
Probabilistic Abductive Logic Programming using

Dirichlet Priors

Calin Rares Turliuca,∗, Luke Dickensb, Alessandra Russoa, Krysia Brodaa

aDepartment of Computing, Imperial College London, United Kingdom
bDepartment of Information Studies, University College London, United Kingdom

Abstract

Probabilistic programming is an area of research that aims to develop gen-
eral inference algorithms for probabilistic models expressed as probabilistic
programs whose execution corresponds to inferring the parameters of those
models. In this paper, we introduce a probabilistic programming language
(PPL) based on abductive logic programming for performing inference in
probabilistic models involving categorical distributions with Dirichlet priors.
We encode these models as abductive logic programs enriched with proba-
bilistic definitions and queries, and show how to execute and compile them to
boolean formulas. Using the latter, we perform generalized inference using
one of two proposed Markov Chain Monte Carlo (MCMC) sampling algo-
rithms: an adaptation of uncollapsed Gibbs sampling from related work and
a novel collapsed Gibbs sampling (CGS). We show that CGS converges faster
than the uncollapsed version on a latent Dirichlet allocation (LDA) task us-
ing synthetic data. On similar data, we compare our PPL with LDA-specific
algorithms and other PPLs. We find that all methods, except one, perform
similarly and that the more expressive the PPL, the slower it is. We illustrate
applications of our PPL on real data in two variants of LDA models (Seed
and Cluster LDA), and in the repeated insertion model (RIM). In the latter,
our PPL yields similar conclusions to inference with EM for Mallows models.

Keywords: probabilistic programming, abductive logic programming,
Markov Chain Monte Carlo, latent Dirichlet allocation, repeated insertion
model

∗Corresponding author.
Email address: ct1810@imperial.ac.uk (Calin Rares Turliuc)

Preprint submitted to IJAR June 3, 2016

1. Introduction

Probabilistic programming is an area of research that aims to develop
general inference algorithms for probabilistic models expressed as probabilis-
tic programs whose execution corresponds to inferring the parameters of the
probabilistic model. A wide range of probabilistic programming languages
(PPLs) have been developed to express a variety of classes of probabilistic
models. Examples of PPLs include Church [1], Anglican [2], BUGS [3], Stan
[4] and Figaro [5].1 Some PPLs, such as Church, enrich a functional pro-
gramming language with exchangeable random primitives, and can typically
express a wide range of probabilistic models. However, inference is not al-
ways tractable in these expressive languages. Other PPLs are logic-based.
They typically add probabilistic annotations or primitives to a logical encod-
ing of the model. This encoding usually relates either to first-order logic, e.g.
Alchemy[6], BLOG [7] or to logic programming, e.g. PRiSM [8], ProbLog
[9]. Most logic-based PPLs focus only on discrete models, and consequently
are equipped with more specialized inference algorithms, with the advantage
of making the inference more tractable.

However, logic-based PPLs generally do not consider Bayesian inference
with prior distributions. For instance, Alchemy implements Markov logic, en-
coding a first-order knowledge base into Markov random fields. Uncertainty
is expressed by weights on the logical formulas, but it is not possible to spec-
ify prior distributions on these weights. ProbLog is a PPL that primarily
targets the inference of conditional probabilities and the most probable ex-
planation (maximum likelihood solution); it does not feature the specification
of prior distributions on categorical distributions. PRiSM is a PPL which
introduces Dirichlet priors over categorical distributions and is deigned for
efficient inference in models with non-overlapping explanations.

This paper contributes to the field of logic-based PPL by proposing an
alternative approach to probabilistic programming. Specifically, we intro-
duce a PPL based on logic programming for performing inference in proba-
bilistic models involving categorical distributions with Dirichlet priors. We
encode these models as abductive logic programs [10] enriched with prob-
abilistic definitions and inference queries, such that the result of abduction
allows overlapping explanations. We propose two Markov Chain Monte Carlo
(MCMC) sampling algorithms for the PPL: an adaptation of the uncollapsed

1For a more comprehensive list cf. http://probabilistic-programming.org/.

2

http://probabilistic-programming.org/

Gibbs sampling algorithm, described in [11], and a newly developed collapsed
Gibbs sampler. Our PPL is similar to PRiSM and different from ProbLog in
that it can specify Dirichlet priors. Unlike PRiSM, but similarly to ProbLog,
we allow overlapping explanations. However, in this paper, all the models
we study have non-overlapping explanations.

We show how our PPL can be used to perform inference in two classes of
probabilistic models: Latent Dirichlet Allocation (LDA, [12]), a well studied
approach for topic modelling, including two variations thereof (Seed LDA
and Cluster LDA); and the repeated insertion model (RIM, [13]), a model
used for preference modelling and whose generative story can be expressed
using recursion. Our experiments demonstrate that our PPL can express a
broad class of models in a compact way and scale up to medium size real-
data sets, such as LDA with approximately 5000 documents and 100 words
per document. On synthetic LDA data, we compare our PPL with two
LDA-specific algorithms: collapsed Gibbs sampling (CGS) and variational
expectation maximization (VEM), and two state-of-the-art PPLs: Stan and
PRiSM. We find that all methods, with the exception of the chosen VEM
implementation, perform similarly, and that the more expressive the method,
the slower it is, in the following order, with the exception of VEM: CGS
(fastest), PRiSM, VEM, our PPL, Stan (slowest).

The paper is organised as follows. Section 2 presents the class of prob-
abilistic models supported by our PPL. In Section 3 we outline the syntax
and the semantics of the PPL, whereas our two Gibbs sampling algorithms
are discussed in Section 4. Section 5 shows our experimental results and
Section 6 relates our PPL to other PPLs and methods. Finally, Section 7
concludes the paper.

2. The Probabilistic Model

This section begins with the description of a particular approach to prob-
abilistic programming. Then we introduce peircebayes2 (PB), our proba-
bilistic abductive logic programming language designed to perform inference
in discrete models with Dirichlet priors. Throughout the paper we will use
normal font for scalars (α), arrow notation for vectors (~α), and bold font for
collections with multiple indexes (ααα), e.g. sets of vectors.

2Named, in Church style, after Charles Sanders Peirce, the father of logical abduction,
and Thomas Bayes, the father of Bayesian reasoning. Pronounced [’p3rs’beIz].

3

Probabilistic programs, as defined in [14], are “ ‘usual’ programs with two
added constructs: (1) the ability to draw values at random from distributions,
and (2) the ability to condition values of variables in a program via observe
statements”. We can instantiate this general definition by considering the
notions of hyperparameters ααα, parameters θθθ, and observed variables ~f and
assuming the goal to be the characterisation of the conditional distribution
P (θθθ|~f ;ααα).

Most PPLs assume such a conditional with a continuous sample space,
i.e. they allow, in principle, probabilistic programs with an uncountably
infinite number of unique outputs, should one not take into account issues
of real number representations. In our approach, the conditional sample
space is assumed to be finite, i.e. one can enumerate all possible executions.
Specifically, in our PPL we restrict the class of distributions from which
we can draw to categorical distributions with Dirichlet priors. The Dirichlet
priors are chosen for their conjugacy, which supports efficient marginalisation.

The generality of our PPL is not given by the range of probability dis-
tributions that we can draw from, but rather by the way the draws from
categorical distributions interact in the “generative story” of the model. We
choose our “usual programs” to be abductive logic programs enriched with
probabilistic primitives. Similarly to Church, Anglican and other PPLs this
is declarative programming language, but one in which the generative story is
expressed as an abductive reasoning task responsible for identifying relevant
draws from the categorical distributions given the observations. Our choice
is motivated by the significant amount of related work in probabilistic logic
programming, although both functional and logic programming are Turing
complete, so they are equally general. In what follows we present the class of
probabilistic models that are supported by our PPL. We define them first as
uncollapsed models, then show how they can be collapsed. As demonstrated
in Section 4, this dual formalisation leads naturally to the possibility of using
in our PPL uncollapsed as well as collapsed MCMC sampling methods.

