intertia-gravity waves. Other studies have tried to explain the MJO with only

dry dynamics (Majda and Stechmann 2009, Hayashi and Itoh 2017), but without moisture these

models are often unable to fully explain the observed patterns. In this section, the body of literature

that has led to a more complete understanding of the MJO as a moisture mode will be discussed,

i.e. a feature in which moisture is required for its existence and propagation under assumptions of

a weak temperature gradient.

Maloney and Hartmann (1998) presented a novel look at the structure and life-cycle of the MJO

leading up to moisture mode theory, finding that 1000-hPa moisture convergence is well correlated

with water vapor, while 850-hPa convergence lags slightly. Examining this in the context of a cou-
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pled Kelvin-Rossby wave, they demonstrate that, in congruence with theory, the pressure minimum

where surface convergence is expected is located under the 850-hPa easterlies associated with the

leading Kelvin wave. The authors conclude that frictional moisture convergence in the boundary

layer assists in moistening the troposphere to the east of convection. Conversely, subsidence and

horizontal advection of dry air on the west side of enhance convection associated with the trail-

ing off-equatorial Rossby waves, likely contributes to drying the atmosphere. Matthews (2000)

took these ideas a step further and argued that moistening to the east and drying to the west helps

drive the eastward propagation of the MJO. Furthermore, they introduced evidence of a globally

circumnavigating eastward propagating Kelvin wave initiated by MJO convection decaying in the

West Pacific reaches the Indian Ocean in time to coincide with the development of the next event.

While a unifying theory remained elusive at the time of these studies, they helped to establish the

importance of asymmetric moisture anomalies in determining MJO propagation.

Modeling studies led by Raymond introduced new ideas that solidified a base for the moisture

mode theory. Raymond (2000) showed that the saturation deficit helps drive rainfall. In particular,

convection and tropospheric water vapor were shown to be closely coupled in both models (Ray-

mond 2000) and observations (Bretherton et al. 2004). In a 2001 followup study, Raymond argued

that the tropics are unstable to large-scale vertical displacement. In other words, high-clouds asso-

ciated with deep convection depress OLR relative to the surroundings, creating a heating anomaly

which further promotes lifting and precipitation (Kim et al. 2015). The author also argued that the

MJO may be a non-dispersive wave with zero group velocity that is destabilized by the feedback

mechanism described above. This model is the first to represent something resembling a moisture

mode. Later, Raymond and Fuchs (2009) were able to produce a realistic MJO in an aquaplanet

model where precipitation increases with saturation fraction, which further increases the saturation

fraction. This was dubbed moisture mode instability, which essentially concludes that the MJO is

tightly coupled to total column water vapor.

In two ground-breaking studies, Sobel and Maloney (2012, 2013) developed a simple idealized

one-dimensional model to hypothesize that the MJO is a moisture mode. They showed that they

17



can build an MJO-like disturbance using only a single prognostic equation for anomalous column

water vapor, which is equivalent to moist static energy under the weak temperature gradient ap-

proximation (Sobel et al. 2001). While they were able to extract a linear wave equation for the

MJO, the model was unable to replicate its eastward propagation. Next, they modified their model

to correct its flaws (Sobel and Maloney 2013). While still retaining a single prognostic equation for

column water vapor, this follow up added parameterizations for synoptic scale eddies, horizontal

eddies, and frictional convergence, which favor eastward propagation by influencing the moisture

budget. Here, they concluded that moisture modes can propagate eastward, as with the MJO, when

these processes that promote moistening in the MJO easterly anomalies outweigh drying resulting

from the suppression of surface fluxes on the west side of convection. Adames and Kim (2016)

were able to further develop this theory in a two-dimensional model, arguing that the MJO was in

fact a dispersive wave with westward group velocity, in which new centers of convection develop

slightly west of previous ones. In other words, while the main MJO envelope propagates eastward

with a phase speed of about 5 ms−1, successive MJO events develop slightly west of the preceding

event, corresponding to a westward transport of energy. Jiang et al. (2018) showed with reanalysis

data that moisture mode theory can also explain the boreal summer mode, elaborated upon in the

next section. Next, some of the mechanics of moisture mode theory will be explored, describing

how, in the real world, the MJO propagates.

Through a budget analysis of the MJO moist static energy (MSE) Maloney (2009) found that

in a climate model, the increase of MSE prior to MJO onset is primarily driven by horizontal ad-

vection of MSE compensating for the latent heat flux anomalies promoting drying. Hsu and Li

(2012) used reanalysis to propose that moisture increases ahead of MJO convection are primar-

ily driven by moisture convergence caused by the leading Kelvin wave, similar to Maloney and

Hartmann (1998). Specifically, advection across the mean moisture gradient by the MJO winds

contributes about 80% of this horizontal convergence. Sobel et al. (2014) found something simi-

lar, that horizontal moisture advection is the primary factor causing moistening east of convection

and drying west of convection, while radiative anomalies maintain convection. Horizontal advec-
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tion of moisture to the east becomes less negative ahead of convection, providing a relative source

of moistening. These findings were supported by other observational and modeling studies (Zhu

and Hendon 2015, Tseng et al. 2015, Powell and Houze 2015). Ruppert and R. Johnson (2015)

conclusively showed that local processes alone are insufficient to explain the observed moistening,

and advection must be included. During the latter part of the suppressed period, drying processes

due to large-scale subsidence and horizontal advection begin to weaken. Vertical advection trans-

ports moisture higher in the atmosphere, due to the pressure trough associated with the Kelvin

wave east of the enhanced convection. The importance of horizontal moisture advection in deter-

mining MJO propagation led many researchers to wonder if this can be used to predict whether or

not the MJO will propagate.

Not all MJO events are created equal, and some decay in the Indian Ocean, while others suc-

cessfully propagate through the MC (Jones et al. 2004). Kim et al. (2014) articulated that the

presence and strength of the west Pacific dry anomaly is critical to determining if the MJO will

successfully propagate over the MC. Suppressed convection produces a Rossby wave circulation

response on its westward tail (Gill 1980), which promotes favorable horizontal moisture advec-

tion into the free troposphere in the region east of the enhanced convection centered in the Indian

Ocean. Other terms of the MSE budget are in phase with the heating anomaly, indicating that they

act to amplify or decay the disturbance, whereas horizontal advection moves it. Specifically, it is

the meridional advection related to the Rossby wave response to suppressed convection that assists

in priming the MC free troposphere for convection, and successful MJO propagation. Addition-

ally, models tend to be more skillful in their MJO forecasts when a dipole pattern is present with

suppressed western Pacific convection (Kim et al. 2016).

The literature discussed in this section portrays a convincing case for the idea that the MJO is

a moisture mode instability that depends strongly on the horizontal advection of moisture into the

region to the east, and the vertical advection of this moisture higher in the troposphere by convec-

tion. Some studies (Peatman et al. 2014) have suggested that similar processes (e.g. horizontal

moisture convergence and vertical advection) to those that promote MJO propagation in the mois-
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ture mode paradigm also drive MJO modulation of the diurnal cycle over MC islands. This study

aims to clarify a few of those hypothesis by analyzing the boreal summer season. Next, some

differences in this pattern present in boreal summer will be identified, before exploring how this

theory interacts with the diurnal cycle.

1.3.4 The Boreal Summer Intraseasonal Oscillation (BSISO)

Most of the literature presented so far focuses primarily on the winter season. However, the

boreal summer mode of the MJO, known as the Boreal Summer Intraseasonal Oscillation (BSISO)

is also critical to understand, both in developing a consistent theory, and understanding its global

impacts. The top panel of Figure 1.2 shows the variance in interpolated outgoing longwave radi-

ation (OLR; Liebmann and Smith 1996) filtered to include only intraseasonal timescales (20-100

days) in November-April as a percent of the total November-April variance. The bottom panel

shows the same thing, but for May-October. The dataset and methods are described in section 3.1.

This figure summarizes the importance of intraseasonal variability in each season, showing that

for much of the northern hemisphere tropics, intraseasonal variability is even more important in

boreal summer compared to boreal winter. In particular, about 20-30% of the boreal summer OLR

variance occurs within the 20-100 day band over the South China and Philippine Seas, comparable

to the numbers in the frequently studied boreal winter Indian Ocean and MC. In this study, I will

use the term MJO to refer to the winter time mode, BSISO to refer to the summer time mode, and

simply intraseasonal oscillation (ISO) to refer to both modes taken together. In addition to cap-

turing a significant portion of the local variability in convection, the BSISO modulates the Asian

summer monsoon (Lau and Chan 1986, Sengupta et al. 2001, Zhou and Chan 2005), tropical cy-

clones across the world (Maloney and Hartmann 2001, Sobel and Maloney 2000, Maloney and

Dickinson 2003), other modes of tropical waves (Straub and Kiladis 2003), and remote heat waves

(Hsu et al. 2017).

Lau and Chan (1986) pioneered new work on the boreal summer mode, showing that while

eastward propagation directly along the equator is the norm in the boreal winter time, meridional

20



propagation is evident when the MJO interacts with the monsoon system. In boreal summer,

convection still initiates in the Indian ocean, but then develops into an elongated band stretching

from northwest to southeast. Convection then slowly moves to the northeast, into the Bay of Bengal

and South China Sea. In this season, heating is no longer symmetric about the equator. Thus, the

forced Kelvin-Rossby response is also highly asymmetric (Gill 1980, Hendon and Liebmann 1994,

Kemball-Cook and B. Wang 2001). Figure 3 from Gill (1980), reprinted as Figure 1.3 here shows

the wind and pressure response to an idealized heat source centered off of the equator, analogous

to the BSISO. Notice that the Rossby-gyre in the winter hemisphere (Southern Hemisphere in this

example) is weakened and replaced with an anti-cyclonic anomaly, while its summer-hemisphere

counterpart is strengthened. This pattern has been observed in association with the BSISO in

observations and reanalysis (Kemball-Cook and B. Wang 2001, Lawrence and Webster 2002).

Furthermore, Lawrence and Webster (2002) noted that northward and eastward propagation occur

in concert with one another in nearly 80% of the BSISO events they examined, leading to questions

on the potential similarities between mechanisms driving propagation in each direction.

Several mechanisms have been proposed in an attempt to explain this observed northward

propagation of the ISO in boreal summer. Sengupta et al. (2001) and Kemball-Cook and B. Wang

(2001) pointed to the importance of air-sea interactions and surface fluxes in promoting northward

propagation. Others (Hsu et al. 2004, Jiang et al. 2004) have showed that moisture advection

in the boundary layer and lower free troposphere consistently leads the convective anomaly to the

north. DeMott et al. (2013) used both reanalysis and a model to show that boundary layer moisture

advection is critical to northward propagation, while SST-related mechanisms are relevant, but of

secondary importance. Jiang et al. (2018) presented novel work on the BSISO, arguing that it

fits in well with the moisture mode paradigm, and horizontal advection of mean moisture by the

MJO winds assists in propagating the disturbance northward in the summer, in addition to eastward

year round. Overall though, there has been comparatively little work done focusing on the BSISO

mode compared to the boreal winter MJO. Now, there is more of a recognition in the field that

understanding the ISO as a whole must come with a clear theory that works for all seasons.
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1.3.5 BSISO Indices

Statistical indices are a convenient way of succinctly summarizing the lifecycle of the ISO.

In this section, a few attempts from recent years to create an ISO index are discussed. The most

widely used MJO index is the Real-time Multivariate MJO (RMM) index, developed by Wheeler

and Hendon (2004). This index is based on the first two leading combined empirical orthogonal

functions (EOFs) of 850-hPa zonal wind, 200-hPa zonal wind, and satellite-derived OLR estimates,

averaged near the equator. RMM has the obvious advantage of being useful in real time, and thus

more relevant for prediction and analysis of current patterns. However, since RMM is based on

an fields averaged from 15◦S - 15◦N, it misses much of the variance outside of this latitude band.

Figure 1.4 shows the fractional variance explained by each of the four BSISO indices discussed

in this section, calculated by correlating each of the two PC’s that define each index with OLR or

precipitation at each grid point, and then adding the variance explained by each PC together to get

total variance explained by the index. This was done for 1998-2017 for CMORPH, and 1979-2017

for AVHRR OLR, during May-October only. The variance explained by RMM is located in the top

right panel of both (a) and (b). Near the equator, RMM captures around 10-15% of the total boreal

summer variance in daily mean OLR, and about 5-8% in precipitation. However, it is evident that

variance explained drops off quickly poleward of 15◦N. Interestingly, composites of OLR or wind

based on the RMM index in only boreal summer still look qualitatively similar to composites based

on indices specifically design for the boreal summer season (Wheeler and Hendon 2004).

Another major index considered was developed by Kikuchi et al. (2012), and is referred to as

the bimodal ISO index in this thesis. This index was designed to capture the propagation of the

ISO by using an extended EOF (EEOF) analysis which time-lagged information into the analysis.

As a result, the index is skillful in capturing only propagating ISO, not just events that may appear

to resemble the EOF but are not the ISO. Furthermore, the bimodal ISO index is based on bandpass

filtered OLR, and has two distinct modes based on EEOF analysis from the two solstice seasons

(December-February and June-August). These two modes give the index its bimodal nature, with

the traditional MJO mode peaking in the boreal winter season, and the BSISO mode peaking in the
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summer. Variance explained in May-October by just the BSISO mode is shown in the bottom left

panels of Figure 1.4(a) and (b). Somewhat surprisingly, this index does not explain much of the

variance in OLR, even though it was derived from the same OLR dataset used here. This could be a

facet of how variance explained was calculated, as time lag information was not incorporated in this

analysis. However, this index still captures about 3-6% of variance in precipitation. Its nature as

a smoothed index probably results in explaining less of the variance in real-time variables without

any filtering, but it likely captures propagating ISO events better than its real-time counterparts

(S. Wang et al. 2018). Had variance explained been calculated as percent of total intraseasonal

variance explained by the index, this index would likely perform dramatically better.

Next, the BSISO index derived by Lee et al. in 2013 is considered. This index was designed

as a direct boreal summer counterpart to RMM, aiming to better capture the variability in the SCS,

northern Indian Ocean, and western Pacific away from the equator. The BSISO index here is based

on multi-variate EOF analysis of OLR and 850-hPa zonal wind anomalies from May-October only

in the Asian monsoon region. By its nature, this index is expected to capture the most variance

in daily mean OLR, since that is part of what the EOF is based on. As seen in Figure 1.4, this is

indeed the case. Lee’s BSISO index is best able to capture the variance around the Philippines,

the primary area of interest in this study, for both OLR and precipitation, maximizing in the SCS

at around 15-20% of the variance in OLR, and 5-10% of the variance in daily mean precipitation.

However, S. Wang et al. (2018) showed that time-lagged reconstructions based on this index do

not capture the northward propagation of the BSISO. In other words, an active signal in the Lee et

al. (2013) index may not always correspond to a propagating BSISO event. The index is prone to

include spurious signals that simply project onto the EOF patterns, but do not move northeastward

in time.

The final BSISO index discussed in this thesis is the OLR-based MJO Index (OMI) developed

by Kiladis et al. (2014). The OMI takes a unique approach by calculating separate EOFs for

a 121-day period centered at every calendar day in the year from bandpass filtered OLR. While

many previous indices have incorporated zonal wind anomalies into the EOF calculation due to
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their tendency to be less noisy compared to OLR, the authors show that using bandpass-filtered

OLR avoids the introduction of significant noise. Since OMI accounts for the seasonal variation

by calculating separate EOFs for each day of the year, it is useful in all seasons. Additionally, the

use of a bandpass filter in the calculation of the EOF patterns assists this index in better representing

the northward propagation in time, as it is forced to respond to signals only that occur on 20-96

day timescales (S. Wang et al. 2018).

So far, this thesis has reviewed the body of literature covering the diurnal cycle of precipitation

in the tropics, as well as the ISO and its seasonality. Next, prior studies focusing on the interaction

between the diurnal cycle and the ISO will be discussed, before motivating the original work

discussed in later chapters of this thesis.

1.4 Scale Interactions

1.4.1 Impact of the MJO on the diurnal cycle

The diurnal cycle of convection over the Maritime Continent, a small-scale phenomenon, has

been thoroughly described along with the Madden-Julian Oscillation, a global-scale phenomenon

that acts on intra-seasonal time scales. However, the question of how these two features interact

has yet to be addressed. Returning to the analogy introduced in Section 1.1, two stones of different

sizes are now dropped into the lake repeatedly. A single large boulder falls into the lake, creating

huge waves across the water surface. In addition, many small stones are dropped into this pattern

in regular succession, imposing another set of ripples. How do these ripples interact? In the real

world, this question is much more challenging to answer, as not only to the ripples of the MJO and

the diurnal cycle interfere, but each affects the very existence of the other. After going through

the literature on this subject, it will become clear that this question has not yet been answered

satisfactorily.

Sui and Lau (1992) were one of the first to pose the question of how the MJO interacts with

smaller-scale, higher-frequency phenomena. They found that while the MJO active period favors

2-4 day disturbances, the MC diurnal cycle tends to actually be suppressed. Similarly, the diurnal
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cycle is maximized when the large-scale MJO suppressed conditions are overhead. Over open

ocean, the diurnal cycle tends to favor the secondary afternoon maximum in shallow convection

during the MJO suppressed period, while MCS development leading to a pronounced morning

precipitation maximum are favored in the active phase (Chen and Houze 1997, R. Johnson et al.

1999, Xu and Rutledge 2014, Rowe and Houze 2015, Ruppert and R. Johnson 2015, Sakaeda et

al. 2018). Xu and Rutledge (2018) found that deep convective activity and lightning associated

with an enhanced diurnal cycle over the Philippines and Southeast Asia also peaks before the main

convective anomaly arrives.

The interactions between the MJO and the diurnal cycle over land and coastal waters is a more

compelling problem. Many studies over the past several decades have explored the relative con-

tributions of MJO winds, insolation, and equatorial wave dynamics in altering the diurnal cycle.

Sumatra and New Guinea are fairly similar in geography, characterized by a spine of mountains

near the center of the island parallel to the coasts. Several studies have found that the MJO mod-

ulates not only the diurnal cycle over land, but also its propagation out to sea. Rainfall, likely

related to an amplified diurnal cycle, over New Guinea leads the large-scale convective maximum

by about one quarter of a cycle (Matthews et al. 2013). This island also exhibits marked changes in

offshore propagation of diurnally initiated convection as a function of MJO phase. During the sup-

pressed period when easterly winds dominate, convection generally propagates offshore overnight

to the southwest side of New Guinea, or leeward. However, under the westerly regime, convection

initiated by the diurnal cycle propagates in both directions after initiating over the high topography,

although southwesterly propagation is less smooth (Ichiwaka and Yasunari 2008). Furthermore,

Vincent and Lane (2016) learned that offshore propagation is most pronounced in the lead up to the

active phase of the MJO, with convection moving slowly offshore for about 100-200-km, followed

by a rapid propagation associated with diurnally generated gravity waves, similar to the proposed

mechanism of Love et al. (2011).

