19 research outputs found

    Tackling Dierent Business Process Perspectives

    Get PDF
    Business Process Management (BPM) has emerged as a discipline to design, control, analyze, and optimize business operations. Conceptual models lie at the core of BPM. In particular, business process models have been taken up by organizations as a means to describe the main activities that are performed to achieve a specific business goal. Process models generally cover different perspectives that underlie separate yet interrelated representations for analyzing and presenting process information. Being primarily driven by process improvement objectives, traditional business process modeling languages focus on capturing the control flow perspective of business processes, that is, the temporal and logical coordination of activities. Such approaches are usually characterized as \u201cactivity-centric\u201d. Nowadays, activity-centric process modeling languages, such as the Business Process Model and Notation (BPMN) standard, are still the most used in practice and benefit from industrial tool support. Nevertheless, evidence shows that such process modeling languages still lack of support for modeling non-control-flow perspectives, such as the temporal, informational, and decision perspectives, among others. This thesis centres on the BPMN standard and addresses the modeling the temporal, informational, and decision perspectives of process models, with particular attention to processes enacted in healthcare domains. Despite being partially interrelated, the main contributions of this thesis may be partitioned according to the modeling perspective they concern. The temporal perspective deals with the specification, management, and formal verification of temporal constraints. In this thesis, we address the specification and run-time management of temporal constraints in BPMN, by taking advantage of process modularity and of event handling mechanisms included in the standard. Then, we propose three different mappings from BPMN to formal models, to validate the behavior of the proposed process models and to check whether they are dynamically controllable. The informational perspective represents the information entities consumed, produced or manipulated by a process. This thesis focuses on the conceptual connection between processes and data, borrowing concepts from the database domain to enable the representation of which part of a database schema is accessed by a certain process activity. This novel conceptual view is then employed to detect potential data inconsistencies arising when the same data are accessed erroneously by different process activities. The decision perspective encompasses the modeling of the decision-making related to a process, considering where decisions are made in the process and how decision outcomes affect process execution. In this thesis, we investigate the use of the Decision Model and Notation (DMN) standard in conjunction with BPMN starting from a pattern-based approach to ease the derivation of DMN decision models from the data represented in BPMN processes. Besides, we propose a methodology that focuses on the integrated use of BPMN and DMN for modeling decision-intensive care pathways in a real-world application domain

    A Methodological Framework for the Integrated Design of Decision-Intensive Care Pathways\u2014an Application to the Management of COPD Patients

    Get PDF
    Healthcare processes are by nature complex, mostly due to their multi-disciplinary character that requires continuous coordination between care providers. They encompass both organizational and clinical tasks, the latter ones driven by med- ical knowledge, which is inherently incomplete and distributed among people having different expertise and roles. Care pathways refer to planning and coordination of care processes related to specific groups of patients in a given setting. The goal in defining and following care pathways is to improve the quality of care in terms of patient satisfaction, costs reduction, and medical outcome. Thus, care pathways are a promising methodological tool for standardizing care and decision-making. Business process management techniques can successfully be used for representing organiza- tional aspects of care pathways in a standard, readable, and accessible way, while supporting process development, analysis, and re-engineering. In this paper, we intro- duce a methodological framework that fosters the integrated design, implementation, and enactment of care processes and related decisions, while considering proper rep- resentation and management of organizational and clinical information. We focus here and discuss in detail the design phase, which encompasses the simulation of care pathways. We show how business process model and notation (BPMN) and decision model and notation (DMN) can be combined for supporting intertwined aspects of decision-intensive care pathways. As a proof-of-concept, the proposed methodology has been applied to design care pathways related to chronic obstructive pulmonary disease (COPD) in the region of Veneto, in Italy

    Business Process Management for optimizing clinical processes: A systematic literature review