2.1. The Uncollapsed PB model

The class of probabilistic models that can be expressed in PB, inspired
by “propositional logic-based probabilistic (PLP) models”[11], is depicted in
Figure 1, using the general plate notation [15]. In the figure, unbounded
nodes are constants, circle nodes are latent variables, shaded nodes are ob-
served variables, diamond nodes are nodes that can be (but are not always)

4

~αa ~θai xnai vnaij fn

ka − 1

Ia

A

N

Figure 1: The PB plate model.

deterministic given their parent x (we discuss the details below), and A, Ia,
N , and ka are positive integers, with ka ≥ 2.
The above plate model encodes the following (joint) probability distribution:

P (~f,vvv,xxx,θθθ;ααα) =(
A∏
a=1

Ia∏
i=1

P (~θai; ~αa)

(
N∏
n=1

P (xnai|~θai)P (~vnai∗|xnai)

))
N∏
n=1

P (fn|vvvn∗) (1)

We use ∗ to denote the set of variables obtained by iterating over the missing
indexes, e.g. ~vnai∗ is the set of all the variables vnaij, for j = 1, . . . , ka − 1,
and vvvn∗ is the set of all the variables vnaij, for a = 1, . . . , A, i = 1, . . . , Ia,
j = 1, . . . , ka − 1. Un-indexed variables are implicitly such sets, e.g. xxx = x∗.

In the model, each ~αa, for a = 1, . . . , A, is a vector of finite length ka ≥ 2
of positive real numbers. Each ~αa may have a different size, and represents
the parameters of a Dirichlet distribution. From each such distribution Ia
samples are drawn, i.e.:

~θai|~αa ∼ Dirichlet(~αa) a = 1, . . . , A , i = 1, . . . , Ia

The samples ~θai are parameters of categorical distributions. For each i and
a, there are N samples xnai from the associated categorical distribution of
the form:

xnai|~θai ∼ Categorical(~θai) a = 1, . . . , A , i = 1, . . . , Ia , n = 1, . . . , N

Each xnai ∈ {1, . . . , ka} is encoded, similarly to [16], as a set of propositional
variables vnaij ∈ {0, 1}, for j = 1, . . . , ka − 1, in the following manner:

5

P (~vnai∗|xnai = l) =

{
2l−(ka−1)vnai1 . . . vnail−1vnail , if l < ka
vnai1 . . . vnail−1 , if l = ka

(2)

where v denotes boolean negation, and 2l−(ka−1) is a normalization constant.
Note that not all variables in vvv are deterministic, more specifically for all

j such that l < j < ka, ~vnaij are not determined by the realization xnai = l.
Our presentation deviates from [11] in that we present both xxx and vvv in the
same model, rather than considering two types of equivalent models (“base
models” and “PLP models”). But the probabilistic semantics of vvv is the
same as the one derived from the annotated disjunction (AD) compilation
(cf. Section 3.3.1 of [17]). In our PB model:

P (vnai1 = 0, . . . , vnail−1 = 0, vnail = 1|~θai) =

= P (vnail = 1|~θai)1−[l=ka]

l−1∏
j=1

(
1− P (vnaij = 1|~θai)

)
= θail (3)

a = 1, . . . , A i = 1, . . . , Ia n = 1, . . . , N l = 1, . . . , ka

where [i = j] is the Kronecker delta function δij. Therefore, it follows that:

P (vnail = 1|~θai) =
θail∏l−1

j=1

(
1− P (vnaij = 1|~θai)

)
Example 2.1. For the reader unfamiliar with ADs, we offer a brief example.
Let there be a four-sided die with probabilities 0.3, 0.2, 0.4, 0.1. The AD
compilation involves three boolean variables, with probabilities computed as
defined in Equation (3): 0.3, 0.2

1−0.3
≈ 0.285, 0.4

(1−0.3)(1−0.285)
≈ 0.8. To recover

the original probabilities, we use Equation (2), e.g. 0.1 ≈ (1 − 0.3)(1 −
0.285)(1− 0.8). �

The observed variables of the model, fn ∈ {0, 1}, represent the output of
boolean functions of v, such that:

P (fn|vvvn∗) = [fn = Booln(vvvn∗)] n = 1, . . . , N

where Booln(vvv) denotes an arbitrary boolean function of variables vvv. In our
approach it is assumed the observed value for each fn to be 1 (or true).

6

Inference in PB can be described in terms of a general schema of proba-
bilistic inference presented at the beginning of this section, i.e. the character-
ization of P (θθθ|~f ;ααα). The parameters and the hyper-parameters correspond

to θθθ and ααα, respectively. The observed data ~f is a vector of N data points
(observations) where, by convention, fn = 1 ensures that the n-th observation
is included in the model (assume this to be always the case). Furthermore,
observation fn is independent of any other observations fn′ , n 6= n

′
, if condi-

tioned on xxx (since xxx determines vvv); this is implied by the joint distribution
given in Equation (1). The various ways in which an n-th data point can be
generated, as well as the distributions involved in this process, are encoded
through the boolean function Booln(vvvn∗).

Example 2.2. LDA as a PB model
We illustrate the encoding of a popular probabilistic model for topic mod-

elling, the latent Dirichlet allocation (LDA) [12], as a PB model. This will
also serve as a running example throughout Section 3. LDA can be sum-
marized as follows: given a corpus of D documents, each document is a list
of tokens, the set of all tokens in the corpus is the vocabulary, with size V ,
and there exist T topics. There are two sets of categorical distributions: D
distributions over T categories (one topic distribution per document), each
distribution parametrized by ~µd; and T distributions over V categories, (one

token distribution per topic), each distribution parametrized by ~φt. The to-
kens of a document d are produced independently by sampling a topic t from
~µd, then sampling a token from ~φt. Furthermore, each distribution in µµµ is
sampled using the same Dirichlet prior with parameters ~γ, and, similarly,
each distribution in φφφ is sampled using ~β. Note that {µµµ, φφφ} correspond to

the parameters θθθ in the general model, and {~γ, ~β} correspond to ααα. To in-
stantiate a minimal LDA model, let us consider a corpus with 3 documents,
2 topics and a vocabulary of 4 tokens. The plate notation of the PB model
for this minimal LDA, depicted in full, is given in Figure 2. Relating to the
PB model, we have A = 2, i.e. one plate for each of ~γ and ~β, I1 = 3, one
topic mixture for each of the 3 documents, I2 = 2 and k1 = 2 for the two
topics, and k2 = 4 for the 4 tokens in the vocabulary.

Let the first data point to be the observation of token 2 in document 3.
Then the associated boolean function is:

Bool1(vvv1∗) = v13v141v142 + v13v151v152 (4)

The literals v13 and v13 denote the choice, in document 3, of topic 1 and 2,

7

~β~γ

~φ4 ~φ5~µ1 ~µ2 ~µ3

yn4 yn5zn1 zn2 zn3

vn41 vn42 vn43 vn51 vn52 vn53
vn1 vn2 vn3

fn

N

Figure 2: The PB model for an LDA example with 3 documents, 2 topics and 4 tokens.

respectively, and the conjunctions v141v142 and v151v152 denote the choice of
the second token from topic 1 and 2, respectively. Note that, in Figure 2, even
though all possible edges between deterministic nodes and fn are drawn, not
all the variables will necessarily and/or simultaneously affect the probability
of fn. For instance, the value of Bool1(vvv1∗) doesn’t depend on the value of
v12, which is related to document 2 and observations about document 3 and
document 2 are independent. Also, Bool1(vvv1∗) cannot depend at the same
time on both v141 and v151, since the truth value of v13 effectively filters out
the effect of one or the other. �

2.2. The Collapsed PB model

The above model, described as uncollapsed, can be inefficient to sam-
ple from, due to the large number of variables. The same PB model can
be reformulated as collapsed model where the parameters of the categorical
distributions are marginalised out. This is straightforward since we assume
conjugate priors. We present the collapsed model here in order to introduce
the distributions used in the derivation of the collapsed Gibbs sampler (CGS)
given in Section 4.