Sumatra is perhaps the most heavily studied island of the MC. Fujita et al. (2011) used a

collection of datasets and models from various sources to show that the diurnal cycle is most active
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when weak westerlies are present, or just before the large-scale convection arrives. Similar to New

Guinea, convection propagates exclusively westward when the MJO background flow is easterly,

and in both directions when the lower-tropospheric flow is westerly (Sakurai et al. 2005, Yanase et

al. 2017). Oh et al. (2012) argued that the decline in the diurnal cycle after MJO onset is partially

related to the prevailing westerlies disrupting the convergence related to the sea-breeze circulation.

These results have been supported by other studies (Birch et al. 2016). Leeward propagating

storminess and a diurnal cycle peak before MJO onset was also found for Borneo (Ichiwaka and

Yasunari 2006, Kanamori et al. 2013). These results are also corroborated by studies taking a more

general look at the entire MC (Rauniyar and Walsh 2011, Sakaeda et al. 2017). The early peak

in the diurnal cycle often determines an early peak in total precipitation over land (Peatman et al.

2014), and is robust enough that an index for the MJO can even be developed based on the ratio of

oceanic to land-based convection (Vincent et al. 2016).

One of the more comprehensive looks at the impact of the MJO on the diurnal cycle was done

by Peatman et al. (2014). They found that not only does the diurnal cycle over land peak about

1/8 of a cycle before the arrival of the main convective envelope, but also that the diurnal cycle

drives daily mean precipitation over land such that a similar signal is visible in that field. Also of

interest, they showed that infrared brightness temperatures are not a good proxy for convection over

islands, while they still perform skillfully over the open ocean. The authors hypothesized that the

early peak of the diurnal cycle was due to the elevated insolation indicative of the suppressed MJO

period combining with frictional moisture convergence associated with the leading Kelvin wave,

and the Rossby circulation trailing the suppressed convection. Moisture convergence explains why

the diurnal cycle peaks before onset, and not after. This hypothesis was supported by subsequent

modeling work (Birch et al. 2016). All of these major papers on the impact of the ISO on the

diurnal cycle, except for a few, focus primarily or entirely on the boreal winter season, and on the

large islands near the Equator. The impact of the boreal summer mode on the diurnal cycle remains

an open question, particularly off the equator, where the influence of equatorial wave dynamics is
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reduced. Furthermore, a consistent hypothesis explaining the modulation of diurnal propagation

by the MJO has not yet been reached.

1.4.2 Feedback to MJO propagation

While downscale relationships are fairly simple to determine from observations, establishing

upscale connections is not so easy. Still, several studies have attempted to address the question

of how the diurnal cycle can influence the propagation and maintenance of the MJO. Inclusion

of the diurnal cycle dramatically improves the representation of the MJO in a general circulation

model (Slingo et al. 2003, Bernie et al. 2008), indicating that understanding this interaction could

be important for an understanding of the MJO. There is also evidence that the diurnal cycle can

precondition the atmosphere for MJO propagation, and modulate it through diurnally generated

gravity waves (Raupp and Silva Dias 2009, Majda and Q. Yang 2016). Hagos et al. (2016) found

that representation of the diurnal cycle in a model actually reduces the ability of the MJO to prop-

agate across the Maritime Continent. They proposed that this is because the diurnal cycle initiates

convection at nearly the same time across a huge spatial area, covering the entire Maritime Conti-

nent, which disrupts the smooth, eastward propagation of the MJO. Diurnally initiated convection

competes with the oceanic convection through land-sea breezes and moisture supply.

However, many studies have shown that the diurnal cycle over open ocean is important for

moistening the troposphere prior to an ISO event. Cumulus congestus clouds peaking in the after-

noon driven by the diurnal warm layer in the sea surface can advect moisture vertically into the

free troposphere when under the influence of the suppressed ISO phase (R. Johnson et al. 1999).

Furthermore, mid-tropospheric moistening might be inhibited in the absence of a diurnal cycle,

indicating the existence of a non-linear contribution of diurnal moistening (Ruppert and R. John-

son 2015, 2016). These studies, while compelling, do not provide a conclusive answer on how the

diurnal cycle, particularly over MC islands, feeds back onto the MJO.
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1.5 Motivation

While it is tempting to say that once models reach sufficiently high resolution, all of these

issues will go away, this is not the case. Increasing resolution alone cannot take the place of

improving parameterizations (S. Johnson et al. 2016). As discussed in the prior sections, much

of the work in the field has focused on the boreal winter MJO, and the diurnal cycle over large,

equatorial islands. But the MC is larger than Sumatra, Borneo, and New Guinea, and different

features become dominant when interaction with the monsoon is considered. Fully understanding

and simulating the diurnal cycle improves the understanding of the MJO, and vice versa (Slingo et

al. 2003, Bernie et al. 2008, Hagos et al. 2016). Thus, the boreal summer season and off equatorial

portions of the MC cannot be neglected.

Transitioning the focus from the equator to the Philippines and the South China Sea, the follow-

ing questions still remain. What does the diurnal cycle look like in a different region with unique

geography? Does the diurnal cycle propagate offshore into the South China or Philippine Seas

via the same mechanisms observed near the equator? Are these results dependent on the dataset

used? Questions also remain regarding the impact of the BSISO on the precipitation in this part

of the world. Does the pattern of a diurnal cycle peak prior to MJO onset observed by Peatman

et al. (2014) still appear far from the equator? Do these results depend on the selection of index

and compositing method? Are the mechanisms proposed by previous papers adequate to explain

observations in a new part of the world or is an expanded theory needed? Can the diurnal cycle

in the Asian monsoon region impact BSISO propagation in the same way that the diurnal cycle

over the near-equatorial islands impacts MJO propagation? This thesis will address all but the last

question, which will be motivation for future work.

The following hypothesis is proposed to address the above questions. It is expected that the

mean state of the diurnal cycle will look quite similar to regions previously discussed, particularly

over the larger islands of the Philippines. Additionally, even though the Philippines are largely

outside of the influence of the equatorially trapped Kelvin wave and thus its leading frictional

moisture convergence, the forced off-equatorial Rossby wave still promotes a diurnal cycle that
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leads the main BSISO envelope. Instead of frictional convergence, it is likely that wind patterns in

the boundary layer coupled with lower free-tropospheric moisture promote the early signal in the

diurnal cycle. Additionally, this pattern is independent of the index used. It is also suggested that

the diurnal cycle, particularly its offshore propagation, in the Philippines and Bay of Bengal could

assist in preconditioning the atmosphere for poleward propagation of the main BSISO convection,

but testing this hypothesis is left for successive studies.

1.6 Outline

In this chapter, the current state of the field and the body of literature relating to the diurnal

cycle of convection in the Maritime Continent, the Madden-Julian Oscillation, and the interactions

between the two have been described. In Chapter 2, the mean-state diurnal cycle in detail over

the Philippines and South China Sea will be discussed, with a focus on the northernmost island of

Luzon to answer the first few questions posed in the previous section. In Chapter 3, the influence of

the BSISO on the diurnal cycle in this region will be analyzed, in an attempt to test the applicability

of the Peatman et al. (2014) results and hypothesis to a different season and part of the world. In

Chapter 4, evidence will be presented for a few proposed mechanisms that explain the results in

Chapter 3, before summarizing findings, presenting some important conclusions, and motivating

future work in Chapter 5.
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Figure 1.1: Figure 1 from Gill (1980), showing the solution to an idealized heating anomaly symmetric
about the equator. (a) shows vertical velocity in contours, at -0.1, 0, 0.3, and 0.6 ms

−1 with positive in
solid contours superimposed on the velocity field for the lower layer of the model. (b) shows contours of
perturbation pressure (at intervals of 0.3-hPa), all negative. (c) shows meridionally integrated flow in the xz

plane in (i) and perturbation pressure in (ii).
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Figure 1.2: Percent of AVHRR OLR variance in 20-100 day band in May-October (top) and November-
April (bottom)
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Figure 1.3: Figure 3 from Gill (1980), showing the solution to an idealized heating anomaly symmetric
about the equator. (a) shows vertical velocity in contours, at intervals of 0.3 ms

−1 superimposed on the
velocity field for the lower layer of the model. (b) shows contours of perturbation pressure (at intervals of
0.3-hPa), all negative.
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(a) AVHRR OLR

(b) CMORPH Precipitation

Figure 1.4: The fractional variance explained in AVHRR OLR (a), and CMORPH precipitation (b) during
May-October by each of the ISO indices discussed in this thesis.
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Chapter 2

The Average Diurnal Cycle

2.1 Data and Methods

In this chapter, the boreal summer mean diurnal cycle will be analyzed in several satellite

and reanalysis products, comparing the strengths and weaknesses of these products and noting

variability among products. The goal of this chapter is to establish a clear understanding of the

background state of the boreal summer diurnal cycle before considering its variability in the next

chapter.

2.1.1 CMORPH

The first precipitation dataset considered is from the Climate Precipitation Center (CPC) Mor-

phing Technique, or CMORPH (Joyce et al. 2004). CMORPH is a method for combining and

filling the gaps between precipitation estimates from various passive microwave sensors. This

technique only uses microwave precipitation estimates from satellites in low-Earth orbit, and then

these precipitation features are tracked in space using infrared (IR) retrievals from geostationary

satellites, available globally every half hour. The IR information helps track features captured

by the microwave sensors through periods when no passive microwave information is available.

Furthermore, features are tracked both forward and backward in time, and then morphed using

a weighted linear interpolation through time and space to account for changes in intensity and

location.

The authors note that this method can outperform other multi-satellite blended techniques, and

those that rely on IR brightness temperatures (Joyce et al. 2004). In CMORPH, the IR information

is only used to track features captured by the passive microwave instruments, and does not add

additional precipitation estimates. CMORPH is an estimate of accumulated precipitation at 8-km

(at the equator) spatial resolution, and 30-minute temporal resolution, covering 60S-60N from
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1998 to the present. For the Philippines and surrounding waters, this study employs the high

resolution version of CMORPH, but also relies on the 0.25◦ by 0.25◦, 3 hourly resolution version

when showing data over larger areas, where high spatial resolution isn’t as important. May-October

precipitation estimates from 1998-July 2017 are included.

2.1.2 TRMM

In addition, precipitation estimates derived from or related to the Tropical Rainfall Measuring

Mission (TRMM) are considered. The TRMM Multisatellite Precipitation Analysis (TMPA) is

another way of providing a complete, gridded, high spatial and temporal resolution dataset with

excellent coverage of the global tropics (Huffman et al. 2007). This technique blends precipitation

estimates from passive microwave measurements calibrated with the TRMM Microwave Imager

and TRMM Precipitation Radar (PR), and finds a "best" microwave precipitation estimate. Next,

IR precipitation estimates are created from 3-hourly brightness temperature readings using the

calibrated microwave precipitation estimates. The IR and microwave estimates are then combined.

If microwave information is available, for a given point, that estimate is included unchanged, while

the gaps are filled in with IR estimates. While this provides the "best" estimate for precipitation

rate, it results in some discontinuities showing up in the data. This products is known as TRMM

3B42. The "high-quality" version, or 3B42HQ, which considers only the microwave retrievals

without any IR information is also included. These precipitation estimates again come from May-

October for 1998-2017, at 0.25◦ by 0.25◦ spatial and 3-hourly temporal resolution from 50S-50N.

Data is available for October 2014-2017 using the calibrations of microwave and IR information

from other satellites established during the TRMM mission, even though these years include no

information from the TRMM satellite itself.

A precipitation climatology from the TRMM PR is also separately considered in this thesis.

Known as 2A25, this product was an active microwave instrument scanning at 13.8 GHz in low-

Earth orbit with 16 orbits per day, from 1998 until the TRMM satellite failed in 2014 (Iguchi et

al. 2000). 2A25 provides a radar from space, and thus can produce increased reliability over the
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MC (Tabata et al. 2011). However, due to TRMM’s small footprint, the spatial and temporal

coverage is rather poor, making it only useful for case studies and climatology studies. There

is insufficient data to have strong statistics for intra-seasonal variability studies due to the poor

sampling frequency. 2A25 is provided in orbital format, at 4-km spatial resolution.

2.1.3 IMERG

The last satellite derived precipitation estimate considered comes from the Integrated Multi-

SatellitE Retrievals for GPM (IMERG; Huffman et al. 2018), where GPM refers to the Global Pre-

cipitation Measurement Mission satellite, launched in early 2014. IMERG serves as the successor

to TRMM 3B42, as its algorithm continues the mission of combining precipitation estimates from

all available passive microwave instruments, IR satellite estimates, and surface gauges. IMERG

improves the resolution over TRMM 3B42 to 0.1◦ by 0.1◦ spatial resolution, and half hourly tem-

poral resolution, similar to the high-resolution CMORPH. Data is available in full coverage from

60S-60N, and partial coverage globally, from 12 March 2014 to the present. For this study, four

full boreal summers from 2014-2017 are analyzed. While IMERG provides excellent resolution

and interesting comparisons for the boreal summer climatology, there are too few samples of intra-

seasonal oscillations in just four summers to establish statistically significant results.

2.1.4 ERA-Interim

While a new reanalysis, ERA-5, is currently being released by the European Centre for Medium

Range Weather Forecasting (ECMWF), it was only available from 2008 to the present at the time

of writing. As such, ERA-5’s predecessor, ERA-Interim (Dee et al. 2011) was a more attractive

option. Several variables are used from ERA-Interim in this study in order to fill in gaps that can’t

be closed with satellite observations alone, or to provide better temporal resolution or coverage

of atmospheric variables thus enhancing results from satellite products. When the diurnal cycle

was not of interest for a certain variable, the reanalysis provided at 6-hourly temporal resolution

from 1998-2017 (to align with CMORPH and TRMM record) proved sufficient. These were then

36



averaged to daily temporal resolution. 250-hPa wind was used at 1◦ spatial resolution and 850-hPa

wind at 0.25◦ spatial resolution.

6-hourly resolution was deemed not satisfactory for diurnal cycle studies, so the ERA-Interim

re-forecast fields were also included (also from 1998-2017). These were created by running the

current version of the ECMWF global numerical weather prediction model on historical data, at

00 UTC and 12 UTC, with output every 3 hours. Some variables (i.e. precipitation, insolation) are

defined as accumulation since the forecast time, while others (moisture, wind) are instantaneous

estimates. For consistency, the 00 UTC run was selected for all times 03-12 UTC, and the 12 UTC

run for 15, 18, 21, and 00 UTC. The re-forecast variables used in this study include surface precip-

itation at 0.125◦ spatial resolution and surface wind at 0.25◦ resolution for the broader Maritime

Continent, and 0.125◦ spatial resolution for the Philippine area of focus. Vertical profiles of cloud

water content, specific humidity, relative humidity, and temperature supplemented this analysis

near the islands of Luzon and Mindanao. These data were analyzed at 0.125◦ spatial resolution for

28 vertical pressure levels ranging from 1000-hPa to 100-hPa. Pressure surfaces were found every

25 hPa from 1000-hPa-750-hPa and 250-hPa-100-hPa, and every 50-hPa from 750-hPa-250-hPa.

This became very useful for exploring intra-seasonal variability in the diurnal cycle due to its ex-

cellent temporal coverage and resolution. This chapter also shows that in the mean state, it aligns

sufficiently well with satellite observations.

2.1.5 QuikSCAT

The NASA Quick Scatterometer (QuikSCAT; SeaPAC 2016) was one of the earlier attempts

at measuring surface wind from space, and was launched as a recovery effort after the premature

failure of the NASA Scatterometer in 1997. The SeaWinds instrument onboard is an active mi-

crowave radar operating at 13.4 GHz from a sun-synchronous orbit. The satellite collected data

in a 1,800-km wide band at 25-km spatial resolution and covered 90 % of the Earth’s surface in

one day. This instrument provides estimates of wind speed to an accuracy of 2 ms−1, and direction

with an accuracy of 20 degrees over the global oceans. Data is available from June 1999 to its
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failure in November 2009. This product will be used to examine the climatology of wind, and

show consistency with more modern satellite wind estimates, but its nature in sun-syncrhonous

orbit limits its use for the goal of exploring the diurnal cycle.

2.1.6 ASCAT

The Advanced Scatterometer (EUMETSAT/OSI SAF 2010) is a newer instrument onboard two

European satellites, MetOp-A and MetOp-B. Measurements from the 5.255 GHz scatterometer

are then processed by NOAA/NESDIS and converted into wind estimates over the global oceans.

While the standard ASCAT wind estimates are provided at 25-km resolution from 2007 to the

present from the instrument onboard MetOp-A and from 2012 to the present from MetOp-B, this

study will only use the version optimized for coastal oceans from MetOp-A, provided at 12.5-km

resolution from 2010 to the present. Wind retrievals are included in this study primary to explore

wind patterns in coast waters. Thus, it is most fitting to consider the ASCAT product optimized for

these purposes.

2.1.7 RapidScat

The RapidScat instrument is a modified version of the QuikSCAT scatterometer for use on

the International Space Station (ISS), to fill in after the loss of QuikSCAT (RapidScat Project

2016). The accuracy of RapidScat is similar to that of QuikSCAT, but its footprint is only half

that of QuikSCAT because of the lower orbit of the ISS. Conversely, RapidScat achieves a spatial

resolution of 12.5-km. When combined with the previously mentioned ASCAT, they can achieve

a total spatial coverage similar to QuikSCAT. The advantage to RapidScat is that the ISS is not

in a sun-synchronous orbit like QuikSCAT and ASCAT, so this is the first of the satellite wind

retrievals that can be used to examine composite diurnal cycles. Unfortunately, RapidScat was not

active long, and data is only available from its launch in October 2014 to its failure in August 2016.

Thus, this dataset was used to compare to ERA-Interim on diurnal timescales, and validate use of

the reanalysis for intra-seasonal variability studies in the next chapter.
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2.1.8 Methods

In this chapter, the boreal summer composite diurnal cycle of several variables will be ana-

lyzed in depth. Boreal summer is defined as May-October, the extended warm season in the north-

ern hemisphere. For reanalysis and Level-3 satellite products, this was done by simply averaging

together all May-October days, separately for each available time step, to create one composite di-

urnal cycle at the same temporal resolution as the raw data. For Level-2 satellite products provided

in orbital format, including TRMM 2A25, QuikSCAT, ASCAT, and RapidScat, the data was first

binned to a 0.25◦ spatial resolution grid. The wind retrievals were first converted from speed and

direction to their zonal and meridional components before binning. The binning process was done

with a simple re-grid and average in space, and were binned to the closest time step (at 3 hourly res-

olution). When multiple measurements fit into the same grid cell at the same time. QuikSCAT and

ASCAT were binned just to the day the measurement occurred on, not to a diurnal cycle, and the

descending and ascending passes were averaged together. This resulted in a grid at 3-hourly tem-

poral resolution for 2A25 and RapidScat, and daily temporal resolution for the sun-synchronous

satellites. Then, these were composited into a boreal summer average diurnal cycle, and boreal

summer daily average, respectively. Each pass of the satellite was weighted identically, regard-

less of if only one measurement from the orbital swath fell into the bin or several measurements

were averaged together. Additionally, each wind component was averaged separately, as was wind

speed.

