101 research outputs found

    Performance evaluation of spread spectrum system with cochannel interference through a nonlinear channel

    Get PDF
    This thesis deals with the problem of more than one subscriber transmitting data signals through a common satellite repeater using code division multiplexing to separate the signals. We are concerned with the problem of amplifying two DS spread spectrum signals, both QPSK or BPSK modulated, in a common device in which limiting occurs. One signal is considered the signal we desire to receive, and the other, having the same nominal carrier frequency with a small random offset, is considered to be a cochannel interferer. The case of a cochannel interferer on the uplink and downlink in QPSK signalling and BPSK signalling systems is analyzed in detail. This is an important practical problem in code division multiple access satellite communication systems, which usually contain limiting in the satellite amplifier, often in the form of a saturated traveling wave tube amplifier. The satellite repeater is modeled using a bandpass hard limiter. The inverse Fourier transform method, which is applicable to the analysis of PN spread spectrum systems is applied to calculate the output of the bandpass hard limiter. The limiter output plus AWGN is taken to be the input of a correlation receiver for which we calculate the probability of error as function of the signal to noise and, signal to interference ratios. From these results we can determine the effect on error performance due to the inclusion of a bandpass limiter in the transmission path. The assumptions made in deriving the theoretical performance of the system have been checked by simulating the entire system using the BOSS software package. The results of the simulation show good agreement with the theoretical calculations within 1 to 2 dB in SNR. In addition by means of simulation we were able to explore some features of the system that could not be addressed analytically, such as the effect of unbalanced codes on system performance

    Probability of Error of Linearly Modulated Signals with Gaussian Cochannel Interference in Maximally Correlated Rayleigh Fading Channels

    Get PDF
    We evaluate the probability of error of linearly modulated signals, such as phase-shift keying (PSK) and quadrature amplitude modulation (QAM), in the presence of Gaussian cochannel interference (CCI) and Rayleigh fading channels. Specifically, we assume that the fading channel of the CCI is maximally correlated with the fading channel of the signal of interest (SOI). In practical applications, the maximal correlation of the CCI channel with the SOI channel occurs when the CCI is generated at the transmitter, such as the multiuser interference in downlink systems, or when a transparent repeater relays some thermal noise together with the SOI. We analytically evaluate the error probability by using a series expansion of generalized hypergeometric functions. A convenient truncation criterion is also discussed. The proposed theoretical approach favorably compares with alternative approaches, such as numerical integration and Monte Carlo estimation. Among the various applications of the proposed analysis, we illustrate the effect of nonlinear amplifiers in orthogonal frequency-division multiplexing (OFDM) systems, the downlink reception of code-division multiple-access (CDMA) signals, and the outdoor-to-indoor relaying of Global Positioning System (GPS) signals

    Narrow band digital modulation for land mobile radio.

    Get PDF

    Classification of linear and nonlinear modulations using Bayesian methods

    Get PDF
    La reconnaissance de modulations numériques consiste à identifier, au niveau du récepteur d'une chaîne de transmission, l'alphabet auquel appartiennent les symboles du message transmis. Cette reconnaissance est nécessaire dans de nombreux scénarios de communication, afin, par exemple, de sécuriser les transmissions pour détecter d'éventuels utilisateurs non autorisés ou bien encore de déterminer quel terminal brouille les autres. Le signal observé en réception est généralement affecté d'un certain nombre d'imperfections, dues à une synchronisation imparfaite de l'émetteur et du récepteur, une démodulation imparfaite, une égalisation imparfaite du canal de transmission. Nous proposons plusieurs méthodes de classification qui permettent d'annuler les effets liés aux imperfections de la chaîne de transmission. Les symboles reçus sont alors corrigés puis comparés à ceux du dictionnaire des symboles transmis. Plus précisément, nous étudions trois techniques permettant d'estimer la loi a posteriori d'une modulation au niveau du récepteur. La première technique estime les paramètres inconnus associés aux diverses imperfections affectant le récepteur à l'aide d'une approche Bayésienne couplée avec une méthode de simulation MCMC (Markov Chain Monte Carlo). Une deuxième technique utilise l'algorithme de Baum Welch qui permet d'estimer de manière récursive la loi a posteriori du signal reçu et de déterminer la modulation la plus probable parmi un catalogue donné. La dernière méthode étudiée dans cette thèse consiste à corriger les erreurs de synchronisation de phase et de fréquence avec une boucle de phase. Les algorithmes considérés dans cette thèse ont permis de reconnaître un certain nombre de modulations linéaires de types QAM (Quadrature Amplitude Modulation) et PSK (Phase Shift Keying) mais aussi des modulations non linéaires de type GMSK (Gaussian Minimum Shift Keying). ABSTRACT : This thesis studies classification of digital linear and nonlinear modulations using Bayesian methods. Modulation recognition consists of identifying, at the receiver, the type of modulation signals used by the transmitter. It is important in many communication scenarios, for example, to secure transmissions by detecting unauthorized users, or to determine which transmitter interferes the others. The received signal is generally affected by a number of impairments. We propose several classification methods that can mitigate the effects related to imperfections in transmission channels. More specifically, we study three techniques to estimate the posterior probabilities of the received signals conditionally to each modulation. The first technique estimates the unknown parameters associated with various imperfections using a Bayesian approach coupled with Markov Chain Monte Carlo (MCMC) methods. A second technique uses the Baum Welch (BW) algorithm to estimate recursively the posterior probabilities and determine the most likely modulation type from a catalogue. The last method studied in this thesis corrects synchronization errors (phase and frequency offsets) with a phase-locked loop (PLL). The classification algorithms considered in this thesis can recognize a number of linear modulations such as Quadrature Amplitude Modulation (QAM), Phase Shift Keying (PSK), and nonlinear modulations such as Gaussian Minimum Shift Keying (GMSK

    Shuttle Ku-band signal design study

    Get PDF
    Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed

    Study of Digital Modulation Techniques

    Get PDF
    Modulation is the process of facilitating the transfer of information over a medium. Typically the objective of a digital communication system is to transport digital data between two or more nodes. In radio communications this is usually achieved by adjusting a physical characteristic of a sinusoidal carrier, either the frequency, phase, amplitude or a combination thereof . This is performed in real systems with a modulator at the transmitting end to impose the physical change to the carrier and a demodulator at the receiving end to detect the resultant modulation on reception. Hence, modulation can be objectively defined as the process of converting information so that it can be successfully sent through a medium. This thesis deals with the current digital modulation techniques used in industry. Also, the thesis examines the qualitative and quantitative criteria used in selection of one modulation technique over the other. All the experiments, and realted data collected were obtained using MATLAB and SIMULIN

    SITE project. Phase 1: Continuous data bit-error-rate testing

    Get PDF
    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    corecore