Consider a and i fixed. Since we make multiple draws from a categorical
distribution parametrized by ~θai it is convenient to work with count sum-
maries. Therefore we overload the notation ~x∗ai to denote a ka sized vector
of counts, i.e. for all categories l = 1, . . . , ka, x∗ail =

∑N
n=1[xnai = l]. Simi-

larly, xxx is overloaded to denote a set of such vectors for each a = 1, . . . , A,
i = 1, . . . , Ia. Integrating out ~θ for a single Dirichlet-categorical pair yields:

8

P (~x∗ai; ~αa) =
Γ(Σ(~αa))

Γ(Σ(~αa) + Σ(~x∗ai))

ka∏
l=1

Γ(x∗ail + αal)

Γ(αal)

where Σ(~v) denotes the sum of the elements of some vector ~v and Γ denotes
the gamma function. Also, from the conditional independence of our x∗ai:

P (xxx;ααα) =
A∏
a=1

Ia∏
i=1

P (~x∗ai; ~α)

The joint distribution of the collapsed PB model becomes:

P (~f,vvv,xxx;ααα) = P (xxx;ααα)P (vvv|xxx)P (~f |vvv) (5)

where
P (vvv|xxx) =

A∏
a=1

Ia∏
i=1

N∏
n=1

P (~vnai∗|xnai)

P (~f |vvv) =
N∏
n=1

P (fn|vvvn∗)

The joint distribution in Equation (5) is simply Equation (1) with θθθ in-
tegrated out. Note that vvv must take values from the models of the formulas
Booln in order to have P (~f |vvv) = 1 (recall that ~f is observed). Furthermore,
given a realization of vvv, it is uniquely decoded to a realization of xxx. In
practice, we always make sure that these conditions are met, cf. Section 3.

In summary, inference in PB models means to characterize P (θθθ|~f,ααα).
Since Dirichlet priors are conjugate to categorical distributions, the posterior
distributions are also Dirichlet distributions with parameters ααα′:

~θai|~f,ααα ∼ Dirichlet(~α′ai) a = 1, . . . , A , i = 1, . . . , Ia

Therefore, the inference task is to estimate ααα′.
Informally, the PB inference task is computed in two steps. The first

step, described in Section 3, consists of representing a given probabilistic
model as an abductive logic program enriched with probabilistic primitives
and executing this program. The latter yields the formulas Booln, and thus
the PB model is completely specified. The second step consists of sampling
the PB model and is described in Section 4.

9

3. Syntax and Semantics

In this section we formally define the syntax and semantics (up to MCMC
sampling) of probabilistic programs in PB. PB programs will be defined as ab-
ductive logic programs where the set of abducibles correspond to the sample
space of P (xxx|θθθ). Each observation in the model corresponds to an abductive
query. The execution of the abductive query given the program means ex-
plaining that observation, and the result of this execution will be a formula in
terms of abducibles. This formula is then translated into a boolean formula
Bool expressed in terms of the boolean variables vvv from the PB model. We
argue that all observations need not be explained individually, i.e. by exe-
cuting the previous steps for each observation, and instead propose a more
efficient approach. Finally, we describe a compact encoding of each boolean
formula Bool into a (reduced ordered) binary decision diagram, which will
be used for MCMC sampling.

3.1. Abductive Logic Programming and PB

A PB program is an abductive logic program [10] enhanced with prob-
abilistic predicates. Adapting the definitions from [18], an abductive logic
program is a tuple (Π,AB), where Π is a normal logic program, AB is a fi-
nite set of ground atoms called abducibles. In PB, an abductive logic program
encodes the generative story of the model, as well as the observed data.

A query Q is a conjunction of existentially quantified literals. In PB,
there exists one query for each observation, describing how that observation
should be explained. An abductive solution for a query Q is a set of ground
abducibles ∆ ⊆ AB:

• comp3(Π ∪∆) |= Q

• comp3(Π ∪∆) |= CET

where CET denotes the Clark Equality Theory axioms [19], and comp3(Π)
the Fitting three-valued completion of a program Π [20]. CET is needed to
define the semantics of universally quantified negation in programs contain-
ing variables. The result of a query is the disjunction of all the abductive
solutions computed by the abductive logic program, where each abductive
solution is considered a conjunction of its elements. This computation is
described in Appendix A.

10

The syntax of the non-probabilistic predicates is similar to Prolog, and
is documented in [21]. The domain of the abducibles is specified through a
probabilistic predicate pb dirichlet. This predicate defines a set of cate-
gorical distributions with the same Dirichlet prior, i.e. it allows draws from
P (xnai|~θai), for a fixed a and all n and i. A conjunction of such predi-
cates defines the plate indexed by a. In PB, the syntax of the predicate
is pb dirichlet(Alpha a, Name, K a, I a). The first argument, Alpha a,
corresponds to ~αa in the model, and can be either a list of ka positive scalars
specifying the parameters of the Dirichlet, or a positive scalar that specifies a
symmetric prior. The second argument, Name is an atom that will be used as
a functor when calling a predicate that represents a realization of a categor-
ical random variable on the a-th plate. The third argument K a corresponds
to ka, and I a represents Ia, i.e. the number of categorical distributions
having the same prior.

Example 3.1. Consider the LDA example from Example 2.2. To specify
the probability distributions, assuming flat symmetric priors over µµµ and φφφ,
we need the following predicates:

pb_dirichlet(1.0, mu, 2, 3).

pb_dirichlet(1.0, phi, 4, 2).

�

Declaring pb dirichlet predicates simply states that the distributions
on the a-indexed plate exist. The draws from these distributions, i.e. samples
from P (xxx|θθθ), are realized using a predicate Name(K a, I a). The first argu-
ment denotes a category from 1, . . . , ka, and the second argument a distribu-
tion from 1, . . . , Ia. Informally, the meaning of the predicate is that it draws
a value K a from the I a-th distribution with Dirichlet prior parametrized by
~αa. All predicates Name(K a, I a) are assumed to be ground atoms when
called. Therefore the set of abducibles can be defined as:

AB = {Name(K a, I a)|∀a, K a, I a}

Example 3.2. Continuing Example 3.1, we show the rest of the abductive
logic program. Note that this is not the complete PB program, since we have
not defined all probabilistic predicates.

observe(d(1),[(w(1),4),(w(4),2)]).

11

observe(d(2),[(w(3),1),(w(4),5)]).

observe(d(3),[(w(2),2)]).

generate(Doc, Token) :-

Topic in 1..2,

mu(Topic, Doc),

phi(Token, Topic).

Each observe fact encodes a document, indexed using the first argument,
and consisting of a bag-of-words in the second argument. The bag-of-words
is a list of pairs: a token with an index and its (positive) count per document.

The generate rule describes how each observation, characterized by a
particular Token in a Document, is generated (or explained). The variable
Topic is grounded as either 1 or 2, in general 1 up to T . Note that observe
and generate are not keywords, but descriptive conventional names. In this
example, the abducibles are the predicates with functors mu and phi. �

In PB, each abducible corresponds to a draw from P (xnai|~θai), repre-
sented as a tuple (a, i, l) via a bijection ρ : AB → {(a, i, l)|a ∈ {1, . . . , A}, i ∈
{1, . . . , Ia}, l ∈ {1, . . . , ka}}. The tuple consists of an index of the distribu-
tion (a, i) and the drawn category l. For an abducible Name(K a, I a), K a

corresponds to l, I a corresponds to i, and a is determined by the order of
the pb dirichlet definition involving Name. For instance, in the context of
Example 3.1, ρ(phi(3,2)) = (2, 2, 3).

Abusing notation, the mapping ρ is also used to map abductive solutions,
i.e. ρ(∆) is a list of tuples (a, i, l).

The semantics of the abductive logic program ensures that abductive so-
lutions are minimal, which means no abducibles are included in an abductive
solution unless they are necessary to satisfy the query. Probabilistically, this
means that no draws are made except the ones needed to explain an ob-
servation. This implicit marginalisation and compactness (e.g. queries that
produce v1 and v1v2 + v1v2 are equivalent) is effectively enforced by BDD
compilation, described in Section 3.2.

The PB model constrains the draws from the categorical distributions
such that, for each observation, we can draw once per distribution, and since
each observation is explained by an abductive query, we must enforce this
constraint on our abductive solutions, i.e. there can be no (a, i, l1), (a, i, l2) ∈
ρ(∆) such that l1 6= l2.