The first harmonic of the composite diurnal cycle is a clear and concise way to summarize

many features of the mean-state diurnal cycle. The harmonics of this composite were analyzed

rather than of the entire time series to avoid complications of extensive data gaps in the orbital

records, and to smooth out the maps. At any point in this study when spatial averaging was done

to a composite diurnal cycle, the first diurnal harmonic was calculated after all averaging was

complete. This chapter explores the amplitude and phase of boreal summer composite diurnal

cycles of surface wind, precipitation, cloud water, and humidity near the Philippine islands.
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Additional statistical analyses on CMORPH precipitation helps illuminate some intriguing fea-

tures. To determine the percent variance of CMORPH precipitation that occurs on diurnal time

scales, the difference is calculated between the total May-October variance and the variance again

of the same time-series, smoothed with a 24-hour running mean. The smoothing effectively re-

moves all variance on diurnal time-scales, leaving only the variance that is of interest. Precipitation

probabilities are also considered. This study discusses the probability of any non-zero precipita-

tion rates and the probability of excessively high precipitation. The desired threshold would be

one that was sufficiently rare, occurring perhaps only a few times per year, but also often enough

that statistics are not based on a handful of extreme events in the entire 20-year record. After some

experimentation, the threshold of precipitation rates greater than 15 mm in three hours seemed

appropriate. The same threshold is used for all grid points in the study. In other words, the full

distribution of all precipitation estimates from every May-October day at 00 UTC was taken for

each grid point. Then the fraction of non-zero estimates and fraction greater than the threshold

chosen for extreme precipitation were pulled out to estimate their probabilities. This was done for

all points and all hours.

2.2 The Background State in Boreal Summer

This chapter now moves to a broad overview of precipitation and wind patterns in boreal sum-

mer, before exploring smaller spatial and temporal scales. To understand the pattern in the summer

alone, the seasonal progression must also be considered. In Figure Figure 2.1, CMORPH precip-

itation exhibits a robust seasonal cycle, with southeast Asia, the South China Sea (SCS), and the

Philippines showing a pronounced maximum during the summer. This also corresponds to the wet

season in the northern Maritime Continent, the region of interest. In this season, precipitation is

maximized in a few key regions. Figure 2.2 shows this clearly, with average precipitation rates ex-

ceeding 10 mm day−1 found near the higher terrain of New Guinea, Borneo, and Southeast Asia,

off the west coast of Luzon, the northernmost island of the Philippines, in the eastern SCS, in the

PISTON domain near the islands of Palau, and most prominently, along the coast of Myanmar in
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the Bay of Bengal. This pattern is associated with the ITCZ’s summertime northward migration,

and the Asian monsoon system. Surface wind from ERA-Interim in Figure 2.3 along with maps

of its divergence (not shown) suggest that these regions of high precipitation are collocated with

convergent surface wind according to the ERA-Interim reanalysis, as would be expected. There

is a broad area of general, large-scale convergence over most of the SCS and Philippine sea, with

enhanced convergence on the windward side of landmasses. Similarly, surface divergence is often

found on the leeward side of islands and elevated terrain, which is likely a driver of the spatial

distribution of heavy precipitation in this season.

Figure 2.3 provides a look at the mean state winds over the Maritime Continent (MC). The

summer monsoon pattern is prominent, with cross-equatorial flow coming out of the southeast, and

then turning towards the northeast after crossing the equator. This results in strong southwest winds

at low levels of the atmosphere in the Bay of Bengal, SCS, and southern Philippine sea, impinging

on the southern and western shores of MC islands. At 850-hPa, wind speed is stronger and more

zonal than surface winds, while following generally the same patterns. Upper tropospheric winds at

250-hPa in this region are out of the east-northeast, with a speed maximum over the equator. These

winds are important for shearing the anvils of storms (Ackerman et al. 1988) as well as regulating

the offshore propagation of storms and mesoscale convective systems on diurnal time-scales (Mori

et al. 2004, Sakurai et al. 2005, Yanase et al. 2017), a major focus of this thesis.

2.2.1 Comparing Precipitation Datasets

In order to argue that satellite derived precipitation and wind estimates are consistent with one

another, a detailed comparison of several datasets is offered for the region near the Philippines.

Figure 2.4 shows the boreal summer average precipitation rate near the Philippines from several

satellite-derived precipitation datasets. While not shown, there are no significant differences in

these conclusions when only considering the period of overlap between datasets. Here, the full

available record is considered for each dataset. In the CMORPH record, the precipitation maxi-

mum offshore of Luzon is quite evident, as well as another maximum over the higher terrain of
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northern Luzon. Elevated precipitation rates are also found offshore from the smaller islands of

the central Philippines, and over the mountainous terrain of Mindanao, the southernmost major

island. Lower average precipitation rates are found east of the Philippines, and to the southwest,

between the Philippines and Borneo. The other high spatial and temporal resolution precipitation

dataset, IMERG, reveals a similar pattern with a few notable distinctions. Near Luzon, IMERG

tends to show higher precipitation rates over and just west of the elevated terrain, with some-

what lower precipitation rates compared to CMORPH in the offshore maximum. This is true even

when CMORPH is only composited for the period of data availability for IMERG (2014-2017, not

shown).

IMERG’s predecessor, TRMM 3B42 shows some differences as well. The high-quality (HQ)

version of TRMM 3B42 was also included to eliminate a possible bias due to anvil shearing. Since

3B42 relies on infrared retrievals, it could be biased by high, cold cloud tops that are sheared away

from the main area of precipitation, potentially resulting in spurious precipitation rates in areas of

deep convection (Ohsawa et al. 2001, Yamamoto et al. 2008). The HQ version is microwave-only,

with data gaps remaining in the time-series instead of being filled in with infrared measurements.

Both 3B42 products show higher precipitation rates over most of the domain when compared to

CMORPH and IMERG. Past studies (e.g. Dai et al. 2007) have argued that CMORPH and TRMM

3B42 both have a tendency to overestimate precipitation over land, and underestimate it over ocean

when compared to ground based observations. Others (Tan et al. 2017) have shown that IMERG

improves upon TRMM 3B42, but IMERG’s record is too short for robust statistics on intra-seasonal

variability.

The HQ product shows a spatial pattern most similar to CMORPH with two peaks over Luzon,

one over the northern high mountains, and another offshore to the southeast of the island. However,

inclusion of the infrared retrievals pushes the spatial pattern closer to IMERG, showing a merged

area of increased precipitation, with just a single maximum east of Luzon, and no secondary max-

imum over the higher terrain. Finally, the TRMM Precipitation Radar (2A25) resampled to the

3B42 grid shows a much noisier pattern due to its limited spatial and temporal coverage. Precipita-
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tion magnitudes in the 2A25 retrievals are generally lower in magnitude than 3B42 products, with

disorganized spatial patterns qualitatively similar to the CMORPH and microwave-only TRMM.

In general, the precipitation patterns are quite similar in each of the satellite datasets, suggesting

that similar conclusions can be drawn from each dataset. TRMM 2A25 performs quite well in the

MC (Tabata et al. 2011), but its limited spatial coverage restricts its utility for the stated goals of

this study. Due to its superior temporal coverage and high spatial resolution, CMORPH will be

the primary dataset for this thesis, but evidence from other datasets will be periodically included to

strengthen the conclusions. Prior work has shown that while not perfect, satellite derived precipi-

tation estimates such as CMORPH and TRMM 3B42 perform reasonably well even over complex

topography (Dinku et al. 2008, Nesbitt et al. 2008, Romilly and Gabremichael 2011).

The last precipitation dataset reviewed comes from the ERA-Interim reanalysis. Since this

dataset will be used for several variables other than precipitation as an explanation for the con-

clusions derived in the next chapter, it is prudent to consider the precipitation fields output by

this reanalysis product and compare them to the satellite products. However, since convection in

ERA-Interim is parameterized, it likely does not represent precipitation perfectly, despite perhaps

being more accurate on the large-scale with dynamic variables (Birch et al. 2015). As shown in

Figure 2.4, ERA-Interim qualitatively replicates the satellite-derived precipitation patterns reason-

ably well. However, it tends to produce more precipitation east of the Philippines, in the Sulu Sea

(southwest of the Philippines), and in the southern islands of the Philippines. Over Luzon and the

SCS, ERA-Interim looks similar to CMORPH. It also captures the location of the maximum over

Luzon’s higher terrain reasonably, but has the offshore maximum slightly further south, with gen-

erally less definition everywhere. This shows that in the mean-state, ERA-Interim is not an outlier

amongst the satellite precipitation datasets.

2.2.2 Comparing Wind Datasets

Several satellite wind products are also compared to ERA-Interim. The satellite products are

again available for different time periods (occasionally without any overlap), but the patterns are
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still qualitatively similar over the Philippines. Figure 2.5 shows the boreal summer mean wind

vectors and speed, averaged separately for each dataset’s full period of record. Overall, the wind

patterns over the ocean are quite similar, which is impressive for such different algorithms, sources,

and periods of study. All show the consistent impingement of southwesterly flow on the island of

Luzon due to the monsoonal trough, along with a convergence zone near and northwest of the

island. On the east side of the Philippines, south-southwest winds near Mindanao and southeast

winds further north are consistently found. The most distinct differences are present in magnitude

of the average wind speed. QuikSCAT and RapidSCAT tend to show slightly higher wind speeds

compared to ASCAT and ERA-Interim. While there is no temporal overlap between QuikSCAT

and RapidScat and between QuikSCAT and ASCAT, ERA-Interim shows no significant change

between QuikSCAT era and ASCAT/RapidScat era (not shown). The reanalysis winds tend to be

weaker than all satellite-derived wind estimates, but wind direction and the spatial distribution of

wind speed are remarkably similar. These results suggest that ERA-Interim are useful on these

scales, which is advantageous because of its high temporal resolution and coverage.

2.3 The Diurnal Cycle of Precipitation

The diurnal cycle is an important driver of the mean-state of the MC region described in the pre-

vious section. An in-depth study of the diurnal cycle will build an understanding of the processes

that lead to the observed precipitation and wind patterns, which will be important when consid-

ering its intraseasonal variability. Figure 2.6 shows the percent of the total variance in CMORPH

precipitation that occurs on diurnal time-scales, described in 2.1.8. The largest fractional variance

on diurnal timescales is found over land. Over most landmasses of the MC, about 65-80% of the

variance is related to the diurnal cycle. Near coastal oceans have about 55-70% of the variance on

these scales, with generally less than 50% of the variance for oceans further from landmasses, such

as the waters northeast of the Philippines, and in the center of the SCS. This suggests that under-

standing the diurnal cycle and its variability will be very important in understanding the regulation

of total precipitation and storm development.
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Figure 2.7 shows the composite diurnal cycle from all days in May-October from 1998-2017.

The time stamps on each panel correspond to 3 hour averages of precipitation, according to the time

in Manila, Philippines (UTC+8). This was done to avoid the interpolation that would be required

to convert to Local Solar Time and the discontinuities that would result from using the local time-

zone at each grid point. This product is released as a 3-hour total precipitation accumulation, so

this was converted to an average precipitation rate in mm hr−1. Precipitation over land begins to

develop between 14:00 and 17:00 for most of the MC islands and mainland Asia. These landmasses

tend to see the highest precipitation rates in the late afternoon and evening hours, between 17:00

and 20:00. For the larger landmasses, including Sumatra, Borneo, and mainland southeast Asia,

precipitation lingers later into the overnight hours when compared to the smaller islands of the

Philippines. Heading into the evening and overnight hours, there is strong evidence of precipitation

propagating offshore. This is quite clear off of the west coasts of Luzon in Mindanao from 20:00-

02:00. Over land, the highest precipitation rates generally peak over 1 mm hr−1 in the CMORPH

dataset, while the peak average precipitation rates over coastal ocean are notably smaller, around

0.5-1 mm hr−1. Offshore propagation is also evident from the islands of Sumatra and Borneo, as

well as from Myanmar into the Bay of Bengal. These results are largely consistent with previous

work on the diurnal cycle in various datasets (e.g. Houze et al. 1981, G.-Y. Yang and Slingo 2001,

Mori et al. 2004, Sakurai et al. 2005, Kikuchi and B. Wang 2008).

2.3.1 Precipitation Probabilities

Next, probabilities of precipitation will be addressed in order to provide greater insight into

precipitation patterns over the course of a day. Figure 2.8 shows the probability of non-zero pre-

cipitation within each 3-hour window. Further, Figure 2.9 shows the average precipitation rate

only from time steps in which rain was observed, or the conditional precipitation rate. While this

precipitation frequency tells us how often precipitation is expected at a given time of day, the con-

ditional precipitation will tell us essentially how hard it is raining, when rain is falling. Multiplying
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Figure 2.8 by Figure 2.9, or the probability it is raining by the average precipitation rate when it is

raining, will reproduce Figure 2.7.

There is a robust diurnal cycle in the probability of precipitation over land areas such as the

Philippines, Sumatra, and New Guinea. For these islands, over 50% of all boreal summer days

observe some precipitation between 14:00 and 17:00 and between 17:00 and 20:00. At the same

time, conditional precipitation rates are around 1-1.5 mm hr−1 for these the Philippines. Compar-

atively, for most points on these islands (with the exceptions of New Guinea and mainland Asia’s

mountainous terrain), precipitation probabilities drop to as low as 10% from 02:00-05:00 and from

05:00-08:00, while conditional precipitation rates drop to 0.5-1 mm hr−1. Precipitation proba-

bilities are nearly five times higher in the afternoon compared to the morning, while conditional

precipitation rates roughly double at most. Thus, the diurnal cycle in precipitation feature appears

to be more dominant and thus this suggests, in accordance with prior studies (Dai 2001, Dai et al.

2007, Kanamori et al. 2013), the diurnal cycle primarily comes from rainfall occurring more often

in the afternoon, and the contribution of higher intensity rainfall is secondary.

Coastal waters tend to see a diurnal cycle in precipitation frequency phase lagged behind the

diurnal cycle of the nearby landmass. Offshore propagation is visible when looking at both pre-

cipitation frequency and intensity, most obvious near larger islands, suggesting that land-based

convection may carry its intensity signal out to sea. Over open water, the diurnal cycle is weak

in both frequency and intensity, with perhaps a slight tendency towards an early morning peak in

precipitation frequency, and a similar pattern in precipitation intensity. Note that this plot is all

based on Philippine time, but in reality, there is a four hour time difference within the domain here,

so comparing far sides of the plot could differ by more than one full panel. These results are clar-

ified in light of previous work by Nesbitt and Zipser (2003), who showed that the early morning

maximum in precipitation is mostly due to an increased number of mesoscale convective systems.

In summary, convection that initiates over land in alignment with the mean diurnal cycle may be

more intense on average than precipitation that occurs due to other processes. On the other hand,
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oceanic convection may vary by time of day in terms of when it is most likely to be present, but its

intensity is more random as a function of time of day (Nesbitt and Zipser 2003, Dai et al. 2007).

Finally, the probability of unusually high precipitation rates over the course of an average day

is examined. Figure 2.10 shows the probability of a 3-hour averaged precipitation rate greater

than 5 mm hr−1. (i.e. greater than 15 mm of precipitation in 3 hours) for each 3-hour window.

According to this the CMORPH record, extreme precipitation also exhibits a robust diurnal cycle.

Over land, extreme precipitation is most likely in the mid-afternoon and evening hours, aligning

with the peak in average precipitation rate. Elevated probabilities also appear to propagate offshore

into the overnight hours, indicating that for near coastal waters, high-intensity precipitation is most

likely at times of the day when it is expected to be impacted by convection that initiated over land.

Over the west Pacific, SCS, and Bay of Bengal, extreme precipitation appears most likely in the

morning hours and least likely in the afternoon and evening hours.

This detailed analysis of the boreal summer diurnal cycle in precipitation suggests that precipi-

tation initiates in the early afternoon over topography, and then organizes over larger islands as the

afternoon progresses. These areas see significantly increased probabilities in precipitation during

the afternoon and evening hours, and extreme precipitation events are also most likely during this

period. After the sun sets, convection begins to propagate offshore. Similarly, near coastal wa-

ters observe a large diurnal amplitude in precipitation frequency and the probability of very high

precipitation rates, and a smaller diurnal cycle in conditional precipitation rates. Over the open

ocean, the diurnal cycle is weak, but there is some tendency towards an early morning peak related

to an increased likelihood of non-zero precipitation rates and extreme precipitation events. This is

generally consistent with previous studies on the mean state diurnal cycle in this region from other

datasets, indicating that the diurnal cycle in average precipitation rate is more strongly related to

increased precipitation probabilities rather than increased precipitation intensity (Dai 2001, Nesbitt

and Zipser 2003, Dai et al. 2007, Baisutti et al. 2012, Kanamori et al. 2013).
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2.3.2 The Diurnal Cycle near the Philippines

This section will probe the diurnal cycle over the Philippines and reveal greater detail. A map

of the topography from the ETOPO2 dataset (National Geophysical Data Center 2006) in this

region is shown in Figure 2.11 with some important geographical features labelled for reference

throughout this thesis. For the following discussion, the first diurnal harmonic from the composite

diurnal cycle of several satellite derived precipitation datasets is considered to show consistency

across sources. Figure 2.12 shows the amplitude of the first diurnal harmonic in boreal summer

and reveals a few features evident in all datasets. As expected, the most robust diurnal cycle in

precipitation is observed over land, particularly near elevated terrain. Furthermore, the satellite

derived precipitation estimates show increased amplitudes extending west of the Philippines in

coastal waters. Over land, all data sources agree that the amplitude of the first diurnal harmonic

is on the order of 10 mm day−1, indicating a large diurnal cycle when compared to the average

daily precipitation rates of around 10-12 mm day−1. While ERA-Interim will not be used to study

precipitation statistics, it is still worth noting how well this product captures the diurnal cycle when

examining other variables in the reanalysis. At first glance, ERA-Interim appears to show a very

similar picture in the amplitude of the diurnal cycle. However, closer examination reveals that

the reanalysis has higher amplitudes much more confined to land, with a very sharp gradient in

near coastal waters. It does not seem to capture the elevated diurnal cycle amplitudes off of the

west coasts of Luzon and Mindanao well. Past studies have shown that models with parameterized

convection capture offshore propagation quite poorly, likely due to an ability to represent gravity

waves (Love et al. 2011). This is likely a contributing factor to the disparity offshore. While

not shown, the difference between the minimum and maximum of the composite diurnal cycle,

referred to as diurnal range in this study, provide similar conclusions.

Figure 2.13 shows the variance in the composite diurnal cycle explained by its first diurnal

harmonic, in order to show that the first diurnal harmonic is a reasonable approximation for the

diurnal cycle. The variance explained is generally quite high, suggesting that the composite diurnal

cycle of precipitation in May-October resembles a sine-wave. In the satellite records with the best
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data coverage (CMORPH and TRMM 3B42 have data available for most time steps on all days

from 1998-2017), the islands large islands of the Philippines generally have 60-90% of the vari-

ance explained by the first diurnal harmonic, while the diurnal cycle over the smaller islands does

not look as much like a sine-wave, possibly due to an earlier peak and rapid decline in precipitation

shown in Figure 2.7. These products also agree that the first harmonic is a good approximation

for the diurnal cycle over much of the ocean, in the SCS, Philippine Sea, and Sulu Sea. There are

two regions for which all data products show that the first harmonic is not an adequate representa-

tion. North of Palawan Island (west of the main Philippine archipelago delineating the boundary

between the SCS and Sulu Sea) and in the SCS around 18◦N, 118◦E present variance explained

numbers of less than 20%. This could be related to propagating diurnal signals interfering with

one another, creating a double peak in precipitation rates.