    Get PDF
    Business Process Management is a new strategy for process management that is having a major impact today. Mainly, its use is focused on the industrial, services, and business sector. However, in recent years, it has begun to apply for optimizing clinical processes. So far, no studies that evaluate its true impact on the healthcare sector have been found. This systematic review aims to assess the results of the application of Business Process Management methodology on clinical processes, analyzing whether it can become a useful tool to improve the effectiveness and quality of processes. We conducted a systematic literature review using ScienceDirect, Web of Science, Scopus, PubMed, and Springer databases. After the electronic search process in different databases, 18 articles met the pre-established requirements. The findings support the use of Business Process Management as an effective methodology to optimize clinical processes. Business Process Management has proven to be a feasible and useful methodology to design and optimize clinical processes, as well as to automate tasks. However, a more comprehensive follow-up of this methodology, better technological support, and greater involvement of all the clinical staff are factors that play a key role for the development of its true potential.This work was supported by the Ministerio de Economía y Competitividad of the Spanish Government (ref. TIN2014-53067-C3-1-R) and co-financed by FEDER

    Dynamic checklists:design, implementation and clinical validation

    Get PDF

    Dynamic checklists:design, implementation and clinical validation

    Get PDF

    Improvement of the portuguese breast cancer screening through process modelling (BPM)

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceBreast cancer is a malignant epithelial neoplasm with high incidence and mortality in women. Focusing the clinical performance on screening processes has proven to be the way to improve morbidity and mortality statistics of this recognized public health problem. Business process management (BPM) is a management field that improves and analyzes business processes according to organizations’ strategies. BPM may help manage patient and information flow, improving waiting time in healthcare delivery while integrating healthcare processes with IT. The early diagnosis of breast cancer is of great importance since it will enable more conservative treatments and a longer disease-free survival. Organized oncology screenings programs, with all elements properly prepared, revealed to be more efficient than the opportunistic screenings. The aim of this study is to identify and model BPM processes for the healthcare sector, namely, for the breast cancer screening in Portugal. To achieve this goal, the main processes were identified and new frameworks were proposed and validated through individual interviews with experts. In this study was concluded that BPM techniques can be applied to the healthcare. Through the application of these techniques it was possible to identify the main issues within the organized breast cancer screening and suggest changes to it. These changes focus on reducing the time of the process, improving its efficiency and offering greater support to the health user

    Capturing and modeling complex manufacturing systems: extending and embedding BPMN in DES

    Get PDF
    Business process models are developed for the purpose of understanding the system behaviour and identifying the possible areas for performance improvement. Among existing process modelling languages, Business Process Model and Notation (BPMN) was selected to be assessed and extended, as it is the leading standard for business process modelling. The BPMN is currently gaining great attention in various business practices; it is an easy and flexible way to construct business process models, and thus it was hard to be overlooked by authors who are concerned with improving manufacturing processes. The introduction of BPMN to the manufacturing domain potentially allows all stakeholders to take advantage of the simplicity of this language in gaining full understandings for manufacturing processes through simple representations of the process models. Only limited work can be found addressing the use of BMPN in the modelling of manufacturing systems, and it is still not clear how powerful BPMN is in realizing performance improvements. This work proposes Manufacturing Process Model and Notation (MPMN) as an extension to BPMN; it offers a set of new and adapted notations that represent manufacturing processes. In order to add the ability to optimise or improve the system under study, MPMN is further extended and integrated with a full discrete-event simulation package to be able to easily build and simulate models of manufacturing systems. MPMN simulator is created to be a generic and reusable tool. It has a drag and drop library for non- simulation experts, to model and simulate MPMN models in the ExtendSim environment. This integration is considered a substitution to BPSim, the Business Process Simulation Standard that integrates BPMN and Simulation to model and execute business processes. The MPMN simulator combines both, models that are understood by all stakeholders and a simulation tool that is expressive enough to handle the varying levels of complexity in the manufacturing domain. This will strengthen the analysis and the evaluation of the current and future status of a system under study. The effectiveness of the developed system is demonstrated by application to two case studies covering different industry sectors
    corecore