12

Example 3.3. Continuing Example 3.2, consider observing token 2 in doc-
ument 3. The corresponding query is generate(3,2). The execution of
the abductive logic program with this query produces two solutions cor-
responding to the explanations of the token, i.e. it can be produced ei-
ther from topic 1 or topic 2. The solutions are {mu(1,3), phi(2,1)} and
{mu(2,3), phi(2,2)}.

We obtain the result of the query by applying ρ to the abductive solutions
and taking their disjunction:

((1, 3, 1) ∧ (2, 1, 2)) ∨ ((1, 3, 2) ∧ (2, 2, 2))

�

3.2. Knowledge compilation and multiple observations

The purpose of abduction is to produce, for each observation n = 1, . . . , N ,
a formula Booln(vvvn∗). Having computed the result of a query, all that is left
is to translate each draw (a, i, l) into boolean variables. We define this trans-
lation, denoted conditional AD compilation, as ordering all draws by their
distribution index (a, i), i.e. first by a then i, and compiling each distribution
as an AD with respect to the categories present in the result of the query.

Example 3.4. Continuing Example 3.3, in the result of the query, we have
the sorted distributions (a, i):

1. (1, 3), with two outcomes present in the solution, i.e. (1, 3, 1) and
(1, 3, 2), and one variable v1.

2. (2, 1), with one outcome present in the solution, i.e. (2, 1, 2), and one
variable v2.

3. (2, 2), with one outcome present in the solution, i.e. (2, 2, 2), and one
variable v3.

Therefore the result of the query is parsed using conditional AD compi-
lation into the formula:

v1v2 + v1v3

Note that for a fixed number of topics, this representation is invariant to
V , the number of tokens in the vocabulary, due to the fact, when explaining
an observation, we draw a single token from some topic. �

13

The proposed representation of conditional AD compilation is different
from conventional AD compilation (cf. Section 3.3.1 of [17]) in that instead of
considering the sample space of the distributions, it considers the conditional
sample space of the distributions given a particular observation. In models
such as LDA this difference is crucial, since in typical inference tasks, the
size of the vocabulary V is of the order of tens of thousands of tokens, and
AD compilation would thus create conjunctions of up to V − 1 variables.

So far we have discussed the explanation of a single observation, i.e. the
computation of a single abductive query and the translation of the result
of the query into a boolean formula. It would be inefficient to treat mul-
tiple observations by computing a query for every single observation. For
instance, in the LDA example, the same token Token can be produced multi-
ple times from the same document Document. The queries corresponding to
these observations are identical: generate(Document, Token), therefore it
is redundant to execute the query more than once for all such observations.
We make a further remark, namely that all observations generated from the
same set of topics in an LDA task produce the same formula after conditional
AD compilation, although the particular distributions used are different for
different document-token pairs.

We exploit these properties when expressing queries in a PB program. To
do so, we introduce the probabilistic predicate pb plate(OuterQ, Count,

InnerQ), where the queries OuterQ and InnerQ are conjunctions represented
as lists, and Count is a positive integer. For each successful solution of
OuterQ, the Count argument and the arguments of InnerQ are instantiated,
then the predicate executes the query InnerQ. We assume that all obser-
vations defined by a pb plate predicate yield the same formula from the
abductive solutions of InnerQ. If one didn’t know whether the formulas are
identical, one could simply write a pb plate definition for each observation,
with an empty outer query, and a count argument of 1.

Example 3.5. Continuing the previous examples of this section, we specify
the last part of the PB program for an LDA task. The pb plate predicate
iterates through the corpus and generates each token according to the model.
In this model, iterating through observations means selecting different pairs
of document and token indexes.

pb_plate(

[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList)],

14

Count,

[generate(Doc, Token)]

).

An example of a PB program with multiple pb plate definitions is given
for the Seed LDA model, discussed in Section 5, in Table 1. �

The formula for each pb plate definition is compiled into a reduced or-
dered binary decision diagram (ROBDD, in the rest of the paper the RO
attributes are implicit) [22, 23], with the variables in ascending order accord-
ing to their index. The BDD of a boolean formula Bool allows one to express
in a compact manner all the models of Bool. This enables us to sample (a

subset of) the variables vvv such that P (~f |vvv) equals 1. Furthermore, the con-
ditional AD compilation allows us to correctly decode vvv into xxx, such that all
the deterministic constraints of the model are satisfied.

Compiling the abductive solutions into a BDD allow PB to perform in-
ference in models with overlapping explanations, similarly to ProbLog.

The final step of inference in PB is sampling via Markov Chain Monte
Carlo (MCMC), which we discuss in Section 4.

4. MCMC sampling

Inference in high-dimensional latent variable models is typically done us-
ing approximate inference algorithms, e.g. variational inference or MCMC
sampling. We use the latter, in particular two algorithms: an adaptation
to PB models of Ishihata and Sato’s uncollapsed Gibbs sampling for PLP
models [11], and our novel collapsed Gibbs sampling (CGS) for PB models.

4.1. Uncollapsed Gibbs sampling

Following [11], we can perform uncollapsed Gibbs sampling along two

dimensions (θθθ and xxx) by alternatively sampling from P (xxx|θ̂θθ, ~f) and P (θθθ|x̂xx,ααα).
We use hat to denote the samples in some iteration, and if the variable is a
vector, we omit vector notation. A sample from P (θθθ|x̂xx,ααα) yields an estimate

θ̂θθ that is averaged over the sampling iterations to produce our posterior belief
of θθθ.

Sampling from P (θθθ|x̂xx,ααα) means sampling:

θ̂ai ∼ Dirichlet(~αa + x̂∗ai) a = 1, . . . , A , i = 1, . . . , Ia

15

Assume this is implemented by a function:

θθθ ← sample theta(ααα,xxx)

Sampling from P (xxx|θ̂θθ, ~f) can be done by sampling a path from root to
the “true” leaf3 in each of the BDDs for Booln, n = 1, . . . , N , which yield a
sample from vvv that is then decoded to xxx. To sample a BDD, we sample the
truth value of each node, and therefore we need to use P (vvv;θθθ), as defined in
Section 2.1.

According to the conditional AD compilation defined in Section 3.2, each
compilation is performed for each individual observation, and the observa-
tions are grouped if they correspond to the same query, and grouped again
when they correspond to the same compiled boolean formula Bool. This
means that for each formula Bool, the probabilities of the boolean variables
P (vvv;θθθ) must be computed from θθθ for each distinct query. Let Nbdd be the
number of boolean variables in BDD bdd , and NQ,bdd be the number of dis-
tinct queries whose result yields the same formula Bool encoded in bdd . Then
θθθbdd is a NQ,bdd by Nbdd matrix, computed from θθθ using a function:

θθθbdd ← reparametrize(θθθ, bdd)

The sampling algorithm is given in Algorithm 1, and the algorithm for
sampling a single BDD (sample x() from Algorithm 1) is explained in Ap-
pendix B.

In Algorithm 1, the input to the sampler are the priors ααα, a set of BDDs
bdds , and a number of iterations maxit . We define some additional notation:
we use [] to denote an empty list, append(list , el) to append element el to
a list list , zeros() to create empty vectors or matrices of shapes specified
by the arguments and avg() to take the average of a vector or list. To
update xxx, we must sample all BDDs (one for each pb plate definition),
and all observations within each BDD. We assume that an observation obs
takes values in 1, . . . , NQ,bdd , and count represents the number of times the
observation is repeated, as specified by the Count argument of a pb plate

predicate. For each observation obs we will use only the obs-th row from
θθθbdd , denoted as θθθbdd [obs , :].

3The “true” leaf of a BDD is a node such that the paths from the root to it encode all
models of the formula represented by the BDD.