The other satellite products record much lower variance explained numbers, likely due to poor

temporal sampling frequency (TRMM 2A25), and limited temporal coverage (IMERG). Finally,

ERA-Interim is similar to the products in showing that the first harmonic is a good representation

of the diurnal cycle, but misses many of the spatial distinctions seen in the satellite products. In

ERA-Interim, the composite diurnal cycle resembles a sine-wave over land and in the Philippine

Sea, with 70-100% of the variance explained. One interesting feature is that the composite diurnal

cycle in coastal waters surrounding the Philippines has much lower variance explained by its first

harmonic when compared to the satellite products. Taking the satellite products as a "ground-truth"

(which is not necessarily true), this suggests that ERA-Interim may have some weaknesses over

coastal waters. This is supported by prior work which has shown that models with parameterized

convection represent the diurnal cycle of precipitation in regions of complex topography and their

offshore propagation poorly (Love et al. 2011, Birch et al. 2015).

Figure 2.14 shows the estimated hour of peak precipitation rate in Local Solar Time (LST)

as calculated from the first diurnal harmonic of the composite diurnal cycle. For reference, the

hour of peak precipitation (without smoothing via the first diurnal harmonic) of the high resolution

datasets is shown in Figure 2.15. This is only shown for the high resolution datasets available at
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30-minute temporal resolution because they add more detail than the simple 3-hourly resolution

of the other products. For CMORPH and IMERG, it is clear that using the peak hour from the

first diurnal harmonic tells the same story as the raw peak hour from the composite, but smooths

out the features significantly such that they are less noisy and easier to interpret. There are several

important features in Figure 2.14. For ease in interpretation, the hour of peak precipitation is

plotted such that if precipitation peaks in or close to daytime, it appears in warm colors (yellows,

oranges, and reds), while cool colors (blues and purples) indicate a nighttime peak. Over Luzon and

Mindanao, precipitation generally peaks around 17:15-20:15 according to CMORPH, IMERG, and

TRMM 3B42, most concentrated close to 18:00. TRMM 2A25 shows a slightly earlier peak over

Luzon, around 15:45-18:45. Prior work has suggested that inclusion of IR measurements could

lead to a later peak in the diurnal cycle observed (Yamamoto et al. 2008). The smaller islands in

the middle of the Philippines generally see earlier peaks in precipitation rate, around 14:15-17:15

in all satellite datasets. ERA-Interim tends to be about 3 hours too early when compared to the

4 multi-satellite products, and about 90 minutes earlier than the TRMM PR, but still shows an

afternoon peak in precipitation over land, with Luzon and Mindanao peaking later than the smaller

islands. The main findings concerning the diurnal cycle over large islands in the Indo-Pacific warm

pool are consistent with other studies focusing on different parts of the Maritime Continent (Gray

and Jacobson 1977, Houze et al. 1981, Hartmann and Recker 1986, G.-Y. Yang and Slingo 2001,

Sakaeda et al. 2017).

One of the most intriguing features of Figure 2.14 is that it quite clearly shows regions that are

affected by precipitation that originates over the Philippines. All satellite datasets show offshore

propagation, indicated by progressively later peak times further from land. Immediately offshore

of Luzon, and extending south to Minidnao, a late evening peak in precipitation is apparent. A

degree or so of longitude offshore (about 100-km) a peak occurs shortly after midnight. By about

200-km west of the Philippines, precipitation peaks in the morning hours. However, the amplitude

as previously discussed is fairly small this far from shore, indicating that while there is an enhance-

ment in precipitation at these times associated with convection propagating offshore, it is modest
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compared to the daily mean precipitation. There is some evidence of propagation on the east side

of the Philippines too, as indicated by times getting progressively later heading further from land,

but this does not appear to be as prominent as progression on the west side. Studies covering other

regions of the global tropics have also indicating a preference for westward propagation offshore

for Borneo and Sumatra (Mapes et al. 2003a, Mori et al. 2004, Sakurai et al. 2005, Ichiwaka and

Yasunari 2006, Tulich and Kiladis 2012, Yanase et al. 2017).

Another interesting feature is the peak time near the island of Palawan, in between the South

China and Sulu Seas. Precipitation over the island itself peaks in the early afternoon, and there

is some evidence for cells propagating to the northwest, with precipitation peaking in the evening

hours. This is also the region that has a very small fraction of the variance explained by a sine-wave

in Figure 2.13. It is possible there is some interference in the composite diurnal cycle in this region

between propagation off of Palawan, and propagation off of the Philippines main archipelago, that

peaks in the morning hours, as shown by the peak times on both sides of Palawan. This provides

more evidence that there could be a double peak over Palawan, but this idea will not be explored

further in this study. Finally, ERA-Interim shows some progression towards later peak precipitation

rates further from shore, and is consistent with the early morning peak offshore, but the behavior

is discontinuous in the near coastal waters, rather than a smooth progression to later peak times

as seen in the satellite products. In this case, ERA-Interim is likely not indicating precipitation

propagating offshore via gravity wave destabilization and advection (Love et al. 2011), but rather

is initiating a separate convective system overnight associated with the land breeze. This will be

shown clearly in the next section.

2.3.3 Mean-state Offshore Propagation near Luzon

This section take a closer look at offshore propagation from the island of Luzon in order to

gain more insight into the characteristics of the diurnal cycle, and provide some more information

on the differences in offshore propagation in various datasets. To show a clear and smooth signal,

precipitation rates from the composite diurnal cycle are averaged latitudinally from 16◦-18◦N for
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longitudes in the vicinity of Luzon. The topography (National Geophysical Data Center 2006) of

the Philippines and a box showing the region of averaging for successive plots in this section (and

Chapter 3) are shown in Figure 2.16. Box "A" in this plot covers northern Luzon and will be used

in this section. Figure 2.17 shows these composite precipitation averages as a function of time of

day in Philippine Time (PHT) for each of the precipitation datasets considered. On the bottom,

the average topography is included over the same longitudes to clearly identify where and when

convection occurs with respect to the mountains and the coastline. In the selected longitude band,

topography is aligned in two mountain ranges. On the west side of the island is the higher of the

two, the Cordillera Central, with the average topographic height approaching 1500-m. Some of the

higher peaks not resolved in the average reach to nearly 3000-m. In the center of the island, a deep

valley close to sea level is present, followed by another shorter and narrower range of mountains,

the Sierra Madre, on the east side of the island. Precipitation plots are oriented such that noon is

at the top of the plot, generally near the expected "beginning" of the diurnal cycle of precipitation

over land, with time increasing downwards

The CMORPH average precipitation propagation supports some of the features identified in

prior sections. Precipitation first initiates over the Cordillera Central around noon, reaching a

peak around 15:00 over the tallest peaks, and then spreading into the valley to the east and to

the west coast. Into the evening hours, CMORPH shows robust offshore propagation to the west,

and also some minor propagation to the east of the island. In the composite diurnal cycle, prop-

agating precipitation continues further than 100-km out to sea, with a weak signal lingering out

to 200-km west of Luzon. The other satellite datasets are in strong agreement with CMORPH.

TRMM products and IMERG shows higher precipitation rates in the afternoon maximum over Lu-

zon compared to CMORPH. The 3B42 products show generally higher precipitation everywhere at

all times, whereas IMERG generally shows similar precipitation rates to CMORPH outside of the

afternoon maximum. The TRMM Precipitation Radar, while much noisier, also has evidence of

offshore propagation shifted an hour or so earlier compared to the other products, consistent with

the discussion in the previous section and prior work.

52



When directly comparing TRMM 3B42 with and without Infrared, the results are generally

similar but with some notable differences. When infrared measurements are included, the product

shows increased precipitation rates and better propagation to the west of the island, while exhibit-

ing weaker propagation to the east. In addition, the IR measurements cause the maximum over

the Cordillera Central to persist a few hours longer than in the HQ product. This would be consis-

tent with the hypothesis of anvil shearing potentially biasing the 3B42 product. As mentioned in

the prior section, prevailing upper level winds are out of the east-northeast, which would promote

shearing of anvils to the west-southwest. Thus, relying solely on IR (which happens when gaps

need to be filled in 3B42), may cause the algorithm to identify heavy precipitation biased to the

west-southwest (Ackerman et al. 1988).

Lastly, the diurnal cycle in ERA-Interim looks broadly similar to the diurnal cycle in satellite

products, but with some notable differences. The diurnal cycle in ERA-Interim is less pronounced

over land, with a lower maximum precipitation rate in the afternoon, and higher minimum precipi-

tation rate in the early morning. Furthermore, precipitation tends to initiate earlier when compared

to the satellite products. ERA-Interim shows precipitation initiating in the same location as the

satellite products, but about 1-2 hours too early. It also tapers the afternoon peak too early, around

18:00 instead of lingering until 21:00 as shown in the satellite products. The most pronounced

and important distinction occurs with offshore propagation. While ERA-Interim shows a diurnal

cycle over the ocean, it doesn’t appear to have as robust of offshore propagation. There is modest

evidence of westward propagation off the coast, but it is relatively weak. Instead, the reanalysis

does show an increase in oceanic precipitation rate 100-200-km offshore from around midnight

to 07:00. The same pattern appears on the east side of the island. While this part agrees with

the satellite products, it doesn’t connect to the precipitation that initiated over land. One possi-

bility is that the model is not showing sufficient offshore propagation in the mean state, but it is

simulating the land-sea breeze circulation adequately, and thus capturing a nighttime maximum

over the ocean due to the land breeze (Love et al. 2011, Birch et al. 2015). Thus we proceed

with caution when making sweeping conclusions about the propagation of the diurnal cycle based
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on ERA-Interim fields as reality, noting the potential weaknesses in its convective parameteriza-

tion. However, the next section will show that even with these weaknesses its representation of

precipitation propagation, it can replicate wind patterns adequately.

2.4 The Diurnal Cycle of Surface Wind

The sea-breeze and mountain-breeze circulations play important roles in driving precipitation

on diurnal scales over high topography and near coastlines (Qian 2008, Birch et al. 2015). Limited

wind estimates will be used to explore the diurnal cycle of surface wind in boreal summer in and

around the Maritime Continent, with a focus on the Philippines. It is somewhat difficult to discern

the diurnal patterns by just looking at wind speed and wind vectors plotted on a map, so instead the

u- and v-components of the surface wind vectors are shown separately. Studying diurnal variations

in wind in this region using observations is a challenge. The best, long-term satellite-derived

wind estimates come from QuikSCAT and ASCAT. However, both of these satellite are in sun-

synchronous orbits, and pass over the a given point on the Earth’s surface twice a day, at the same

time of the day. Thus, while robust statistics can be built on wind at those specific times of day,

two samples per day this is insufficient to study the diurnal cycle. At least 8-samples per day would

be desired in order to feel comfortable drawing conclusions. Finally, CYGNYSS is relatively new,

and does not provide information on wind direction, which limits its utility to this study. Thus, for

gridded satellite observations, that leaves RapidScat.

RapidScat provides was collecting data from onboard the International Space Station (ISS)

from 3 October 2014 until it failed on 19 August 2016. The ISS is in a non-sun-synchronous

low-Earth orbit, which means that over a long period of time a composite diurnal cycle can be

constructed. The orbital RapidScat data were binned to 0.25◦ by 0.25◦ spatial resolution and 3-

hourly temporal resolution at synoptic times, and then constructed a composite diurnal cycle for

the nearly two full boreal summers sampled by the satellite. While this provides a useful view of

the mean-state diurnal cycle in the SCS (Lang et al. 2017), it will not be sufficient for studying

intraseasonal variability since only two seasons are present. Thus, the ERA-Interim re-forecasts
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available at synoptic times will be employed, and show that it displays patterns very similar to

RapidScat in the composite diurnal cycle. After comparing the two in this section, ERA-Interim

will be used primarily to examine the variability of the diurnal cycle as a function of phase of the

intraseasonal oscillation, as statistics will be much stronger with decades of data.

Figure 2.18 shows the composite May-October diurnal cycle of surface zonal wind for both

ERA-Interim and RapidScat. Similarly Figure 2.19 shows the same for the meridional wind. In

this thesis, that positive wind components mean winds from the south or west, and negative wind

components mean wind from the north or the east, following convection. While RapidScat is

noisier, remarkable similarities to ERA-Interim can be seen. Both show surface easterlies to the

north and east of the Philippines and strong westerlies in the SCS and Sulu Sea. For meridional

wind, most times of day have consistent weak to moderate southerly flow, but the noise present

in RapidScat does show northerlies particularly around Luzon at some times of day. It is unclear

if this is real, or a product of the satellite retrieval or short record. While composites of ERA-

Interim re-forecast winds for only the 2014-2016 RapidScat period (not-shown) are much closer

to RapidScat, some discrepancies remain.

Both the reanalysis and satellite show a strong sea-breeze circulation in zonal wind. Consid-

ering the north-south oriented coastlines, the mean state generally shows westerly surface winds

impinging on Luzon’s west coast (onshore) in both products during the afternoon hours. How-

ever, near midnight and into the early morning hours, this shoreline tends to see near zero zonal

wind component, or perhaps a weak easterly wind, indicating a weak land-breeze. This circulation

pattern is also apparent on the east side of Luzon, and on both sides of Mindanao in the southern

Philippines. Since most of the coastline in this region is oriented generally north to south, the

diurnal cycle of meridional wind is not quite as interesting. However, both products do show near

zero or northerly winds on the north shore of Luzon during the afternoon, and stronger southerly

(offshore) winds during the early morning.

The areas that see the strongest diurnal cycles are easily pinpointed in Figure 2.20. This figure

shows the amplitude of the first diurnal harmonic of the May-October composite diurnal cycle,
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similar to Figure 2.12, but for each wind component, and wind speed, all averaged separately. This

provides a smoothed look at what is approximately one-half the difference between the maximum

and minimum of the composite diurnal cycle. High amplitude oscillations in zonal wind are present

along all coastlines oriented north to south (Luzon, Sumatra, southeast Asia, certain aspects of Bor-

neo). Land masses oriented east to west (parts of Sumatra, Java, and Borneo) tend to have a strong

amplitude of the diurnal cycle of meridional wind. Interestingly, the near-coastal ocean sees very

small amplitudes in the diurnal cycle of wind speed, suggesting that the change in wind direction

is much more important. According to ERA-Interim, there is a notable diurnal cycle in wind speed

over landmasses, but reanalysis surface winds over topography could be unreliable. In summary,

ERA-Interim and RapidScat paint a very similar picture of the diurnal cycle of surface wind in the

MC. Each product captures a robust sea-breeze circulation in near coastal waters consistent with

previous studies (Houze et al. 1981, Birch et al. 2015, Lang et al. 2017). The similarities between

the two in the mean state, and agreement with well established theory, suggest that ERA-Interim

may be trustworthy as a reliable representation of historical wind patterns in this area

2.5 Diurnal Variations in Vertical Structure near Luzon

The last topic discussed in this chapter is the vertical profile of moisture, cloud water, and

wind. An understanding of the mean-state diurnal cycle in the vertical structure will be important

to understanding intra-seasonal variability in offshore propagation. Figure 2.22a shows the May-

October composite diurnal cycle in cloud water content and zonal and vertical wind from ERA-

Interim re-forecasts averaged latitudinally over the same box covering Luzon shown in Figure 2.16.

Figure 2.22b shows the anomalies of these variables from the daily mean. ERA-Interim does fill in

values on all pressure levels, even if the isobar intersects land, so values over the Cordillera Central

are not reliable below about 850-hPa. The first evidence of vigorous convection appears at 11:00

local time, when there is a surge in cloud water content around 700-800-hPa, over the island of

Luzon. Furthermore, a weak sea-breeze is evident on both sides of the island with upward vertical

motion beginning to increase in the convergence zone over the mountains. Clouds do follow the
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topography reasonably closely, with the highest clouds directly over the tallest peaks at this time,

and enhanced cloud water content at slightly lower elevations both east and west.

By the early afternoon hours, convection has surged to the tropopause into a towering cumu-

lonimbus cloud, with enhanced cloud water content all the way from 800-hPa to the tropopause in

association with strong upward vertical motion and a robust sea-breeze. There is some evidence

of enhanced cloudiness propagating westward offshore during the evening and overnight hours,

while clouds gradually clear to near or below the daily mean values over Luzon. Again, however,

the reanalysis does not show consistent offshore propagation. While there is enhanced cloudiness

in the upper troposphere just offshore at 20:00, this disappears by 23:00, before reemerging in the

mid-levels during the early morning, corresponding to the same times of day that the precipitation

composite sees a gap in offshore propagation. Convection appears to weaken near the coast in

the re-forecasts, before re-emerging further offshore. It’s disagreement with satellite observations

suggest that at least at 23:00, ERA-Interim may be showing spuriously low values of cloud water

content and precipitation. The sea-breeze and thus convergence induced upward vertical motion

weaken significantly in the evening hours to near zero wind speeds, perhaps with a slight land

breeze and weak subsidence. The magnitude of the land-breeze is much weaker than the daytime

sea-breeze, indicating that it alone may not be responsible for the nocturnal precipitation maxi-

mum offshore. Prior studies have argued that gravity waves initiated by the diurnal cycle over high

topography drive precipitation propagation (Mapes et al. 2003b, Love et al. 2011, Hassim et al.

2016).

Figure 2.22 shows the amplitude and peak hour of the first diurnal harmonic of the boreal

summer composite diurnal cycle of latitudinally averaged specific humidity from ERA-Interim. All

compositing and averaging was done before calculating the first diurnal harmonic. The amplitude

in the diurnal cycle of specific humidity is shown as a percent of the daily mean value of specific

humidity, so that the vertical structure is visible even when upper tropospheric humidity values are

dwarfed by much larger humidity values closer to the surface. The strongest diurnal cycle occurs

primarily in lower levels between 700- and 900-hPa and again in upper troposphere above 400-hPa,
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with little diurnal cycle between 500- and 700-hPa. This is likely related to evaporation of cloud

water, as cloud water in Figure 2.21 exhibits smaller anomalies in the middle-troposphere. Strong

diurnal cycles in specific humidity are also prevalent at the same levels of the atmosphere offshore

to both the west and east of Luzon. The timing of these features provides some insight into their

origins.

Over land, specific humidity peaks in the early to mid-afternoon hours at all levels of the

atmosphere. This is slightly earlier than expected given the peak times of precipitation from the

satellite products, but recall that ERA-Interim also showed its peak precipitation rates slightly

earlier than in the satellite products. Elevated specific humidity in the lower- and upper-troposphere

also propagate westward offshore, as evidenced by progressively later peak times further from

shore. Interestingly, the speed of propagation of these specific humidity anomalies is different

between the two levels. At about 800-hPa and 150-km offshore, humidity peaks between 21:00

and midnight, while at 400-hPa the peak is actually closer to 03:00. It is hypothesized that the

apparent propagation of the upper-tropospheric humidity is related to evaporation of hydrometeors

advected from the cloud tops by the mean wind, as propagation speeds are consistent with the

upper-tropospheric wind speed. While the apparent propagation in the lower-troposphere is close

to the speed of precipitation propagation, ERA-Interim does not capture this well, leaving this

feature as an open question.

