973 research outputs found

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size

    Probabilistic abductive logic programming using Dirichlet priors

    Get PDF
    Probabilistic programming is an area of research that aims to develop general inference algorithms for probabilistic models expressed as probabilistic programs whose execution corresponds to inferring the parameters of those models. In this paper, we introduce a probabilistic programming language (PPL) based on abductive logic programming for performing inference in probabilistic models involving categorical distributions with Dirichlet priors. We encode these models as abductive logic programs enriched with probabilistic definitions and queries, and show how to execute and compile them to boolean formulas. Using the latter, we perform generalized inference using one of two proposed Markov Chain Monte Carlo (MCMC) sampling algorithms: an adaptation of uncollapsed Gibbs sampling from related work and a novel collapsed Gibbs sampling (CGS). We show that CGS converges faster than the uncollapsed version on a latent Dirichlet allocation (LDA) task using synthetic data. On similar data, we compare our PPL with LDA-specific algorithms and other PPLs. We find that all methods, except one, perform similarly and that the more expressive the PPL, the slower it is. We illustrate applications of our PPL on real data in two variants of LDA models (Seed and Cluster LDA), and in the repeated insertion model (RIM). In the latter, our PPL yields similar conclusions to inference with EM for Mallows models

    Counterexample-Preserving Reduction for Symbolic Model Checking

    Get PDF
    The cost of LTL model checking is highly sensitive to the length of the formula under verification. We observe that, under some specific conditions, the input LTL formula can be reduced to an easier-to-handle one before model checking. In our reduction, these two formulae need not to be logically equivalent, but they share the same counterexample set w.r.t the model. In the case that the model is symbolically represented, the condition enabling such reduction can be detected with a lightweight effort (e.g., with SAT-solving). In this paper, we tentatively name such technique "Counterexample-Preserving Reduction" (CePRe for short), and finally the proposed technquie is experimentally evaluated by adapting NuSMV

    On the Implementation of the Probabilistic Logic Programming Language ProbLog

    Get PDF
    The past few years have seen a surge of interest in the field of probabilistic logic learning and statistical relational learning. In this endeavor, many probabilistic logics have been developed. ProbLog is a recent probabilistic extension of Prolog motivated by the mining of large biological networks. In ProbLog, facts can be labeled with probabilities. These facts are treated as mutually independent random variables that indicate whether these facts belong to a randomly sampled program. Different kinds of queries can be posed to ProbLog programs. We introduce algorithms that allow the efficient execution of these queries, discuss their implementation on top of the YAP-Prolog system, and evaluate their performance in the context of large networks of biological entities.Comment: 28 pages; To appear in Theory and Practice of Logic Programming (TPLP

    Queries with Guarded Negation (full version)

    Full text link
    A well-established and fundamental insight in database theory is that negation (also known as complementation) tends to make queries difficult to process and difficult to reason about. Many basic problems are decidable and admit practical algorithms in the case of unions of conjunctive queries, but become difficult or even undecidable when queries are allowed to contain negation. Inspired by recent results in finite model theory, we consider a restricted form of negation, guarded negation. We introduce a fragment of SQL, called GN-SQL, as well as a fragment of Datalog with stratified negation, called GN-Datalog, that allow only guarded negation, and we show that these query languages are computationally well behaved, in terms of testing query containment, query evaluation, open-world query answering, and boundedness. GN-SQL and GN-Datalog subsume a number of well known query languages and constraint languages, such as unions of conjunctive queries, monadic Datalog, and frontier-guarded tgds. In addition, an analysis of standard benchmark workloads shows that most usage of negation in SQL in practice is guarded negation

    Discovering Restricted Regular Expressions with Interleaving

    Full text link
    Discovering a concise schema from given XML documents is an important problem in XML applications. In this paper, we focus on the problem of learning an unordered schema from a given set of XML examples, which is actually a problem of learning a restricted regular expression with interleaving using positive example strings. Schemas with interleaving could present meaningful knowledge that cannot be disclosed by previous inference techniques. Moreover, inference of the minimal schema with interleaving is challenging. The problem of finding a minimal schema with interleaving is shown to be NP-hard. Therefore, we develop an approximation algorithm and a heuristic solution to tackle the problem using techniques different from known inference algorithms. We do experiments on real-world data sets to demonstrate the effectiveness of our approaches. Our heuristic algorithm is shown to produce results that are very close to optimal.Comment: 12 page
    corecore