16

Algorithm 1 Uncollapsed Gibbs sampling for PB.

function uncollapsed Gibbs(ααα, bdds , maxit)
samples ← []
for it = 1, . . . ,maxit do

θθθ ← sample theta(ααα,xxx) . updates θθθ
for bdd ∈ bdds do

θθθbdd ← reparametrize(θθθ)
end for
for a = 1, . . . , A do . resets xxx

for i = 1, . . . , Ia do
~x∗ai ← zeros(ka)

end for
end for
for bdd ∈ bdds do . updates xxx

for (obs , count) ∈ bdd do
θθθobs ← θθθbdd [obs , :]
sample x(bdd , count , θθθobs)

end for
end for
samples ← append(samples , θθθ)

end for
return avg(samples)

end function

17

4.2. Collapsed Gibbs sampling

Algorithm 2 Collapsed Gibbs sampling for PB.

function collapsed Gibbs(ααα, O, maxit)
samples ← []
xxx← initialize(ααα)
for it = 1, . . . ,maxit do

for (obs , bdd) ∈ shuffle(O) do
for (a, i, l) ∈ draws(obs) do

~x∗ai[l]← ~x∗ai[l]− 1
~α′ai[l]← ~α′ai[l]− 1

end for
θθθ ← avg(ααα′)
θθθbdd ← reparametrize(θθθ)
θθθobs ← θθθbdd [obs , :]
sample x(bdd , 1, θθθobs)
for a = 1, . . . , A do

for i = 1, . . . , Ia do
~α′ai ← ~αa + ~x∗ai

end for
end for

end for
samples ← append(samples ,ααα′)

end for
return avg(samples)

end function

As explained in [11], it is not feasible to perform CGS in PLP models, as
a generalization of CGS for LDA in [24]. It is, however, possible to define a
general CGS procedure for PB. This uses the independence property of our
observations ~f given xxx. The advantage of collapsed versus uncollapsed Gibbs
sampling is the faster convergence of the collapsed sampler. We show that
this is the case for an experiment using synthetic data in an LDA task in
Section 5.1.

CGS for PB models entails sampling P (xxxn∗|ααα, x̂xx−n∗), for n = 1, . . . , N ,
where the subscript −n means the range of values 1, . . . , n− 1, n+ 1, . . . , N .
Note that in constrast to uncollapsed Gibbs sampling, we sample one obser-
vation at a time, and θθθ is integrated out. Since sampling a BDD requires

18

probabilities on boolean variables, P (vvv|θθθ), we “uncollapse” θθθ for this purpose
as the average of its current Dirichlet posterior parametrized by ααα′:

~θai =
~α′ai

Σ(~α′ai)
a = 1, . . . , A , i = 1, . . . , IA

We assume this is implemented by avg(ααα′).
The CGS is shown in Algorithm 2. Before sampling, we initialize xxx by

setting θθθ to the average of the Dirichlet prior, then x is sampled like in
an iteration of the uncollapsed Gibbs sampler. We assume this setup is
implemented in a function initialize(ααα). We switch representation from a
set of BDDs to a set of O of observations, each observation having its own
BDD. Each iteration loops over the observations and removes the draws of
the current observation from xxx, then updates θθθ, then re-samples the current
observation to update xxx. To remove the draws of the current observation, we
use a function draws(obs), that, for some observation obs , returns the list of
draws required to explain that observation, i.e. a list of (a, i, l) tuples. The
draws represent the path sampled from the BDD in the previous iteration.
Unlike the uncollapsed Gibbs sampling algorithm, where all observations
were sampled given the same θθθ, in CGS, we update θθθ after each observation.
Furthermore, the samples we record are not θθθ, but the posterior Dirichlet
parameters ααα′.

5. Evaluation

In this section we present experiments with PB4. The first two experi-
ments are quantitative, while the rest are qualitative. In the latter, we show
that inference in PB yields reasonable results given our intuition about the
models, and in the case of the repeated insertion model, we reach similar
conclusions compared to a different model (the Mallows model).

5.1. PB and collapsed Gibbs sampling (CGS) for LDA on synthetic data

We run a variation of the experiment performed in [24, 11]. A synthetic
corpus is generated from an LDA model with parameters: 25 words in the

4See supplementary materials for details on implementation and software availability
(Appendix Appendix C). In all but the first experiment we use only uncollapsed Gibbs
sampling for PB, since, although it converges slower than CGS, it is better optimized in
the current implementation.

19

0 20 40 60 80 100
Iterations

33000

32000

31000

30000

29000

28000

27000

26000

25000

24000

Lo
g
 L

ik
e
lih

o
o
d

Average Log Likelihood and 95% confidence interval (normal)

PB-UGS
PB-CGS
LDA-CGS

Figure 3: Comparison between PB samplers and LDA-specific CGS on 10 sampled syn-
thetic corpora (10 runs per corpus).

vocabulary, 10 topics, 100 documents, 100 words per document, and a sym-
metric prior on the mixture of topics µ, γ = 1. The topics used as ground
truth specify uniform probabilities over 5 words, cf. [24, 11]. We evaluate
the convergence of the PB samplers and an LDA-specific CGS implementa-
tion in the topicmodels R package. The parameters are: β = γ = 1 as
(symmetric) hyper-parameters, and we run 100 iterations of the samplers.
The experiments are run 10 times over each corpus from a set of 10 identi-
cally sampled corpora, yielding 100 values of the log likelihoods per iteration.
The average and 95% confidence interval (under a normal distribution) per
iteration are shown in Figure 3. The experiment yields two conclusions: 1)
similarly to [11], we find that uncollapsed Gibbs sampling converges slower
than CGS and 2) the PB-CGS performs similarly to the LDA-specific CGS,
which supports our claim that CGS in PB generalizes CGS in LDA.

5.2. PB, CGS-LDA, VEM-LDA, PRiSM and Stan for LDA on synthetic data

We compare PB with two LDA-specific methods from the topicmodels

R package: collapsed Gibbs sampling (tm-gibbs) and variational expectation
maximization (tm-vem), and two state-of-the-art PPLs: PRiSM [8] and Stan
[4]. The metrics we are interested in are: 1) the intrinsic metric of each
method, used to subjectively decide when a sampler has converged, 2) log

20

10-1 100 101 102 103

Time

360000

340000

320000

300000

280000

260000

240000

220000

200000

180000

In
tr

in
si

c
M

e
tr

ic

pb

stan

prism

tm-gibbs

tm-vem

Figure 4: Intrinsic metrics by log average execution time. The methods should not be
compared based on these values.

likelihood, used to asses the quality of fit to the observed data and 3) fold-
average perplexity in 5-fold cross-validation, used to asses the generalization
power of each method. In a previous paper, we showed that Church [1]
doesn’t seem to converge in a reasonable amount of time on simple LDA
tasks, cf. Appendix C of [18].

We use a similar setup to the previous experiment (T = 10, γ = 1), except
that we generate only one corpus of 1000 documents and average over 10 runs
with different RNG seeds.

The first problem in evaluating the methods is deciding when has the
model converged. We use the default settings of all implementations un-
less specified and their intrinsic measures: the likelihood attributes of LDA
objects for tm-gibbs and tm-vem (@logLiks), the LDA-likelihood for PB,
cf. Appendix B of [18], the get logposterior function for Stan and the
variational free energy (VFE) for PRiSM. Time is measured in seconds and
averaged across runs, the metrics are averaged across runs and the error bars
show one standard error, though very often the methods show little variation.

We plot the results in Figures 4 and 5. Note that the methods should
not be compared with each other based on these figures. The last value of
the number of iterations is the one where we deem there is convergence. For
sampling methods, we ran up to 200 iterations for tm-gibbs, 400 iterations

21

6 7 8 9 10 11 12 13 14

Topics

360000

340000

320000

300000

280000

260000

240000

220000

200000

180000

In
tr

in
si

c
M

e
tr

ic

pb

stan

prism

tm-gibbs

tm-vem

Figure 5: Intrinsic measures by number of topics in the evaluated model.

for PB and 25 iterations for Stan to make this decision. For PB we use 50,
100, 150 and 200 iterations, for Stan 5, 10, 15, 20 iterations, for Prism 50,
100, 150 and 200 iterations (based on the intrinsic convergence of VEM),
for tm-gibbs 25, 50, 75, 100 iterations, for tm-vem 20, 30, 40, 50 iterations
(based on the intrinsic convergence of VEM). When varying the number of
topics, we used the maximum value of iterations for sampling methods, and
the rest ran until convergence.