2.6 Chapter Summary

In this chapter, a thorough examination and synthesis of the mean state diurnal cycle in bo-

real summer has been presented, with a focus on the features near the Philippine island of Luzon

and offshore propagation of convection. Over the islands of the Maritime Continent, an onshore

sea-breeze develops in the late morning hours, fluxing moisture from the ocean towards the high

topography of the islands. Cumulus clouds develop shortly after, and then rapidly develop into

towering cumulonimbus clouds that reach up to the tropopause. For smaller islands, precipitation

peaks during the early to mid afternoon hours. However, for larger landmasses, convection contin-
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ues to organize into the evening hours, leading to a later peak in precipitation. Upper level winds

from the east northeast shear some of the anvil clouds off to the west southwest. As the sun begins

to set, this convection that developed near the coast start to propagate offshore in all directions, but

with west southwest favored. Offshore, precipitation then reaches a peak overnight and into the

morning hours, later further from land. This is likely enhanced by the development of the land-

breeze overnight. The amplitude of the diurnal cycle is much more dramatic over the islands, but

still notable in coastal waters as these areas are influenced by convection that originated over land.

This chapter also explored the diurnal cycle of wind and precipitation in a few different datasets.

A strong land-based diurnal cycle with an afternoon peak associated with a strong sea-breeze is

seen in all datasets examined. While the satellite precipitation products have subtle quantitative

differences, they qualitatively agree that storm cells initiated by the diurnal cycle over land slowly

propagate offshore during the overnight hours. This feature is not well represented in ERA-Interim

reanalysis, despite representing the diurnal cycle over land and ocean separately with reasonable

skill. Now that an understanding of the basic state of the diurnal cycle in this region as been

established, its intraseasonal variability can be examined.
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Figure 2.1: Average Precipitation Rate in mm day−1 from CMORPH in January-March (top-left), April-
June (top-right), July-September (bottom-left), and October-December (bottom-right).

60



Figure 2.2: Average Precipitation Rate in mm day−1 from CMORPH in May-October.
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Figure 2.3: Average wind speed in m s−1 and vectors in May-October.
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Figure 2.4: Average Precipitation Rate in mm day−1 from CMORPH (top-left), IMERG (top-middle),
ERA-Interim (top-right), TRMM 2A25 (bottom-left), TRMM 3B42 High Quality (bottom-middle) and
TRMM 3B42 with Infrared (bottom-right).
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Figure 2.5: Average surface wind speed in m s−1 and vectors in May-October from ERA-Interim (top-left),
ASCAT (top-right), QuikSCAT (bottom-left), and RapidScat (bottom-right).
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Figure 2.6: Percent Variance in May-October CMORPH precipitation on diurnal time-scales, from data at
3 hourly temporal resolution.
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Figure 2.7: Average precipitation rate in 3 hour windows, labelled by hour in Manila, Philippines (UTC+8),
in mm hr−1from CMORPH from all May-October days, 1998-2017.
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Figure 2.8: Probability of precipitation during the 3-hour window (UTC+8) labelled in May-October from
CMORPH.
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Figure 2.9: Average precipitation rate in mm hr−1, only in time-steps that non-zero precipitation is ob-
served, labelled by hour in Manila, Philippines (UTC+8), from CMORPH in May-October.
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Figure 2.10: Probability of a 3-hour averaged precipitation rate greater than 5 mm hr−1 (i.e. greater than
15 mm in 3 hours) by time of day in Manila, Philippines (UTC+8).
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Figure 2.11: ETOPO2 topography and bathymetry (in meters) with labels for important geographical fea-
tures.
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Figure 2.12: Amplitude of the first diurnal harmonic of the May-October composite diurnal cycle from
CMORPH (top-left), IMERG (top-middle), ERA-Interim (top-right), TRMM 2A25 (bottom-left), TRMM
3B42 High Quality (bottom-middle) and TRMM 3B42 with Infrared (bottom-right).
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Figure 2.13: Percent variance in the May-October composite diurnal cycle explained by the first diur-
nal harmonic, from CMORPH (top-left), IMERG (top-middle), ERA-Interim (top-right), TRMM 2A25
(bottom-left), TRMM 3B42 High Quality (bottom-middle) and TRMM 3B42 with Infrared (bottom-right).
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Figure 2.14: Hour of peak precipitation rate in Local Solar Time (LST) as estimated by the first diurnal har-
monic of the May-October composite diurnal cycle, from CMORPH (top-left), IMERG (top-middle), ERA-
Interim (top-right), TRMM 2A25 (bottom-left), TRMM 3B42 High Quality (bottom-middle) and TRMM
3B42 with Infrared (bottom-right).
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Figure 2.15: Hour of peak precipitation rate in Local Solar Time (LST) from May-October composite
diurnal cycle, from CMORPH (left) and IMERG (right).
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Figure 2.16: ETOPO2 topography and bathymetry (in meters) with boxes indicating the averaging latitudes
for longitude versus time of day plots shown in this and successive chapters.
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Figure 2.17: Latitudinally averaged (16◦-18◦N; box "A" shown in Figure 2.16) precipitation in mm hr−1 as
a function of longitude (x-axis) and time of day in Manila, Philippines (y-axis, increasing downward) from
CMORPH (top-left), IMERG (top-middle), ERA-Interim (top-right), TRMM 2A25 (bottom-left), TRMM
3B42 High Quality (bottom-middle) and TRMM 3B42 with Infrared (bottom-right), with average topogra-
phy plotted below.
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(a) ERA-Interim

(b) RapidScat

Figure 2.18: The composite May-October diurnal cycle of zonal wind in m s−1 by time in PHT, from
ERA-Interim (top), and RapidScat (bottom).

77



(a) ERA-Interim

(b) RapidScat

Figure 2.19: The composite May-October diurnal cycle of meridional wind in m s−1 by time in PHT, from
ERA-Interim (top), and RapidScat (bottom).
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(a) ERA-Interim

(b) RapidScat

Figure 2.20: The amplitude of the first diurnal harmonic of the May-October composite diurnal cycle in m
s−1 from ERA-Interim (top) and RapidScat (bottom).
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(a) Composite Diurnal Cycle

(b) Anomalies from Daily Mean

Figure 2.21: Latitudinally averaged (16◦-18◦N; box "A" shown in Figure 2.16) cloud total water content
in kg cloud water per kg atmosphere, as a function of longitude (x-axis) and pressure (y-axis, hPa) from
ERA-Interim Re-forecasts. Averages at each hour of the day (in PHT) from May-October are shown in (a),
and anomalies from the daily mean are shown in (b) in colors, with the daily mean shown in contours at
intervals of 5 × 10−6 kg kg−1, with average topography over the same latitude band (in m) plotted below
for convenience.
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(a) Amplitude

(b) Peak Hour

Figure 2.22: The amplitude (a) in units of percent of daily mean specific humidity of, and hour of peak
(b), in Local Solar Time, of the first diurnal harmonic of the boreal summer composite diurnal cycle of
latitudinally averaged (16◦-18◦N; box "A" shown in Figure 2.16) specific humidity, as a function of longi-
tude (x-axis) and pressure (y-axis, hPa) from ERA-Interim Re-forecasts, average topography over the same
latitude band (in m) plotted below for convenience.
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Chapter 3

BSISO Diurnal Cycle

3.1 Data and Methods

In this chapter, the impact of the BSISO on precipitation near the Philippines and SCS will be

examined with a particular focus on the diurnal cycle. While many of the datasets and methods

used in this chapter have already been described in Section 2.1, one new dataset and several new

methods must be introduced here. Outgoing longwave radiation (OLR) will be used as a proxy for

the large-scale BSISO convection, obtained at daily temporal and 2.5◦ spatial resolution (Liebmann

and Smith 1996). This dataset was derived from the Advanced Very High Resolution Radiometer

(AVHRR) and gaps were interpolated in space and time by Liebmann and Smith (1996). In this

chapter, composites created for each phase of the BSISO are extensively relied upon. The BSISO

indices considered are described in Section 1.3.5. One average diurnal cycle for the variable in

consideration is constructed for each numbered BSISO phase, 1-8. Days included must have an

index amplitude of greater than or equal to 1.0. Index amplitude for all indices is defined as:

Amp =

√

PC2

1
+ PC2

2

where PCi refers to the first to the ith principal component of the EOF used to calculate the

index. This effectively eliminates "weak" BSISO days, that might not really be an event, but

get dumped in that phase bin by projection onto the EOFs. Additionally, only boreal summer

days, defined again as May-October are considered unless otherwise stated. All days are given the

same weight regardless of how long the "event" lasted. The "phases" are defined by the sign and

relative amplitude of PC1 and PC2 of the index. In this thesis, the Lee et al. (2013) BSISO index

(henceforth, L13 index) will primarily be used, but other indices will occasionally be invoked to

show consistency of results. This index is selected because of its ability to capture maximum

variance in the region of interest, the South China Sea and Philippines. While the L13 index may
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not capture northward propagation well (S. Wang et al. 2018), results presented here are consistent

across all four BSISO indices considered, so showing the index with the highest variance explained

is attractive.

In order to isolate the intraseasonal signal, bandpass filters were applied on some variables

in this chapter and the next when the daily mean value was of sole interest. The same bandpass

filter is used in all cases, unless otherwise noted. After removing the seasonal cycle, a Lanczos

filter (Duchon 1979) with 93 weights and cutoffs at 30 and 90 days was applied to the variable of

interest. The end points of the time series where the full convolution could not be performed were

disregarded. Figure 3.1 shows May-October composites of bandpass filtered OLR and 850-hPa

wind anomalies from ERA-Interim (see Section 2.1 for dataset description). The elongated band

of enhanced convection (indicated by negative OLR anomalies) can be clearly seen propagating

northeastward in later phases, consistent with previous studies (e.g. Lau and Chan 1986, Lee et

al. 2013). There is evidence of a cyclonic Rossby gyre at 850-hPa forced north of enhanced

convection and an anti-cyclonic gyre north of suppressed convection, again in agreement with

prior modeling and observational work (Gill 1980, Kemball-Cook and B. Wang 2001, Lawrence

and Webster 2002).

When the diurnal cycle was of interest for a given variable (i.e. precipitation, humidity, bound-

ary layer wind), no filtering was done. Instead, composite diurnal cycles were created for each of

the eight BSISO phases and compared to the full boreal summer composite diurnal cycle. Statistics

can be calculated from these composite diurnal cycles as in the prior chapter to elucidate how the

diurnal cycle varies with the BSISO in comparison to the full boreal summer composite diurnal

cycle.

Statistical significance is also presented for a number of these precipitation anomalies. A boot-

strap was used to attempt to compare the BSISO composite diurnal cycle to an equivalent compos-

ite diurnal selected entirely at random. The number of independent BSISO events in the period of

record was calculated first where an independent event refers to a period where the index goes into

one phase and stays there for any number of days. For example, if the BSISO index in question
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goes into phase 1 today, and remains there for 5 days, that counts as one event for phase 1. It would

still count as one event even if it lasted only 1 day before dissipating or moving into another phase.

If the amplitude of the index drops below 1.0 or moves into another phase, the event is considered

complete. Events that occurred only partially within boreal summer were still included. The total

number of independent events was calculated for all 8 phases. The phase with the smallest number

of independent events was selected for the bootstrap, providing a lower bound for a random sam-

ple size. For the L13 index in boreal summers 1998-2017, for example, phase 6 had the smallest

number of independent events with 79.

A Poisson distribution was used to simulate the randomness of the length of an event. The λ

selected was equal to the average number of additional days beyond the first, in all events. All

events from all phases had an average length of 2.92 days in the L13 index, so in this case λ was

equal to 1.92 days in the Poisson distribution. This yielded one random integer x for each of

the 79 events, equal to the number of additional days to sample after the first. To construct the

random composite, 79 start days within boreal summer were selected at random, as well as the x

days following, without replacement. The events were permitted to run outside of May-October

provided that they either start or end within the season. All of these randomly selected days then

were averaged together to create one composite diurnal cycle. This was done 1000 times for each

BSISO index considered.

The null hypothesis in this case is that the difference between the BSISO composite diurnal

cycle and the full boreal summer mean composite diurnal cycle is simply due to random chance.

In this thesis unless otherwise stated, "statistically significant" means that at the 95% confidence

level, the null hypothesis can be rejected. The same analysis (e.g. daily mean, diurnal amplitude,

etc.) is performed on each of the 1000 random diurnal cycles and compared to the eight BSISO

composites to find when and where the values from the BSISO composites are outside of 95%

of the values from random composites. When considering significance of any spatial averages,

the same spatial averaging is done to the 1000 random composites before comparing them to the

BSISO composite.
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3.2 Modulation of Philippine Precipitation

3.2.1 Daily Mean Precipitation

Before discussing the influence of the BSISO on the diurnal cycle, the modulation of precip-

itation in the daily mean sense over the broader MC region will be considered in this section.

Figure 3.2 shows the anomalies in daily mean CMORPH precipitation rate by BSISO phase. On

the large scale, precipitation appears to track OLR (as shown in Figure 3.1) very closely, particu-

larly over the ocean. Anomalies are also statistically significant at the 95% confidence level over

much of the map. Over land, anomalies are generally weaker compared to surrounding ocean but

still present. Additionally, there is some evidence of an enhancement of precipitation over Suma-

tra, Borneo, and Mindanao prior to the arrival of the main BSISO convective envelope (tracked

with OLR), consistent with previous work (Peatman et al. 2014, Sakaeda et al. 2017, Xu and

Rutledge 2018).

While this gives an overview of precipitation behavior, more interesting features can be high-

lighted with a focus on a smaller region. Figure 3.3 shows the same information shown in Fig-

ure 3.2, but zoomed in on the Philippines to get a better look at some small scale features. It can be

seen that Luzon does not follow its surrounding ocean. Statistically significant anomalies in daily

mean precipitation are only found in one phase over the island. Further south, Mindanao does

see some signal with enhanced precipitation in phases 1, 3, and 4, and suppressed precipitation in

phases 6-8, generally out of phase with the OLR anomalies in Figure 3.1. However, this signal is

weak compared the surrounding ocean. Results for Luzon differ somewhat what has been found in

the boreal winter season over Sumatra, Borneo, and New Guinea (Peatman et al. 2014, Birch 2016,

Vincent and Lane 2016), which generally showed elevated daily mean precipitation in the lead-up

to the active phase. For Luzon, this lead-up corresponds to phases 3-4, while the lead up is phases

2-3 for Mindanao, where there is evidence of elevated daily mean precipitation. Over ocean, re-

sults are consistent with what has been established in boreal winter season near the equator, with

precipitation in phase with the large-scale feature. In the enhanced phases, the SCS and Philippine

Sea observe precipitation rates increased by as much as 10 mm day−1, which is large considering
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the average precipitation rates from Figure 2.4 are only around 10-15 mm day−1 for the SCS, and

5-10 mm day−1in the Philippine sea. In the suppressed phases, these regions see precipitation rates

suppressed by 50% to nearly 100% indicating a robust modulation of precipitation over the ocean.

3.2.2 Precipitation Probability

The question of exactly how these anomalies in precipitation are manifest will now be ad-

dressed. How often and how hard does it rain in each phase? How likely are extreme precipitation

events? How consistent is this pattern from one event to the next? This section will discuss the

first question. Figure 3.4 and Figure 3.5 show the average frequency and intensity of CMORPH

precipitation in all 3-hour periods on days when the L13 index amplitude was greater than 1.0.

The BSISO signal in precipitation frequency is striking. Only 20-30% of all three hour periods in

the suppressed phases observe precipitation. However, precipitation probabilities in the enhanced

phases exceed 50% for the Sulu Sea and SCS, and hover around 40-50% for the Philippine Sea.

Landmasses, on the other hand, experience a more modest intraseasonal modulation of precipita-

tion frequency. Luzon typically observes precipitation in about 30-40% of all 3-hour periods, with

a slight bump to near 45% for the enhanced phases, and a drop to a bit over 25% at its minimum in

the suppressed phases. A similar signal is seen over Mindanao, with precipitation becoming more

likely about one phase earlier than Luzon, and precipitation probabilities generally slightly higher

than for Luzon overall.

Conditional precipitation rate is shown by BSISO phase in Figure 3.5. The largest signal in

precipitation intensity appears to be over the Philippine sea, oscillating from about 0.5-0.8 mm

hr−1 in the suppressed phases, to near 1.5 mm hr−1 in phases 6 and 7. The SCS also observes a

notable increase in precipitation intensity in the active phases, but the amplitude is smaller than the

Philippine Sea. This pattern is likely related to an increased preference for deep convection and

MCSs in the active phase over ocean (Chen and Houze 1997, Xu and Rutledge 2014, 2018, Powell

and Houze 2015). Conversely, the suppressed period is more dominated by shallow convection and

thus weaker precipitation rates. Over land, a different pattern emerges. Upon close examination of
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Luzon and Mindanao, it appears that the highest precipitation intensities are actually found in the

suppressed phases, especially noticeable for Mindanao. However, the amplitude of this modulation

is fairly small, consistent with results from Borneo by Kanamori et al. (2013). To summarize, the

frequency and intensity of precipitation over open ocean both increase with the active BSISO

phase with an increased frequency of deep convection and MCSs that both cover a larger area

and feature heavier precipitation (Yuan and Houze 2013). The signal over land is weaker with a

slight preference for less (more) frequent, more (less) intense rainfall in the suppressed (enhanced)

phases.

3.2.3 Probability of Extreme Events

Figure 3.6 shows the relative change in probability from the full boreal summer probability, of

high magnitude precipitation events, defined as in section 2.1 as an average precipitation rate of

greater than 5 mm hr−1 for a 3-hour period. A value of 50% in phase 1 means that a 3-hour period

with extreme precipitation on a given day classified as BSISO phase 1 is 50% more likely than it

is on any random boreal summer day. Over ocean, the behavior appears as expected. During the

suppressed phases (1-3), extreme events over the SCS and Philippine Sea are about half as likely.

Similarly, in the enhanced phases, extreme precipitation events occur with about two times the

frequency as on any random day. Thus, these high magnitude events over the ocean are about four

times as likely in the enhanced phases compared to the suppressed phases.

Landmasses, particularly Mindanao, behave differently. Extreme precipitation events are most

likely over the island of Mindanao in phases 1 and 3, with slight enhancement in 2 and 4. Further-

more, extreme precipitation is less likely over the island when the envelope of enhance convection

is strongest, in phases 5-7. In chapter 2 it was shown that for landmasses, these types of events are

significantly more likely during the afternoon and evening peak of the diurnal cycle with almost

zero probability of occurrence outside of those hours. It is argued below that for the islands of

the Philippines, the diurnal cycle is enhanced prior to the arrival of enhanced convection, which

leads to the increased probability of extreme precipitation in these BSISO phases. Similarly, when
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large-scale BSISO convection is present, the diurnal cycle begins to be suppressed, thus making

these events less likely. This point will be supported in later sections of this chapter.

3.2.4 Consistency Across Events

While composite anomalies have been shown to be present and statistically significant, com-

posites don’t address the consistency of results from event to event. This question will be addressed

in this section. A pattern in precipitation has been established, but how often does this actually oc-

cur? Are these results being biased by a few highly significant events, or is this something seen

consistently from one event to the next? Figure 3.7 shows the probability of any given day having

a daily mean precipitation greater than or equal to the average daily mean precipitation rate in all

of May-October, conditional on L13 BSISO phase. In other words, all days in L13 phase 1 were

extracted to calculate the fraction of those days with a daily mean precipitation rate greater than

or equal to the daily mean precipitation rate from all boreal summer days. Since precipitation is

highly skewed, it is expected that most points will see probabilities of under 50%. Figure 3.7b

shows these values as a relative change in probability from the probability on all boreal summer

days.

Strong modulation of this field indicates relatively good consistency across events. Over the

SCS, the suppressed BSISO phases see generally less than a 10% chance of above average daily

mean precipitation rates, while this jumps to 30-50% of all days when the BSISO is in phases

5-7. Thus, the oceanic regions are nearly 4 times as likely to see elevated daily mean precipitation

rates compared to a day in the suppressed phases. Over land, a similar pattern to that observed in

the prior subsections emerges. Generally, the odds of increased daily mean precipitation (likely

largely due to an elevated diurnal cycle) are highest in the suppressed phases, and decline in the

enhanced phases. While this signal is quite minimal for Luzon in this field, it is more robust for

Mindanao. Mindanao sees probabilities of 30-50% for above average precipitation rates in phases

1-2, but this drops to 10-20% in phases 6-7, indicating about 2-3 times higher probability of a

rainier than normal day in the suppressed phases. This plot suggests that precipitation modulation
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by the BSISO is much more consistent from one event to the next over Mindanao compared to

Luzon. However, in the following sections, it will be shown that a signal is present over Luzon as

well. These results are consistent with those of Sakaeda et al. (2017) in that the modulation over

land is less systematic than over ocean.

3.2.5 Diurnal Cycle Amplitude

We have claimed that the increased probability of extreme events over land during the sup-

pressed phases is due to the BSISO modulation of the diurnal cycle, which is not in phase with

the large-scale convection. Thus, the BSISO modulation of the amplitude of the diurnal cycle will

now be considered. As described in section 3.1, the amplitude of the first diurnal harmonic of the

eight composite diurnal cycles constructed from each L13 phase is shown in Figure 3.8. While all

phases generally still show a strong diurnal cycle over land and coastal waters, and a much weaker

diurnal cycle over open ocean, closer examination at the anomalies reveal that there is significant

modulation by the BSISO.

There is a strong signal in the amplitude of the diurnal cycle over the Philippines, particularly

over Mindanao. Most of the island and nearby coastal waters see a robust diurnal cycle in the

BSISO suppressed phases, 1-2, and in the transition phases (3-4) with amplitudes of well over 10

mm day−1. Furthermore, the enhanced phases, particular the ones towards the end of the cycle

(phases 6-7), have almost no diurnal cycle. In the anomalies shown in Figure 3.8b, there is a

strong, statistically significant enhancement of the diurnal cycle over Mindanao in phases 1-4.

Conversely, suppression of the diurnal cycle is strongly evident in phases 5-8. Interestingly, the far

eastern coast of Mindanao behaves differently from the rest of the island. The eastern shore of the

island behaves differently, actually observing a(n) suppressed (enhanced) diurnal cycle in phases

2-4 (6-8).

Luzon exhibits behavior very similar to Mindanao, but perhaps not quite as robust. Statistically

significant enhancement of the diurnal cycle amplitude occurs on the western side of Luzon and

near coastal waters, reaching a little over an amplitude of 10 mm day−1, in phases 3-4. These
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phases make up the tail end of the suppressed period and transition towards enhanced for Luzon.

Conversely, in phases 7-8 (the tail end of the enhanced period) this same region sees a significant

decline in the amplitude of the diurnal cycle. Similar to Mindanao, the east side of Luzon behaves

very differently compared to the west side. On the eastern shore, phases (3-5) have a suppressed

diurnal cycle, concurrent with the peak amplitude on the west side. The eastern coast’s strongest

diurnal cycles are present at the tail end of the enhanced phases in phase 8, but modulation of

the amplitude is not as strong as on the west side. It appears that the eastern and western sides

of the Philippines are out of phase in terms of when each coast sees its strongest diurnal cycle.

The general enhancement of the diurnal cycle over land during the suppressed and transition phase

of the ISO has also been documented in many previous studies (Sui and Lau 1992, Rauniyar

and Walsh 2011, Oh et al. 2012, Peatman et al. 2014, Sakaeda et al. 2017, Xu and Rutledge

2018). However, the finding of a statistically significant modulation of the diurnal amplitude is may

conflict with that of Sakaeda et al. (2017), who found that this signal was statistically insignificant

in boreal winter over the equatorial MC islands. Furthermore, distinct shifts in the position of the

strongest diurnal cycle within MC islands was typically not considered in these studies. Ichiwaka

and Yasunari (2008) did note that the strongest diurnal cycle shifts from one coast of New Guinea

to the other in association with the low-level daily mean winds.

This dipole feature is especially interesting considering how the larger scale features in the

daily mean sense behave. It might be expected that the eastern side of the Philippines is generally

drier in the transition from suppressed to enhanced, and wetter in the transition back to suppressed.

However, looking back at Figure 3.3 and Figure 3.4, the opposite holds. Elevated precipitation

rates and higher probability of precipitation have a more rapid onset on the eastern side of the

Philippines, with a delayed response in the SCS on the west side of the islands. This suggests

that the mechanism driving the BSISO modulation of the diurnal cycle is distinct from what is

driving the increase in precipitation rate and precipitation frequency over the ocean. Statistically

significant modulations of the diurnal cycle are also observed in coastal waters of the South China

and Sulu Seas on the west side of the Philippines. A large amplitude diurnal cycle, nearing 10
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mm day−1, is observed in this region in phases 3-4. In contrast, phases 7-8 see almost no diurnal

cycle. In the next section, it will be shown that this pattern is related to a modulation of diurnally

generated convection propagating offshore. While the focus will be on Luzon and Mindanao, it is

worth noting that this pattern is seen in between as well.

While these results will not be discussed in all other products, it is noteworthy that they are

remarkably consistent across all satellite-derived precipitation datasets considered in this thesis

(figures not shown). Figure 3.9 shows the same results for daily mean precipitation and diurnal

amplitude anomalies by BSISO phase, but derived from TRMM 3B42HQ (see section 2.1 for de-

scription). The similarities are striking between CMORPH and TRMM, indicating that the results

are not unique to one precipitation dataset. Further, the results are not unique to the choice of

BSISO index. Figures 3.10 and 3.11 show the CMORPH anomalies in daily mean and diurnal

amplitude composited by the Kikuchi et al. 2012 index and the Kiladis et al. 2014 OLR MJO

index (OMI), respectively. It is important to note that the phase numbers between indices do not

correspond to exactly the same time in an intraseasonal event lifecycle. For example, OMI captures

the same pattern about one phase behind L13, with OMI phase 2 most closely corresponding to

L13 phase 1. The Kikuchi index runs about one half phase behind Lee’s index, meaning Kikuchi

phase 2 is generally halfway between L13 phase 1 and L13 phase 2.

Keeping this distinction in mind, it is evident that daily mean precipitation tracks reasonably

well in all indices used. An exception is that both new indices do not see the same signal in

precipitation arriving on the east side of the Philippines before the west side. Even in the signal

in diurnal amplitude, the conclusions derived above are supported with different indices. The

dipole of elevated and suppressed diurnal amplitudes on the west and east sides of both Luzon and

Mindanao is again apparent. Furthermore, the western coastlines and much of the interior of the

islands see the highest amplitudes in the suppressed phases, and in the transition to enhanced. The

smallest amplitude diurnal cycles are generally found in the enhanced phases, and the transition to

suppressed. The signal in coastal waters suggesting offshore propagation in specific phases is also

present.
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In this section, it was shown argued that the diurnal cycle of precipitation is enhanced over

the large islands of the Philippines at the tail end of the suppressed phase, leading the envelope of

BSISO convection. Some evidence was also presented that there is enhanced offshore propagation

of convection as the transition occurs from suppressed to enhanced phases. Both of these points

will be explored more below.

3.3 Modulation of Offshore Propagation

In the last section, a signal in BSISO modulation of offshore propagating convection was sug-

gested. While a statistically significant enhancement of the amplitude of the diurnal cycle west

of Luzon and Mindanao during the transition to enhanced phases was demonstrated, it was not

yet sufficiently shown that this is actually due to increased offshore propagation from storms that

originate over land. This section aims to show that the end of the suppressed period and transition

to the enhanced period is characterized by convection propagating further and longer than in the

mean state.

To make Figure 3.12, the L13 BSISO composite diurnal cycles from CMORPH were averaged

latitudinally over the northern half of Luzon (16◦-18◦N; box "A" shown in Figure 2.16) and dis-

played as a function of longitude and time. This type of plot clearly highlights some interesting

features. As noted in Chapter 2, precipitation initiates over the higher terrain in the early-afternoon

hours, and then propagate offshore during the evening and overnight hours during boreal summer.

Figure 3.12 shows that this pattern is evident at least to some extent in all BSISO phases. How-

ever, there are some noteworthy differences. In phases 1 and 2, the mountain ranges see a robust

diurnal cycle, with some evidence of weak offshore propagation both east and west. In this period,

convection weakens rapidly after leaving land, dissipating before midnight within about 100-km

from shore. Precipitation is generally weak over ocean at all times of the day. In the transition to

the active BSISO (phases 3-5), things start to change. The precipitation maximum over Luzon is

further enhanced, and propagating convection maintains strength longer and further offshore. Av-

erage precipitation rates are over 1 mm hr−1 well offshore during the late evening hours in phases
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4 and 5. Furthermore, there is evidence that convection continues to propagate out to nearly 117◦E

at sunrise the next day. The offshore propagation signal becomes more muddled in phase 6. Pre-

cipitation rates are high at all times of day over the Luzon and the SCS, dwarfing the offshore

propagation signal. As the active phase begins to wind down (phases 7-8), there is little to no

evidence of offshore propagation on the west side of Luzon. Precipitation rates remain generally

constant throughout the day. There is some evidence of offshore propagation to the east of Luzon,

but it is weaker than that during earlier phases on the west shore.

The anomalies from the full May-October composite diurnal cycle, shown in Figure 3.13, re-

veals further detail. The boreal summer composite is shown in black and white contours with

BSISO anomalies superimposed in color. Additionally, statistical significance of these anomalies

is shown with dots corresponding to the bootstrap test described in section 3.1. For the SCS (west

of 120◦E) and the Philippine sea (east of 123◦E), the early suppressed phases (1 and 2) tend to

be accompanied by anomalously low precipitation rates at most times of the day. Similarly, the

active BSISO period exhibits elevated precipitation rates at all hours of the day. Over land, dry

anomalies are found at all times, with the exception of the eastern side of Luzon right before and

during the average peak of precipitation at around 15:00-18:00. Statistically significant increases

in precipitation rate during the afternoon peak with dry anomalies at other times indicate a strong

diurnal cycle on the eastern side of the Cordillera Central. In phase 2, this elevated diurnal cycle

shifts slightly westward to the peak of the mountain range.

The westward shift continues in phase 3, when precipitation is enhanced from the Cordillera

Central to the west coast during the afternoon peak, and lower than average at all other times of

day, again indicating an elevated diurnal cycle. The dipole pattern mentioned before is evident

here, with peak precipitation on the eastern side of the island now well below average. In phase

4, the peak precipitation anomaly over the western side of Luzon appears to propagate out to sea,

elevating precipitation rates in the late evening hours up to about 50-km offshore. Further out to sea

(118◦-119.5◦E), precipitation is anomalously low at all times of the day, except the times of the late

evening and overnight hours when those points are affected by offshore propagating systems. In the

93



transition to the active BSISO period in phase 5, there is robust evidence of statistically significant

increases in precipitation rates during the typical peak hour over the Cordillera Central and offshore

to nearly 300-km. The anomalies propagate westward with the average diurnal cycle, indicating an

increased tendency toward stronger diurnally generated convective systems that propagate further

offshore until later into the night.

As the active phase becomes established and then begins to wane in phases 6-8, elevated pre-

cipitation rates initially occur all longitudes and all times of day. There is a notable exception over

the island during its peak time frame where wet anomalies are not found. In fact, even though

the surrounding seas are still recording predominantly higher precipitation rates at all times of day

in phase 7, a statistically significant dry anomaly is found during the afternoon peak over land.

This indicates a weakened diurnal cycle, but not necessarily lower daily mean precipitation values

since precipitation is elevated at all other times of day. Phase 8 looks similar, with an interesting

increase in precipitation rates on the east side of Luzon, and even some evidence of increased off-

shore propagation to the east. However, in addition to a suppression of the diurnal cycle over land

on the west side of Luzon, there is evidence of the same in the SCS waters.

The diurnal cycle over Luzon has been thoroughly described and now it will be examined

whether similar behavior exists in other regions, i.e. Mindanao. Figure 3.14 shows the same anal-

ysis as Figure 3.12 for Mindanao, latitudinally averaged from 6◦-8◦N (see box "B" in Figure 2.16).

It is important to note that the topography shown is the average topography, and the geography of

Mindanao is slightly more complex than Luzon. Even though non-zero topography is shown from

122◦-124◦E, this corresponds to the Moro Gulf with a section of the narrow Zamboanga penin-

sula included. Exclusion of this small section of land does not significantly affect the results (not

shown). The SCS is then west of 122◦E and the Philippine Sea is east of 126.5◦E. The large-scale

BSISO convection impacts Mindanao about 1 phase earlier than Luzon in terms of its large-scale

pattern, due to its location further south. Phases 1-2 see generally weakly suppressed precipitation

over the ocean, while the afternoon peak is slightly enhanced over the island, indicating a modestly

enhanced diurnal cycle. However, by phases 3-4, a robust increase in peak afternoon precipitation
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over land occurs, followed by consistent and coherent propagation into the Moro Gulf. This behav-

ior in phases 2-4 over the Moro Gulf and west side of Mindanao is similar to what was observed

over the west side of Luzon and eastern SCS in phases 3-5.

One difference is that the diurnal cycle over Mindanao appears to be even more dominant than

it is over Luzon. While phases 5-6 are the peak of BSISO activity in this region, only moderate

enhancement of oceanic precipitation occurs outside of the Moro Gulf (west of 122◦E) and on

the east side of the island. In phases 6-7, towards the end of the active period, Mindanao sees

almost no diurnal cycle. Precipitation rates are strongly suppressed during the afternoon peak in

the diurnal cycle, and thus also suppressed overnight in the Moro Gulf when offshore propagation

from the diurnally generated convection is expected. The diurnal cycle amplitude increases slightly

in phase 8, but is still highly suppressed. It appears to return to normal in phase 1 during the middle

of the inactive BSISO period. While not shown, these results for both islands are consistent in all

satellite-derived precipitation datasets, as well as in each of the four BSISO indices considered in

this thesis.

In this section, it has been shown that in addition to the diurnal cycle of precipitation over land

leading BSISO convection, there is a more prominent offshore propagation. Furthermore, when

large-scale BSISO activity is in the vicinity, the diurnal cycle, and its influence to the west of both

islands, is much weaker. These results are consistent with much of the previous work on the ISO

impact on the diurnal cycle (Ichiwaka and Yasunari 2008, Peatman et al. 2014, Sakaeda et al.

2017), but also extend their analysis to study offshore propagation. More nuance is also added,

regarding the disparity seen between the east and west sides of the Philippines. While there is

evidence from prior work that a similar pattern occurs over Borneo and New Guinea (Ichiwaka

and Yasunari 2006, 2008), this has not been as extensively documented. In the final sections of this

chapter, these findings will be summarized and synthesized with an emphasis on certain regions of

the Philippines. After that, a mechanism to explain these results will be proposed in Chapter 4.
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3.4 Summary of the Diurnal Cycle over Luzon

In this section, the particular differences from west to east in the diurnal cycle over Luzon will

be considered using the composite BSISO diurnal cycles. Figure 3.16 shows the composite diurnal

cycle spatially averaged inside boxes shown in Figure 3.15. Spatial averaging was performed rather

than showing a single point because satellite precipitation products tend to be more reliable when

considered over a larger area (Tan et al. 2017). Figure 3.16(a) shows composites by BSISO phase

for box "A" just offshore of Luzon, including only oceanic grid points. (b) shows the composite

over land on the west side of topography inside box "B" (northwest Luzon), while (c) shows the

east side of topography inside box "C" (northeast Luzon), both of which only included grid points

over land.

The dotted black lines in each plot shows the composite diurnal cycle for all of boreal summer,

while the gray bounds show the 95% confidence bounds for the bootstraps. To avoid clutter,

consecutive phases are composited together. Statistical significance is calculated to account for

two phases averaged together by averaging two separate random composite diurnal cycles from

the bootstrap. Figure 3.17 shows the daily mean and diurnal range of each phase’s composite

diurnal cycle against the 95% confidence bounds. Diurnal range is shown in place of diurnal

amplitude since the composite diurnal cycles (particularly in the suppressed phases over land)

have a narrow peak that may not be well represented by the first diurnal harmonic. However, with

spatial averaging, these diurnal cycles are sufficiently smooth to warrant use of the diurnal range.

The BSISO composites of the composite diurnal cycle over northwest Luzon shown in Fig-

ure 3.16 (b) are quite interesting. At most times of the day, precipitation is strongly suppressed in

phases 1-4. However, in phases 1-2, average precipitation rates reach nearly to the May-October

mean during the peak rainfall period of 15:00-21:00. Even more interesting is that phases 3-4

have precipitation rates at the high end of the 95% confidence interval, matching it between 15:00

and 18:00. In phases 5-6, precipitation rates are enhanced somewhat evenly at all hours of the

day. At the tail end of the BSISO active phase, precipitation rates are significantly higher off the

diurnal peak, from 21:00-15:00, but actually below the boreal summer mean during the peak. In
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Figure 3.17, northwest Luzon exhibits a statistically significant increase in diurnal range in phase

3, and a significant decrease in phases 7-8. However, this behavior generally opposite the pattern

seen in daily mean, which is suppressed in phases 1-3, and enhanced in phases 6-8. Daily mean

precipitation tracks OLR anomalies well, enhanced when negative OLR anomalies are present, but

the diurnal range is almost exactly out of phase. This result is similar to the results of Peatman

et al. (2014), indicating an enhancement of the diurnal cycle in the transition to the active BSISO

over Luzon. However, the diurnal cycle also determined the daily mean precipitation rate over the

islands considered by Peatman, whereas these results suggest that the diurnal range and daily mean

are out of phase. The major difference is an enhancement of nocturnal and morning precipitation

over Luzon during the active ISO phase that was not seen over larger MC islands during boreal

winter.