When we vary the number of topics in the probabilistic program, e.g. in
Figure 5, we typically expect the metric to increase up to 10 topics, and then
decrease or remain the same. This behaviour is illustrated by the intrinsic
measures of PB and tm-gibbs, while that of Stan behaves oddly with respect
to this expectation. In what follows we shall see that when we track likelihood
and perplexity, these behaviours change.

To be able to compare the methods, we used the following definition of
”likelihood”:

L(C) =
∏

(w,d)∈C

T∑
t=1

µd(t)φt(w)

, where C is a corpus of tokens (w, d), w is the token index, d is the
document index, and T , µ and φ are the same as in Example 2.2.

22

100 101 102 103

Time

335000

330000

325000

320000

315000

310000

305000

300000

Lo
g
 L

ik
e
lih

o
o
d

pb

stan

prism

tm-gibbs

tm-vem

Figure 6: Likelihood against log average execution time. Higher is better. The results are
consistent with Figure 4.

We plot the results in Figures 6 and 7. We use the same settings for
iteration numbers. As in the intrinsic metric experiment, the more expressive
the method, the slower it is, with the exception of PRiSM being faster than
tm-vem. The difference of more than an order of magnitude between PRiSM
and PB can be explained by the fact that the assumption of non-overlapping
explanations allows for significant optimizations in PRiSM, as well as the
fact that the implementation of the latter is much more mature. Concretely,
PRiSM is written in C, Stan compiles its programs to C++ code, while our
current PB prototype sampling implementation is written in Python and
Cython.

With respect to the number of topics, all methods perform similarly
Finally, we show the average per fold perplexity in a 5-fold cross-validation

split on every document of the corpus in Figures 8 and 9.
We define perplexity similarly to [25]:

P(C) = exp

(
− L(C)∑

(w,d)∈C 1

)
We run the methods only four times, and due to faster overall conver-

gence, we tune the number of iterations as follows: 10, 20, 30, 40, 200 for

23

6 7 8 9 10 11 12 13 14

Topics

325000

320000

315000

310000

305000

300000

295000

Lo
g
 L

ik
e
lih

o
o
d

pb

stan

prism

tm-gibbs

tm-vem

Figure 7: Likelihood against number of topics in the evaluated model. Notice the difference
w.r.t. Figure 5.

PB, 2, 4, 6, 8, 20 for Stan, 10, 20, 30, 40, 200 for PRiSM, 10, 20, 30, 40, 200
for tm-gibbs, and 5, 10, 15, 20, 50 for tm-vem. All methods perform well,
with the exception of tm-vem. Stan yields very similar values for perplexity
for 2, 4, 6 and 8 iterations.

5.3. PB for seed LDA on 20 newsgroups dataset.

Inspired by an experiment from [26], we use the computing related (comp.*)
newsgroups in the 20 newsgroups dataset [27]. We tokenize, lemmatize and
remove stop words from all documents to obtain a corpus with V = 27206
unique tokens in D = 4777 documents with average length of approx. 72
tokens. We set T = 20 topics and priors γ = 50/T , β = 0.01. We seed
two topics with hardware (hardware, machine, memory, cpu), and software
(software, program, version, shareware) related terms. Seeding a token in a
topic means that whenever we observe that token we will assign it only that
topic.

We show the PB program, with the observe facts omitted, in Table 1.
The omitted observe facts encode the corpus in the same manner as in Ex-
ample 3.2. The seed predicate specifies a token as its first argument and a
list of allowed topics as the second argument. The observations are split into
seed tokens and non-seed tokens, and are placed on separate pb plate pred-

24

10-1 100 101 102 103

Time

21

22

23

24

25

26

27

P
e
rp

le
x
it

y

pb

stan

prism

tm-gibbs

tm-vem

Figure 8: Average fold perplexity in 5CV against average execution time. Lower is better.
The first four markers for Stan almost overlap.

icates. To distinguish between the two types of tokens we use the predicate
seed naf because negation is universally quantified.

We run PB for 400 iterations and summarize the seeded topics, as word
clouds, in Figure 10. We observe that both topics give high weights to the
seed words, and other hardware (mhz, rom, disk, bios, board) or software
(source, library, utility, server, user) related terms.

5.4. PB for cluster LDA on arXiv abstracts

We consider a different variant of the LDA model, one in which we define a
partition C over the topics. In the experiment, we consider 25 topics clustered
into 5 clusters of 5 topics. Each token is then generated by choosing a topic
cluster according to a document-specific mixture of clusters, then a topic
from the cluster, again according to a document-specific mixture, and finally
the token is chosen from the topic. Note that this model is different from
the parametric version of hierarchical Dirichlet processes [28], equation 29,
namely that model considers a global set of topics, and each document (or
group) selects a subset from the global set. In cluster LDA, all documents
can use any of the topics, however the topic clusters are disjoint, as opposed

25

6 7 8 9 10 11 12 13 14

Topics

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

P
e
rp

le
x
it

y

pb

stan

prism

tm-gibbs

tm-vem

Figure 9: Average fold perplexity in 5CV against number of topics in the evaluated model.
Note the consistency w.r.t. Figure 7.

(a) Hardware. (b) Software.

Figure 10: Seeded topics in the seed LDA task.

26

% ’observe’ facts are ommited

pb_dirichlet(2.5, theta, 20, 4777).

pb_dirichlet(0.01, phi, 27206, 20).

seed(9398, [1]). seed(21247, [2]).

seed(13167, [1]). seed(17982, [2]).

seed(13813, [1]). seed(24490, [2]).

seed(4483, [1]). seed(20682, [2]).

seed_naf(Token) :- seed(Token, _).

pb_plate(

[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList),

\+ seed_naf(Token)],

Count,

[Topic in 1..20, theta(Topic,Doc), phi(Token,Topic)]).

pb_plate(

[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList),

seed_naf(Token)],

Count,

[seed(Token, TopicList), member(Topic, TopicList),

theta(Topic,Doc), phi(Token,Topic)]).

Table 1: PB program for seed LDA.

to the possibly overlapping subsets in the parametric hierarchical Dirichlet
process.

We collect all abstracts on arXiv submitted in 2007, from five categories:
quantitative finance (q-fin), statistics (stats), quantitative biology (q-bio),
computer science (cs), and physics (physics). We tokenize and remove stop
words to obtain a corpus with V = 26834 unique tokens in D = 5769
documents with average length of approx. 80 tokens. We use priors of
γ = 50/T = 10 for each cluster mixture and topic mixture per cluster, and
β = 0.1 for the topics.

The PB program for the cluster LDA task is shown in Table 2. We use psi
to denote the draw of a topic cluster, and a predicate create term to create
terms that, when called with pb call, choose between the topics within a
cluster, as well as the tokens from the topics.

In Figure 11 we plot, as heat maps, the cluster mixtures for each document
in each category. We observe that quantitative biology is well represented by
cluster 2 and physics is well represented by cluster 3. Computer science is
characterized by cluster 5, but also 1 and 4, while quantitative finance and

27

0

50

100

150

200
q-fin

0

50

100

150

200

250
stat

0

100

200

300

400

500

q-bio

0

500

1000

1500

2000
cs

0

500

1000

1500

2000

2500
physics

Figure 11: Cluster mixture for each category (x - topic clusters, y - documents, darker
colour - higher probability).

statistics are very similar, consisting mainly of clusters 1,2 and 4. The latter
effect may be due to the small number of documents in both quantitative
finance and statistics, as well as the fact that most quantitative finance papers
focus on statistical methods.

Furthermore, if we inspect, for example, cluster 2, corresponding to quan-
titative biology, shown in Table 3, we find that most topics give high probabil-
ity to terms used in biology, e.g. “proteins” in topic 2, “genetic” and “brain”
in topic 3, “response” and “diffusion” in topic 4. The results agree with our
intuition about the model: topics within the same cluster are similar.