The same pattern is seen offshore of northwest Luzon (shown in Figure 3.16(a)), with a strong

diurnal cycle in phases 3-4 peaking around 21:00. This suggests that the diurnal cycle over coastal

waters is enhanced offshore concurrently with an enhancement on the west side of the Cordillera

Central. While this region records elevated precipitation rates at all hours at the beginning of the

active phase, it occurs such that the diurnal cycle remains relatively unchanged. The end of the

active period (phases 7-8) observes almost no diurnal cycle, with constantly elevated precipita-

tion rates at all hours. Thus, a statistically significant increase (suppression) in the diurnal cycle

over coastal waters is present in phase 4 (8), as seen in Figure 3.17. Similar to the island, the

daily mean precipitation over coastal waters is out of phase with the diurnal range, maximizing

(minimizing) with statistically significant anomalies in phases 6-8 (1-4). Another very interesting

feature observed over both land and water on the west side of Luzon (Figure 3.16(a) and (b)) is

a slight modulation of the hour of peak precipitation. The inactive phases tend to see a slightly

earlier peak, just 30 minutes to 1 hour earlier, while phases 7-8 see a peak delayed by about 1-2

hours over land. These results are consistent with prior studies that have indicated a preference for

an earlier peak in the diurnal cycle during the ISO suppressed period (e.g. Rauniyar and Walsh

2011).
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Figure 3.16(c) shows the altered pattern over eastern Luzon quite clearly. In phases 3-4, a ro-

bust, propagating diurnal cycle on the west side, a precipitation rates are dramatically suppressed

during the normal afternoon peak (15:00-21:00). In fact, Figure 3.17 shows that there is a statis-

tically significant decrease in the diurnal range on the eastern side of Luzon in phases 3-5. The

strongest diurnal cycle is actually present in phases 7-8, but the change in the diurnal range is sta-

tistically insignificant. The change in timing of peak precipitation is less noticeable on this side of

the island. For eastern Luzon, the diurnal range and daily mean precipitation are nearly in phase

with one another, with a delay of about 1-2 phases for the diurnal range, markedly different than

what was observed for western Luzon. Daily mean precipitation however, generally follows the

same pattern as western Luzon, and is suppressed when large scale convection is suppressed.

3.5 Summary of the Diurnal Cycle over Mindanao

The diurnal cycle around Mindanao exhibits a behavior similar to that over Luzon, but with

some important distinctions. Figure 3.18 shows the composite diurnal cycles by BSISO phase for

the Moro Gulf, on the west side of the island, the central portion of the island, and the eastern

portion of the island. The domains over which spatial averaging was performed for Mindanao

are also shown in Figure 3.15 as boxes "D", "E", and "F" referred to as the Moro Gulf, central

Mindanao, and eastern Mindanao respectively. As shown in previous sections, the diurnal cycle

over the Moro Gulf is often connected to convection that initiated on the island, and propagated

westward offshore. Over both of these regions, a modulation of the diurnal cycle even more robust

than over Luzon is apparent.

Examination of Figure 3.18(a) and (b) indicates a strong diurnal cycle over Mindanao and the

Moro Gulf in the peak of the suppressed BSISO period (phases 1-2). In the transition and beginning

of the active period (phases 3-4), both regions observe a strong diurnal cycle that is well outside

of the 95% confidence interval. Figure 3.19(a) and (b) show that a statistically significant increase

in the diurnal range and the daily mean precipitation rate occur in these phases. In the late active

phases and transition to suppressed (phases 5-8), the diurnal cycle is strongly suppressed, which
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leads to a lower daily mean precipitation rate as well. Phases 6-8 all exhibit statistically significant

decreases in both the diurnal range and daily mean precipitation rate for both the Moro Gulf and

central Mindanao. This is more in line with what was observed by Peatman et al. (2014) over the

equatorial MC, that the diurnal cycle determines the daily mean precipitation. Contrary to Luzon

though, there appears to be little evidence of any change in the timing of the diurnal cycle for these

domains.

Eastern Mindanao looks dramatically different. Interestingly, there is some evidence of a

change in the timing of the diurnal cycle, with earlier peaks favored in phases 1-4, and later peaks

in phases 5-8, again consistent with Rauniyar and Walsh (2011). In addition, a suppressed diur-

nal cycle occurs in the inactive period, with the highest amplitude actually found in phases 7-8,

when the central part of the island and the Moro Gulf see almost no diurnal cycle. These patterns

are noisier than the other portions of the island with less statistical significance present. How-

ever, eastern Mindanao sees a statistically significant increase in the diurnal range in only phase 8,

with statistically significant increases (decreases) in daily mean precipitation present in phases 3-5

(6-8).

Furthermore, differences are noted in the random variability, as indicated by the width of the

95% confidence bounds in Figure 3.18. For central Mindanao and the Moro Gulf, most of the

variability is present during the afternoon peak, while the overnight and morning minimum in pre-

cipitation rate has relatively little variability. This is seen by a wider spread between the confidence

bounds during the afternoon peak, and a comparatively small spread at other times. Thus, for this

island, the amplitude of the diurnal cycle is the key factor in determining daily mean precipitation

rate. This is different from Luzon, where the amplitude of the diurnal cycle could behave differ-

ently than the daily mean precipitation rate due to increased variability in nocturnal precipitation.

Over Luzon (Figure 3.17), the spread between the confidence bounds is fairly constant throughout

the day, indicating potential for more variability in nocturnal and morning precipitation. The same

pattern is observed over eastern Mindanao, where the diurnal range and daily mean precipitation

rate are also out of phase. These results suggest that when significant nocturnal variability is absent
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over land, the modulation of the diurnal cycle entirely determines daily mean precipitation. How-

ever, when precipitation rates overnight and into the morning are more highly variable, the two can

be out of phase with one another. This explains the discrepancy between Luzon, Mindanao, and

the equatorial MC islands observed by Peatman et al. (2014).

While not shown, compositing by any of the other BSISO indices, and use of any other satellite-

derived precipitation dataset discussed in this thesis with sufficient data coverage supports the same

conclusions drawn from CMORPH data composited by L13 BSISO phase. With an understanding

of the BSISO modulation of the diurnal cycle established for two major islands of the Philippines in

this chapter, a physical mechanism is required to explain these results. Such possible mechanisms

are presented with supporting evidence in Chapter 4.
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Figure 3.1: Bandpass filtered (30-90 day) anomalies in AVHRR OLR (in W m−2) and ERA-Interim 850-
hPa winds (vectors, ms−1) by Lee et al. 2013 BSISO phase in May-October.
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Figure 3.2: Anomalies in May-October daily mean precipitation rate (in mm day−1) from CMORPH by
Lee et al. 2013 BSISO phase in colors, with statistical significance at the 95% level shown in black dots.
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Figure 3.3: Same as Figure 3.2 but for the Philippines only, from high-resolution CMORPH.
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Figure 3.4: Probability of non-zero average precipitation during any 3-hour period in each BSISO phase
from May-October CMORPH record.
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Figure 3.5: Average precipitation rate from CMORPH during 3-hour periods that have rain recorded, by
BSISO phase.
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Figure 3.6: Change in probability of any given May-October 3-hour period observing an average precipita-
tion rate of greater than 5 mm hr−1 (i.e. greater than 15 mm per 3 hr) by Lee et al. 2013 BSISO phase, from
CMORPH.
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Figure 3.7: Given that the BSISO is active and within phase noted, the probability that the CMORPH daily
mean precipitation rate is greater than or equal to the full boreal summer average precipitation rate in (a),
and relative change in this probability compared to the probability of any day in boreal summer being above
this average in (b).
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Figure 3.8: The amplitude of the first diurnal harmonic of the composite diurnal cycle in each Lee et al.
2013 BSISO phase (a) and its anomaly from the amplitude of the full boreal summer composite diurnal
cycle (b) in mm day−1, with statistical significance at the 95% level shown in (b) as black dots.
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Figure 3.9: TRMM 3B42HQ anomalies in daily mean precipitation (a) and amplitude of the composite
diurnal cycle (b), in mm day−1, from May-October by Lee et al. 2013 BSISO phase. Same as Figure 3.3
and Figure 3.8b respectively, but from TRMM.

109



Figure 3.10: CMORPH anomalies in daily mean precipitation (a) and amplitude of the composite diurnal
cycle (b), in mm day−1, from May-October by Kikuchi et al. 2012 BSISO phase. Same as Figure 3.3 and
Figure 3.8b respectively, but a different index.
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Figure 3.11: CMORPH anomalies in daily mean precipitation (a) and amplitude of the composite diurnal
cycle (b), in mm day−1, from May-October by Kiladis et al. 2014 OMI phase. Same as Figure 3.3 and
Figure 3.8b respectively, but a different index.
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Figure 3.12: CMORPH May-October BSISO composite diurnal cycles, latitudinally averaged precipitation
over northern Luzon (16◦-18◦N; box "A" shown in Figure 2.16) in mm hr−1 as a function of longitude (x-
axis) and time of day in Manila, Philippines (y-axis, increasing downward), with average topography plotted
below, and statistical significance at the 95% level shown in black dots.
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Figure 3.13: CMORPH May-October composite diurnal cycle, latitudinally averaged precipitation over
northern Luzon (16◦-18◦N; box "A" shown in Figure 2.16) in mm hr−1as a function of longitude (x-axis)
and time of day in Manila, Philippines (y-axis, increasing downward) shown in contours, every 0.1 mm
hr−1, with white indicating lower precipitation rates, and black indicating higher precipitation rates. Then,
BSISO composite diurnal cycle anomalies from the black and white contours shown in colors, with average
topography plotted below, and statistical significance at the 95% level shown in black dots.
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Figure 3.14: CMORPH May-October composite diurnal cycle, latitudinally averaged precipitation over
Mindanao (6◦-8◦N; box "B" shown in Figure 2.16) in mm hr−1 as a function of longitude (x-axis) and time of
day in Manila, Philippines (y-axis, increasing downward) shown in contours, every 0.1 mm hr−1 with white
indicating lower precipitation rates, and black indicating higher precipitation rates. Then, BSISO composite
diurnal cycle anomalies from the black and white contours shown in colors, with average topography plotted
below, and statistical significance at the 95% level shown in black dots.
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Figure 3.15: ETOPO2 topography and bathymetry (in meters) with boxes indicating the domain for spatial
averaging the composite diurnal cycle. Blue boxes indicate regions in which only oceanic points were
considered, and red boxes indicate where only land points were considered.
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Figure 3.16: BSISO composite diurnal cycles of CMORPH precipitation spatially averaged over (a) Ocean
points only west of Luzon (Box "A" in Figure 3.15), (b) Land points only over northwest Luzon (Box "B"
in Figure 3.15), and (c) Land points only over northeast Luzon (Box "C" in Figure 3.15). The May-October
composite diurnal cycle in these boxes are showed in the dotted black line. 95% of all random composite
diurnal cycles fall inside the gray bounds when averaged over this box.
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Figure 3.17: Anomalies in CMORPH daily mean precipitation rate, and diurnal amplitude of precipitation
rate of BSISO composite diurnal cycles plotted in Figure 3.16, spatially averaged over (a) Ocean points
only west of Luzon (Box "A" in Figure 3.15), (b) Land points only over northwest Luzon (Box "B" in Fig-
ure 3.15), and (c) Land points only over northeast Luzon (Box "C" in Figure 3.15). The 95% confidence
bounds for the daily mean and diurnal amplitude are plotted in dotted blue and red lines respectively. Com-
posite OLR anomalies over the entire island are shown in gray boxes, by Lee et al. 2013 BSISO phase on
the x-axis.

117



Figure 3.18: BSISO composite diurnal cycles of CMORPH precipitation spatially averaged over (a) Ocean
points only in the Moro Gulf (Box "D" in Figure 3.15), (b) Land points only over central Mindanao (Box "E"
in Figure 3.15), and (c) Land points only over eastern Mindanao (Box "F" in Figure 3.15). The May-October
composite diurnal cycle in these boxes are showed in the dotted black line. 95% of all random composite
diurnal cycles fall inside the gray bounds when averaged over this box.
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Figure 3.19: Anomalies in CMORPH daily mean precipitation rate, and diurnal amplitude of precipitation
rate of BSISO composite diurnal cycles plotted in Figure 3.16, spatially averaged over (a) Ocean points
only in the Moro Gulf (Box "D" in Figure 3.15), (b) Land points only over central Mindanao (Box "E" in
Figure 3.15), and (c) Land points only over eastern Mindanao (Box "F" in Figure 3.15). The 95% confi-
dence bounds for the daily mean and diurnal amplitude are plotted in dotted blue and red lines respectively.
Composite OLR anomalies over the entire island are shown in gray boxes, by Lee et al. 2013 BSISO phase
on the x-axis.
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Chapter 4

Mechanisms

The last chapter focused on the impact of the BSISO on the diurnal cycle of precipitation over

the Philippines and SCS. An elevated diurnal cycle over high topography was observed during the

inactive period of the BSISO, with enhanced precipitation in the afternoon peak, and suppressed

precipitation at all other times of day. In addition, there was an increased preference for westward

offshore propagation during BSISO onset. In this chapter, some mechanisms to help explain this

behavior will be presented.

It will be shown that the observed enhancement of the diurnal cycle is collocated with de-

creased prevailing winds in the lower-troposphere, leading to a strong sea-breeze circulation in the

suppressed phases when combined with the increased insolation present. Furthermore, as the tran-

sition into the active phase begins, mid-level moisture begins to increase, which then allows the

convection that developed over land to propagate further offshore. Evidence will be presented in

this chapter that shows a collocation between wind, moisture, insolation, and precipitation anoma-

lies, but this will not address which pattern leads and which follows. In this thesis, these mecha-

nisms are hypothesized as a possible explanation derived from observations, but future modeling

studies are needed to establish cause and effect.

4.1 Prevailing Winds

In addition to its modulation of convection, the BSISO also impacts wind patterns over the

MC. The change in wind patterns is one potential factor that could promote the enhancement of

the diurnal cycle in the BSISO inactive period. The mean state boreal summer winds in the SCS

are characterized by broad southwesterly flow at low levels associated with the monsoonal trough

(recall Figure 2.3). The BSISO is superimposed on this background state, altering the background

monsoon pattern on intraseasonal timescales.
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Surface wind anomalies from ASCAT and ERA-Interim are shown in Figures 4.1 and 4.2 re-

spectively. In addition, bandpassed anomalies of ERA-Interim daily mean sea level pressure are

shown in Figure 4.3, which indicate the anomalous positioning of the monsoon trough. In the be-

ginning of the suppressed BSISO phases (1-2) winds are generally quite weak near the Philippines,

indicative of a "break" period in the climatological monsoon flow (Maloney and Hartmann 1998,

Sengupta et al. 2001). As the anomalous pressure trough nears in phases 3-4, easterlies in the

Philippine Sea strengthen, while weak southerlies emerge in the SCS. When the pressure trough

passes through the region of interest in phases 5-6, the strong southwesterly monsoon flow returns

to the South China sea, converging with the trade winds just east of the Philippines. Wind speeds

of 6-8 m s−1 are common during the active BSISO period, compared to 2-5 m s−1 in phases 1-4.

Towards the end of the active BSISO period (phases 7-8), strong southwesterly winds are present

across the entire domain, including the Philippine Sea. This is analogous to the westerly wind

bursts seen in the active wintertime MJO.

On land, the active BSISO brings strong onshore flow to the western side of every major Philip-

pine island. For Luzon, this is particularly true in phases 7-8, since the monsoon trough is still

located over the northern part of the island in phases 5-6. It is proposed that this burst of south-

westerly wind in the active phase overwhelms the sea-breeze circulation, and thus limits the diurnal

cycle, consistent with a mechanism discussed in prior studies (Houze et al. 1981, Saito et al. 2001,

Fujita et al. 2011, Oh et al. 2012). When strong onshore flow is present in the lower-troposphere

due to large-scale features such as the monsoon trough, convergence over land is diminished, thus

weakening the diurnal cycle. This mechanism also provides a possible explanation for the dispar-

ity in diurnal cycle strength on the western and eastern sides of the Philippines. In phases 1-4, the

large-scale monsoonal flow promotes strengthening easterlies impinging on the eastern side of the

Philippines (onshore), with weak intraseasonal winds in the SCS. On the eastern side, this reduces

convergence during the day and increases it at night offshore (due to the land breeze). Thus, the

weakest diurnal cycle over the eastern Philippines occurs when the trades are strongest (phases

3-4). Conversely, winds are weakly offshore over the western side of the archipelago during these
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phases, which increases (decreases) convergence during the day (at night), leading to more (less)

precipitation, and thus a higher amplitude diurnal cycle. When strong southwesterly winds flow

over the Philippines (phases 5-8), convergence due to the sea-breeze over land is diminished, sup-

pressing the diurnal cycle in the west, but enhancing it in the east. This mechanism does not

consider an increase in convergence associated with intraseasonal winds hitting high topography.

Understanding the relative contributions of the sea-breeze related convergence and topographic

convergence will be important in establishing the applicability of this proposed mechanism. The

change in the sea-breeze will be shown in the next section.

Also notable from Figures 4.1 and 4.2 is that this pattern is consistent in both ASCAT and

ERA-Interim (as well as QuikSCAT, which is not shown), showing that ERA-Interim winds can

be reliable for BSISO studies. ERA-Interim has the advantage of 3-hourly temporal resolution,

which allows for a more detailed interpretation of the diurnal cycle, something that ASCAT and

QuikSCAT cannot provide. Furthermore, Rapidscat does not have the temporal coverage for ad-

equate BSISO statistics, with less than two full boreal summers in the record. ERA-Interim also

captures the diurnal cycle of surface wind quite well when compared to RapidScat, as established

in section 2.4. However, it is worth noting that parameterized convection in ERA-Interim could

bias precipitation to peak early, thus shutting down the sea-breeze earlier than expected (Birch et

al. 2015). Thus, ERA-Interim appears suitable to analyze BSISO modulations of the diurnal cycle

of surface wind, which will be the subject of the next section.

4.2 Sea-Breeze Circulation

It has been well established (R. Johnson et al. 1999, Myers and Waliser 2003, Sakaeda et al.

2017) that the active phase of the BSISO is accompanied by increased cloudiness, which results in

decreased insolation over land. As a result, a decrease in the strength of the sea-breeze circulation is

expected during the active phase. Figure 4.4 shows anomalies in surface downwelling shortwave

radiation by BSISO phase, while Figure 4.5 shows the amplitude of the first diurnal harmonic

of the composite diurnal cycle in surface zonal wind, a proxy for the strength of the sea-breeze
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circulation on meridionally oriented coastlines. The discussion will focus on oceanic winds, since

surface winds over complex topography may be untrustworthy and not indicative of the sea-breeze

circulation. In phases 1-2, a moderately enhanced diurnal cycle in surface zonal wind is observed

concurrent with strongly positive insolation anomalies. In phases 3-4, this pattern weakens over

the southern Philippines, but remains present near Luzon. After the onset of the active phase (5-6),

the diurnal cycle amplitude of zonal wind weakens over coastal waters west of all of the major

Philippine islands. This continues to the end of the active period, in phases 7-8, with suppressed

diurnal amplitudes. Negative insolation anomalies are present throughout this period, although

positive anomalies emerge over Mindanao by phase 8. This mechanism has been hypothesized in

many prior studies (Peatman et al. 2014, Birch et al. 2016).