28

% ’observe’ facts are ommited

pb_dirichlet(10.0, psi, 5, 5769).

pb_dirichlet(10.0, theta1, 5, 5769).

pb_dirichlet(10.0, theta2, 5, 5769).

pb_dirichlet(10.0, theta3, 5, 5769).

pb_dirichlet(10.0, theta4, 5, 5769).

pb_dirichlet(10.0, theta5, 5, 5769).

pb_dirichlet(0.1, phi1, 26834, 5).

pb_dirichlet(0.1, phi2, 26834, 5).

pb_dirichlet(0.1, phi3, 26834, 5).

pb_dirichlet(0.1, phi4, 26834, 5).

pb_dirichlet(0.1, phi5, 26834, 5).

pb_plate(

[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList)],

Count,

[generate(Doc, Token)]).

create_term(Functor, Idx, Cat, Distrib, Term) :-

number_chars(Idx, LIdx),

atom_chars(Functor, LFunctor),

append(LFunctor, LIdx, LF),

atom_chars(F, LF),

Term =.. [F, Cat, Distrib].

generate(Doc, Token) :-

Cluster in 1..5,

Topic in 1..5,

psi(Cluster, Doc),

create_term(theta, Cluster, Topic, Doc, Term1),

pb_call(Term1),

create_term(phi, Cluster, Token, Topic, Term2),

pb_call(Term2).

Table 2: PB program for cluster LDA.

29

important 0.0092 physical 0.0099 scaling 0.0115
expression 0.0092 proteins 0.0092 free 0.0105
model 0.0092 interaction 0.0092 similar 0.0089
fluctuations 0.0085 individual 0.008 genetic 0.0079
large 0.0082 scales 0.0072 transfer 0.0067
mechanism 0.0077 transition 0.0072 agent 0.0062
specific 0.0077 mathematical 0.0069 brain 0.006
factors 0.0075 investigate 0.0066 chemical 0.0058
recent 0.0074 process 0.0066 exhibit 0.0056
highly 0.0073 dynamical 0.0062 normal 0.0056

simulations 0.0098 structural 0.0096
response 0.0093 short 0.0095
activity 0.0087 stability 0.0094
mean 0.0084 global 0.009
diffusion 0.0084 equilibrium 0.0087
rate 0.0081 studies 0.0081
present 0.008 role 0.008
temporal 0.0075 experimental 0.0078
mechanics 0.0075 statistics 0.0074
correlations 0.0073 influence 0.0071

Table 3: Topic Cluster 2 (top 10 tokens and probabilities).

5.5. PB for RIM on Sushi dataset

A repeated insertion model (RIM, [13]) provides a recursive and com-
pact representation of K probability distributions, called preference profiles,
over the set of all permutations of M items. This intuitively captures K
different types of people with similar preferences. We evaluate a variant of
the repeated insertion model in an experiment inspired by [29], on a dataset
published in [30]. The data consists of 5000 permutations over M = 10 Sushi
ingredients, each permutation expressing the preferences of a surveyed per-
son. Following [29], we use K = 6 preference profiles, however we use the
RIM rather than a Mallows model, and we train on the whole dataset. The
parameters of the model are 50/K symmetric prior for the mixture of profiles,
and 0.1 symmetric prior for all categorical distributions in all profiles.

We show the PB program used in Table 5, assuming that the create term

predicate is defined as in Table 2. We are not aware of any other implemen-
tation of RIM in a PPL, therefore we briefly describe the program. The
mixture of profiles is characterized by π, a set of K distributions, and for
each profile there are M − 1 categorical distributions that specify the proba-
bilities over the set of permutations of M elements. An observed permutation

30

π1 = 0.155 π2 = 0.194 π3 = 0.134 π4 = 0.194 π5 = 0.197 π6 = 0.126
fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna

shrimp tuna sea eel sea urchin tuna shrimp
salmon roe shrimp tuna salmon roe shrimp tuna

sea eel squid shrimp shrimp squid sea eel
squid egg squid sea eel sea eel squid
tuna tuna roll tuna roll tuna tuna roll salmon roe

tuna roll sea eel salmon roe tuna roll salmon roe tuna roll
sea urchin cucumb. roll sea urchin squid sea urchin sea urchin

egg salmon roe egg egg cucumb. roll egg
cucumb. roll sea urchin cucumb. roll cucumb. roll egg cucumb. roll

Table 4: Mixture parameters and modes of preference profiles on the Sushi dataset.

is produced by selecting a latent profile, then generating that permutation
by consecutively inserting elements from a permutation called insertion or-
der, e.g. [0, 1, . . . , 9], at the right position, according to the distributions
in that profile. The right position is chosen using the insert rim predi-
cate, as näıvely generating all the possible permutations is intractable (and
unnecessary).

We run PB 10 times for 100 iterations and average the parameters. For
each preference profile, we show its mixture parameter and its mode in Ta-
ble 4. The inference yields similar conclusions to [29]: there is a strong pref-
erence for fatty tuna, a strong dislike of cucumber roll and a strong positive
correlation between salmon roe and sea urchin.

31

observe([5,0,3,4,6,9,8,1,7,2]).

observe([0,9,6,3,7,2,8,1,5,4]).

% ... 4998 ’observe’ facts ommited

pb_dirichlet(8.33333333333, pi, 6, 1).

pb_dirichlet(0.1, p2, 2, 6). pb_dirichlet(0.1, p7, 7, 6).

pb_dirichlet(0.1, p3, 3, 6). pb_dirichlet(0.1, p8, 8, 6).

pb_dirichlet(0.1, p4, 3, 6). pb_dirichlet(0.1, p9, 9, 6).

pb_dirichlet(0.1, p5, 5, 6). pb_dirichlet(0.1, p10, 10, 6).

pb_dirichlet(0.1, p6, 6, 6).

pb_plate([observe(Sample)], 1,

[generate([0,1,2,3,4,5,6,7,8,9], Sample)]).

generate([H|T], Sample):-

K in 1..6,

pi(K, 1),

generate(T, Sample, [H], 2, K).

generate([], Sample, Sample, _Idx, _K).

generate([ToIns|T], Sample, Ins, Idx, K) :-

% insert next element at Pos yielding a new list Ins1

append(_, [ToIns|Rest], Sample),

insert_rim(Rest, ToIns, Ins, Pos, Ins1),

% make probabilistic choice

create_term(p, Idx, Pos, K, Pred),

pb_call(Pred),

% increment position and recurse

Idx1 is Idx+1,

generate(T, Sample, Ins1, Idx1, K).

insert_rim([], ToIns, Ins, Pos, Ins1) :-

append(Ins, [ToIns], Ins1),

length(Ins1, Pos).

insert_rim([H|_T], ToIns, Ins, Pos, Ins1) :-

nth1(Pos, Ins, H),

nth1(Pos, Ins1, ToIns, Ins).

insert_rim([H|T] , ToIns, Ins, Pos, Ins1) :-

\+member(H, Ins),

insert_rim(T, ToIns, Ins, Pos, Ins1).

Table 5: PB program for a RIM with K = 6 preference profiles.

32

6. Related Work

In this section, we will briefly describe the relation between the approach
proposed in this paper and other relevant methods. We begin with each of
the two fundamental steps of PB: 1) enumeration of the conditional sample
space and 2) sampling thereof, and conclude with a high-level comparison
with other probabilistic programming languages.

The first step of PB, the enumeration of the conditional sample space
through abductive logic programming, could be compared to “logical infer-
ence” in ProbLog [9]. While both languages aim to generate a propositional
formula and compile it into a decision diagram, “logical inference” in PB
is based on abductive logic programming, while ProbLog grounds the rele-
vant parts of the probabilistic program. Moreover, in PB compilation of the
boolean formulas is performed using (RO)BDDs, while ProbLog can use a
wider range of decision diagrams, e.g. sentential decision diagrams (SDD),
deterministic, decomposable negation normal form (d-DNNF). These differ-
ences reflect the different aims of the two PPLs: ProbLog focuses on models
where “logical inference” needs to be efficient, and the resulting representa-
tion, the decision diagrams, need to be compact, while PB focuses on models
where “logical inference” is typically easy, however it must be applied repeat-
edly, according to the nature and the number of the observations. However,
in future work, PB could benefit from the use of more compact decision
diagrams.

The second step of PB is inspired by the uncollapsed Gibbs sampling
algorithm from [11], which we have adapted to PB. However, sampling in
the PB model, unlike PLP models, can be performed using collapsed Gibbs
sampling, an algorithm with faster convergence that the uncollapsed version,
as shown in Section 5.1.