On the east side of the archipelago, there is not a strong signal in the modulation of the sea-

breeze circulation by BSISO phase, with the exception of a weak suppression (enhancement) east

of Mindanao in phases 3-4 (7-8), concurrent with the weakest (strongest) diurnal cycles in precipi-

tation over eastern Luzon and Mindanao. While consistent with expectations, the pattern is modest,

suggesting insolation driven changes in the sea-breeze circulation are not the only important fea-

ture. Another possibility, discussed in the prior section, is that the lack of strong onshore flow in

the enhanced phases (on the eastern side) allows a strong diurnal cycle in precipitation to continue,

even when insolation is diminished (Fujita et al. 2011, Oh et al. 2012). Insolation changes alone

appear insufficient to explain the observed changes in the diurnal cycle of precipitation, consistent

with prior work (Peatman et al. 2014).

The sea-breeze circulation is indeed strongest in the suppressed periods, corresponding to a

strong diurnal cycle exclusively over land on the western side of the islands. However this does

not explain why the transition period from inactive to active shows a strong diurnal cycle that then

is able to propagate well offshore. This does not occur during the beginning of the suppressed

BSISO period, only towards the end. The established BSISO modulation of surface wind and

insolation do not distinguish strongly between the early suppressed phases, and the later phases

(L13 3-4 for Luzon). For Mindanao, insolation appears to in fact favor phases 1-2, while the
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strongest propagating diurnal cycle occurs in phases 3-4. For Luzon, the highest insolation is

found in phases 2-3, while the strongest propagating diurnal cycle appears in phases 4-5.

4.3 Mid-Level Moisture

In this section, evidence will be presented suggesting that mid-level moisture is an important

factor that drives cell longevity as the diurnal storms propagate offshore. Convection has been

closely tied to column water vapor in prior studies (Raymond et al. 2000, Bretherton et al. 2004).

Others have suggested that lower- to mid-tropospheric moisture in particular precedes deep con-

vection (Holloway and Neelin 2009, 2010, Barnes and Houze 2013, Yuan and Houze 2013). This

pattern has also been observed prior to large-scale deep convective onset in ISO events (Hsu et al.

2004, Jiang et al. 2004, R. Johnson and Ciesielski 2013, Adames and Wallace 2015, Ruppert and

R. Johnson 2015). An increase in moisture in the lower free-troposphere also appears to emerge in

the area of interest just before BSISO onset.

Figure 4.6 shows BSISO composites of daily mean wind zonal and vertical wind vectors, with

anomalies from the boreal summer mean of specific humidity latitudinally averaged over Luzon.

Figure 4.7 shows the same thing for a latitudinal average over Mindanao. At first glance, the

same general pattern of dry air at all levels is evident in the suppressed phases, and the reverse

in the enhanced. However, closer examination reveals an interesting change in the lower free

troposphere, from 700 to 900-hPa, and at 850-hPa in particular. In phases 1-3, a strong diurnal

cycle is present over the Luzon and Mindanao, but it does not propagate strongly offshore until

phase 2 for Mindanao and phase 3 for Luzon. In Figure 4.7, there is evidence of a positive anomaly

in specific humidity centered at 850-hPa over the Moro Gulf. Similarly, on the west side of Luzon,

dry anomalies in the free-troposphere weaken in phase 3 before actually becoming weakly positive

in phase 4 at 850-hPa. Interestingly, dry anomalies are still present over the eastern side of Luzon,

which could be a contributing factor that assists in the propagation of the diurnal cycle to the west,

but not to the east. This moister west side is also seen for Mindanao in phases 2-3.
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In phase 4 for Mindanao and phase 5 for Luzon, moist anomalies spread through the entire

troposphere, corresponding to the onset of widespread deep convection. However, these anomalies

are still stronger on the west side of the islands, where continued elevated offshore propagation

still occurs. One phase later, moisture anomalies are spread evenly across all longitudes, before

concentrating on the east side of the islands in the later active phases. In phase 8, there is some

evidence of diurnally generated convection propagating east into the Philippine Sea from Luzon.

As expected, a positive moisture anomaly is present in the low- to mid-free troposphere on the

east side of the island at this time. The mid levels are less dry on the eastern side of Mindanao

compared to the western side during these phase (7-8), but Mindanao did not observe a similar

tendency for eastward propagation. In summary, while a diurnal cycle is present over land to some

extent in all phases of the BSISO, it appears most likely to propagate offshore during the transition

from suppressed to active BSISO conditions when moisture is slightly elevated at 850-hPa on the

west side of the Philippines.

However, this does not establish if mid-level moisture allows convection to propagate offshore,

or if convection propagating offshore increases mid-level moisture. While this study only presents

a collocation between the two, other studies have argued that column water vapor, in particular in

the mid-troposphere, increases prior to convection (Holloway and Neelin 2010). Furthermore, Hol-

loway and Neelin (2009) suggested that it is unlikely that the increase in mid-tropospheric water

vapor is a result of evaporating precipitation alone. Other studies have shown that mid-tropospheric

water vapor increases in the region ahead of ISO-related convection (Hsu et al. 2004, R. Johnson

and Ciesielski 2013, Adames and Wallace 2015). Collectively, these works add evidence that per-

haps it is a mid-level moisture increase promoting storm propagation offshore, not the other way

around. While it is hypothesized that this is the case, it is still possible that another mechanism

allows the diurnal cycle to propagate further in the transition from inactive to active BSISO in the

Philippines and SCS, and this propagation in turn increases mid-level moisture. In either case,

a feedback mechanism similar to the moisture mode feedback is likely, where increased specific

humidity permits more active convection, which further increases specific humidity.
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Prior studies (Peatman et al. 2014, Birch et al. 2016) have hypothesized the importance of

frictional moisture convergence in driving the observed peak in the diurnal cycle prior to the on-

set of ISO convection. Figure 4.8 suggests that this factor could be of secondary importance to

prevailing winds, insolation, and mid-level moisture. This figure shows bandpass filtered moisture

convergence anomalies at 1000-hPa from ERA-Interim with OLR superimposed. Even though sea

level pressure clearly leads BSISO convection (Figure 4.3), near-surface moisture convergence ap-

pears more closely in phase with the OLR anomalies rather than the sea level pressure anomalies,

despite a slight lead to the north and east. Due to notable spectral ringing in this field near the

islands, the reliability of this product is called into question. Furthermore, a consistent lead to the

northeast of BSISO convection is not seen in either surface dewpoint or 1000-hPa specific humidity

(not shown). However, with the products available at this time, it appears that frictional moisture

convergence is of less importance compared to free-tropospheric moisture (Hsu et al. 2004). Fig-

ure 4.9 shows bandpass filtered 850-hPa specific humidity anomalies by L13 BSISO phase. Here,

there does appear to be a slightly larger lead in humidity anomalies compared to 1000-hPa. This is

also seen in fields of moisture convergence at 850-hPa (not shown), but it is much noisier.

In summary, it is hypothesized that the diurnal cycle over land and coastal waters is modulated

by the BSISO through three important mechanisms, prevailing low-level winds, surface insolation,

and mid-level moisture. The speed and direction of the BSISO winds appears to be related to the

diurnal cycle shifting from east to west across the Philippines. When onshore winds are strong,

convergence of the sea-breeze circulation over land is weakened, suppressing the diurnal cycle.

Thus, the strongest diurnal cycles are expected in coastal areas when intraseasonal onshore flow

is weak, which typically occurs in the late-suppressed period over the Philippines. Furthermore,

diminished cloud cover in the suppressed period increases surface insolation, which promotes a

strong diurnal cycle over land. However, in the early suppressed period when the mid-levels are

very dry, diurnally generated convection deteriorates quickly offshore. As the large-scale BSISO

convection nears, mid-level moisture increases and convection propagates further offshore, longer

into the night. After BSISO onset, onshore flow is strong and insolation decreases, which weakens
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the diurnal cycle over land, but what is generated still is able to propagate offshore. Late in the

active period, the diurnal cycle over land is minimized as dry anomalies start to emerge again in

the mid-levels, and precipitation offshore is nearly constant throughout the day.
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Figure 4.1: ASCAT May-October BSISO composite vector winds, with wind speed shown in contours.
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Figure 4.2: ERA-Interim May-October BSISO composite vector winds, with wind speed shown in contours.
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Figure 4.3: Bandpass filtered (30-90 Day) anomalies of daily mean sea level pressure (in colors, Pa) and
OLR (in contours; every 3 W m−2) by L13 BSISO phase.
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Figure 4.4: Anomaly from May-October full composite of daily mean surface downwelling shortwave
radiation (in W m−2) by L13 BSISO phase.
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Figure 4.5: Anomaly from May-October full composite of the first diurnal harmonic amplitude of ERA-
Interim May-October BSISO composite zonal winds.
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Figure 4.6: Anomalies in daily mean ERA-Interim Specific Humidity (in colors; g kg−1) from May-October
Mean (in contours, every 2 g kg−1), and composite daily mean wind vectors (zonal and vertical only, not
anomalies), averaged over Luzon from 16◦-18◦N (box "A" shown in Figure 2.16), by L13 BSISO phase.
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Figure 4.7: Anomalies in daily mean ERA-Interim Specific Humidity (in colors; g kg−1) from May-October
Mean (in contours, every 2 g kg−1), and composite daily mean wind vectors (zonal and vertical only, not
anomalies), averaged over Mindanao from 6◦-8◦N (box "B" shown in Figure 2.16), by L13 BSISO phase.
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Figure 4.8: Bandpass filtered (30-90 Day) anomalies of daily mean 1000-hPa moisture convergence (−∇ ·

(qv); in colors, kg (kg s)−1) and OLR (in contours; every 3 W m−2) by L13 BSISO phase.
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Figure 4.9: Bandpass filtered (30-90 Day) anomalies of 850-hPa specific humidity (colors; g kg−1) and
OLR (contours, every 3 W m2) by L13 BSISO phase.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, a thorough analysis of the diurnal cycle over the Philippines and South China

Sea (SCS) and its interaction with the Boreal Summer Intraseasonal Oscillation (BSISO) has been

presented. The body of literature related to the diurnal cycle, intraseasonal variability, and inter-

actions between the two was extensively reviewed in Chapter 1. In Chapter 2, it was shown that a

strong diurnal cycle is present over the large islands of the Philippines that propagates westward

in the mean state with a focus on the islands of Luzon and Mindanao. The average diurnal cycle

of precipitation in this region looks similar to a sine wave, and peaks in the mid afternoon over

small islands, and the late afternoon and evening for the large islands driven by the sea-breeze cir-

culation. Convective precipitation propagates several hundred kilometers offshore, mostly to the

west, during the overnight hours and on occasion into the next morning, likely related to advection

by the mean flow as well as diurnally generated gravity waves (Love et al. 2011). The amplitude

of the diurnal cycle decreases further from shore. While its representation is flawed in reanalysis

(Birch et al. 2015), this pattern is well represented across a variety of satellite based retrievals,

even those that rely on infrared retrievals. However, a consistent bias towards a later peak in the di-

urnal cycle is found in all precipitation products based on passive microwave or infrared retrievals

when compared to the TRMM Precipitation Radar, which is based on active microwave retrievals

(Yanase et al. 2017).

Next, in Chapter 3, the applicability of the Peatman et al. (2014) hypothesis to a general

theory ubiquitous to all seasons and all large islands over which the ISO is active was tested.

Peatman et al. (2014) proposed that the diurnal cycle and the daily mean precipitation rate are

maximized over large MC islands several days before the onset of large-scale ISO convection.

They hypothesized that this was due to high insolation present throughout the suppressed phase,
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combined with frictional moisture convergence associated with the forced Kelvin wave response

to tropical heating. This thesis extends these results to the boreal summer season and explores a

new region. Results suggest that while some patterns behave similarly in the boreal summer season

in the Philippines, there are several important additions and revisions to the Peatman hypothesis

proposed here that may improve its generalization to all seasons and all MC islands.

The diurnal cycle of precipitation over the high topography of Luzon and Mindanao reaches

its largest amplitude about 1/8 to 1/4 cycle before BSISO onset. However, for Luzon, the diurnal

amplitude does not determine the daily mean precipitation rate. During the suppressed BSISO

period, precipitation rates are elevated during the afternoon peak, and reduced at all other times

of the day, resulting in lower daily mean precipitation rates despite the strong diurnal cycle. The

opposite occurs in the BSISO active period, when increased precipitation is found at all times of

the day, except the afternoon peak. Thus, the diurnal amplitude still peaks before BSISO onset,

similar to studies of the boreal winter season (Peatman et al. 2014, Sakaeda et al. 2017). Mindanao

on the other hand, sees much stronger dominance of the diurnal cycle, and the amplitude and daily

mean are roughly in phase. Many prior studies did not consider statistical significance, or found

that this pattern over land was statistically insignificant (Sakaeda et al. 2017). However, at least

over the domain considered here, a statistically significant modulation of both the diurnal cycle and

the daily mean precipitation rate by the BSISO is found from spatial averages over the landmasses.

Intraseasonal variability was also found in the diurnal cycle over the coastal regions of the SCS

and Moro Gulf affected by westward propagation of diurnal convection from the major islands.

Offshore propagation is most favored in the transition from inactive to the active phase, and into

the early part of the active phase, while the latter part of the active phase sees a suppressed diurnal

cycle and significantly diminished propagation offshore. Additionally, this study has identified a

disparity in the impact of the BSISO on the diurnal cycle between eastern and western aspects

of Philippine islands in the presence of topography. While the diurnal cycle over and west of

the high topography of Luzon and Mindanao peaks in the expected pre-onset BSISO period, the

eastern side of the islands concurrently observe their weakest diurnal cycles. This cautions against
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spatially averaging over an entire island in future studies, because two different signals could be

blended together. Here, the least active diurnal cycle is found in the transition to active phase,

and the highest amplitude at the conclusion of the active phase. The modulation of the land-based

and coastal diurnal cycles by the BSISO are consistent across several satellite derived precipitation

datasets, do not depend on the BSISO index used, and are statistically significant.

In Chapter 4, it was shown that this strong diurnal cycle occurs in concert with increased sur-

face insolation and weak onshore intraseasonal winds. Evidence relating this pattern to frictional

moisture convergence was not found. The importance of the wind profile in driving diurnal prop-

agation of convection has been explored in the past (Saito et al. 2001, Ichiwaka and Yasunari

2006, 2008, Tulich and Kiladis 2012). In the late-suppressed period (L13 phases 3-4), the east-

erly trades impinging on the eastern Philippines reach their peak, while intraseasonal winds are

weakly offshore on the western shore. Concurrently, the diurnal cycle is maximized over and west

of topography, and minimized on the east coast. Conversely, in the late-active period (L13 phases

7-8), the diurnal cycle over western Luzon and Mindanao and nearby coastal waters is at a min-

imum, concurrent with strong onshore low-level southwesterly winds associated with the BSISO

and monsoon trough. It is proposed that strong onshore daily mean flow overwhelms the sea-

breeze circulation over islands, and weakens the diurnal cycle (Fujita et al. 2011, Oh et al. 2012).

However, more exploration of this hypothesis is required in order to differentiate the effects of

prevailing wind from those of insolation, beyond showing that the strong diurnal cycles and weak

onshore winds are collocated in time and space. Similarly, strong insolation due to suppressed

cloudiness promotes a robust sea-breeze circulation during the BSISO suppressed period.

Many prior studies have shown that an increase in moisture in the lower-free troposphere to the

mid-levels is an important precursor to convection (Bretherton et al. 2004, Holloway and Neelin

2009, 2010, Yuan and Houze 2013), and that such an increase is found leading ISO convection

(Hsu et al. 2004, Jiang et al. 2004, R. Johnson and Ciesielski 2013, Adames and Wallace 2015,

Jiang et al. 2018). This motivated an exploration of BSISO modulation of such moisture in the

vicinity of Luzon in Mindanao. An increase in moisture around 700- to 900-hPa was found on the
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west side of the islands during phases in which convection is expected to propagate offshore (the

transition from suppressed to active BSISO state). Furthermore, this was shown to lead BSISO

convection over the entire warm pool, not just in these regions. Thus, prevailing winds, insolation,

and moisture near 850-hPa all contribute to a strong diurnal cycle during the suppressed period

of the BSISO that then propagates offshore to the west just prior to onset. The existence of a

feedback mechanism related to offshore propagation of the diurnal cycle that helps moisten the

SCS for large-scale convection at all hours of the day is also hypothesized. This could assist in

northward propagation of the BSISO if its physics are described by a moisture mode, but this

question is again left for future research.

5.2 Future Work

The results presented here build on those established by Peatman et al. (2014) for the win-

tertime MJO near Sumatra and Borneo. A possible mechanism is proposed, but future work will

be needed to clarify if indeed the weak prevailing winds, strong insolation, and neutral moisture

anomalies in the transition phases leads to a strong, propagating diurnal cycle. Furthermore, if that

is the case, the question of how and why the BSISO influences mid-level moisture must also be

answered. The potential 2019 followup to the PISTON field campaign as well as CAMP3Ex may

be able to address the question of whether increasing moisture permits a propagating diurnal cycle,

or a propagating diurnal cycle increases mid-level moisture. This data on the ground would also

help to establish how surface winds, mid-level moisture, and insolation all interact with the diurnal

cycle over land and its offshore propagation.

Future work could attack these questions even without measurements on the ground. Following

this project, lag-correlations could be performed between moisture anomalies, wind anomalies, and

diurnal cycle amplitude to see if a lead-lag relationship can be extracted. Additionally, when ERA5

is completely released in the next few months, a follow-up with the new and improved reanalysis

dataset would be beneficial, to see if a better product with higher resolution can reveal any more

information.

140



A potential modeling study is proposed to address the causes of the observed modulation of

the diurnal cycle. Using a regional model like WRF over the Philippines, one or multiple BSISO

events in which a propagating diurnal cycle was observed during the transition period could be

simulated. The model could be run twice, first as a control run forced with reanalysis, and second

as an experiment forced on the boundaries by reanalysis, but with all intraseasonal signals filtered

out. Such an analysis would reveal the importance of intra-seasonal forcing on a propagating di-

urnal cycle. Furthermore, sensitivity tests could be done to explore the relative contributions of

insolation and moisture by constraining one, while allowing the other to vary freely. The impor-

tance of topography in driving the disparity between eastern and western portions of the islands

could be tested by flattening the mountains in the model, assuming that the model reproduces this

disparity. This could illuminate whether upslope/downslope flow related to the intraseasonal flow

is modulating insolation.

All of these proposed experiments still only address the question of how and why the BSISO

influences the diurnal cycle. An interesting followup question comes from the reverse direction.

Can the propagating diurnal cycle actually feedback onto the ISO and assist in its own propagation

to the northeast? It is possible that enhanced offshore propagation of the diurnal cycle prior to and

during BSISO onset helps to determine successful propagation through the MC through a feed-

back mechanism that further increases moisture content in the mid-levels. To test this hypothesis,

a lead-lag relationship between observed offshore propagation from the islands of the MC, and a

successful propagating ISO event through would be considered. One way to address this would

be to create an index describing offshore propagation strength for each island of interest, or mul-

tiple islands together, and correlate it with the principal components of any of the BSISO indices

discussed in this thesis. While this thesis has built on and revised hypotheses established in prior

work as well as extended such results to the boreal summer season and the Philippines, much more

work is required to develop a theory that works for all seasons and all MC islands.
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