In relation to Church [1] and many other related PPLs, PB is similar in
that it uses a Turing-complete declarative language, but the set of probabilis-
tic primitives available in PB is very restricted compared to Church. On the
other hand, inference in discrete models such as LDA is difficult in highly
expressive PPLs, whereas in PB inference is tractable on various discrete
models.

Both PB and the logic-based PPL Alchemy [6] focus on discrete models,
however they differ at a fundamental level due to the fact that the probabilis-
tic model of PB is directed, whereas that of Alchemy is undirected (Markov
networks). Consequently, the specification of probaiblistic programs is also

33

different: in Alchemy, programs are expressed as weighted formulas, whereas
in PB specifies models using abductive logic programs where the abducibles
represent draws from a categorical distribution with Dirichlet priors. Further-
more, by using abductive logic programming instead of a first-order knowl-
edge base, PB can easily encode recursive generative models, such as RIM.
It is much less obvious how to do so using Alchemy.

7. Conclusions and Future Work

In this paper, we introduced PB, a probabilistic logic programming lan-
guage for dicrete models with Dirichlet priors. This paper bridges the gap
between logical and probabilistic inference in the considered class of models,
and addresses issues on representation of abductive solutions and inference
on “syntactically” identical BDDs. The main contribution to representation
is the conditional AD compilation, while the main contribution to inference
is the collapsed Gibbs sampling algortihm that generalizes the one proposed
for LDA in [24].

We have shown, through the experiments in Section 5, that PB yields
reasonable inference results both on synthetic and real datasets.

In future work, we hope to explore more probabilistic models that fit the
PB paradigm, and to design, implement, and compare efficient algorithms
for generalized probabilistic inference in PB models.

On the other hand, we wish to relax the important restriction to discrete
models using Dirichlet processes, that allow discretization of any continuous
distribution specified as the base distribution of the process.

[1] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, J. B.
Tenenbaum, Church: a language for generative models, Uncertainty in
Artificial Intelligence 2008.
URL http://danroy.org/papers/church_

GooManRoyBonTen-UAI-2008.pdf

[2] B. Paige, F. Wood, A compilation target for probabilistic programming
languages, in: ICML, 2014.

[3] D. Lunn, D. Spiegelhalter, A. Thomas, N. Best, The bugs project: Evo-
lution, critique and future directions, Statistics in Medicine 28 (25)
(2009) 3049–3067. doi:10.1002/sim.3680.
URL http://dx.doi.org/10.1002/sim.3680

34

http://danroy.org/papers/church_GooManRoyBonTen-UAI-2008.pdf
http://danroy.org/papers/church_GooManRoyBonTen-UAI-2008.pdf
http://danroy.org/papers/church_GooManRoyBonTen-UAI-2008.pdf
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1002/sim.3680
http://dx.doi.org/10.1002/sim.3680

[4] Stan Development Team, Stan Modeling Language Users Guide and
Reference Manual, Version 2.5.0 (2014).
URL http://mc-stan.org/

[5] A. Pfeffer, Figaro: An object-oriented probabilistic programming lan-
guage.

[6] P. Domingos, S. Kok, H. Poon, M. Richardson, P. Singla, Unifying log-
ical and statistical ai, in: Proceedings of the 21st National Conference
on Artificial Intelligence - Volume 1, AAAI’06, AAAI Press, 2006, pp.
2–7.
URL http://dl.acm.org/citation.cfm?id=1597538.1597540

[7] B. Milch, B. Marthi, S. Russell, Blog: Relational modeling with un-
known objects, in: ICML 2004 Workshop on Statistical Relational
Learning and Its Connections, 2004, pp. 67–73.

[8] T. Sato, Y. Kameya, New advances in logic-based probabilistic modeling
by prism, in: L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton (Eds.),
Probabilistic Inductive Logic Programming, Vol. 4911 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2008, pp. 118–155.
doi:10.1007/978-3-540-78652-8_5.
URL http://dx.doi.org/10.1007/978-3-540-78652-8_5

[9] D. Fierens, G. V. den Broeck, J. Renkens, D. S. Shterionov, B. Gutmann,
I. Thon, G. Janssens, L. D. Raedt, Inference and learning in probabilistic
logic programs using weighted boolean formulas, CoRR abs/1304.6810.
URL http://arxiv.org/abs/1304.6810

[10] A. C. Kakas, R. A. Kowalski, F. Toni, Abductive logic programming
(1993).

[11] M. Ishihata, T. Sato, Bayesian inference for statistical abduction using
markov chain monte carlo, in: Proceedings of the 3rd Asian Conference
on Machine Learning, ACML 2011, Taoyuan, Taiwan, November 13-15,
2011, 2011, pp. 81–96.
URL http://www.jmlr.org/proceedings/papers/v20/ishihata11/

ishihata11.pdf

[12] D. M. Blei, A. Y. Ng, M. I. Jordan, J. Lafferty, Latent dirichlet alloca-
tion, Journal of Machine Learning Research 3 (2003) 2003.

35

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/
http://dl.acm.org/citation.cfm?id=1597538.1597540
http://dl.acm.org/citation.cfm?id=1597538.1597540
http://dl.acm.org/citation.cfm?id=1597538.1597540
http://dx.doi.org/10.1007/978-3-540-78652-8_5
http://dx.doi.org/10.1007/978-3-540-78652-8_5
http://dx.doi.org/10.1007/978-3-540-78652-8_5
http://dx.doi.org/10.1007/978-3-540-78652-8_5
http://arxiv.org/abs/1304.6810
http://arxiv.org/abs/1304.6810
http://arxiv.org/abs/1304.6810
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf

[13] J.-P. Doignon, A. Peke, M. Regenwetter, The repeated insertion model
for rankings: Missing link between two subset choice models, Psychome-
trika 69 (1) (2004) 33–54. doi:10.1007/BF02295838.
URL http://dx.doi.org/10.1007/BF02295838

[14] A. D. Gordon, T. A. Henzinger, A. V. Nori, S. K. Rajamani, Probabilis-
tic programming, in: International Conference on Software Engineering
(ICSE Future of Software Engineering), IEEE, 2014.
URL http://research.microsoft.com/apps/pubs/default.aspx?

id=208585

[15] W. L. Buntine, Operations for learning with graphical models, J. Artif.
Intell. Res. (JAIR) 2 (1994) 159–225. doi:10.1613/jair.62.
URL http://dx.doi.org/10.1613/jair.62

[16] L. D. Raedt, A. Kimmig, H. Toivonen, Problog: A probabilistic prolog
and its application in link discovery., in: M. M. Veloso (Ed.), IJCAI,
2007, pp. 2462–2467.
URL http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#

RaedtKT07

[17] A. Kimmig, A Probabilistic Prolog and its Applications (Een probabilis-
tische prolog en zijn toepassingen), Ph.D. thesis, Informatics Section,
Department of Computer Science, Faculty of Engineering Science, de
Raedt, Luc (supervisor) (Nov. 2010).
URL https://lirias.kuleuven.be/handle/123456789/280932

[18] C. Turliuc, N. Maimari, A. Russo, K. Broda, On minimality and in-
tegrity constraints in probabilistic abduction, in: Logic for Program-
ming, Artificial Intelligence, and Reasoning - 19th International Confer-
ence, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Pro-
ceedings, 2013, pp. 759–775. doi:10.1007/978-3-642-45221-5_51.
URL http://dx.doi.org/10.1007/978-3-642-45221-5_51

[19] K. L. Clark, Negation as failure, in: Logic and Data Bases, 1977, pp.
293–322.

[20] M. Fitting, A kripke-kleene semantics for logic programs, J. Log. Pro-
gram. 2 (4) (1985) 295–312.

36

http://dx.doi.org/10.1007/BF02295838
http://dx.doi.org/10.1007/BF02295838
http://dx.doi.org/10.1007/BF02295838
http://dx.doi.org/10.1007/BF02295838
http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://dx.doi.org/10.1613/jair.62
http://dx.doi.org/10.1613/jair.62
http://dx.doi.org/10.1613/jair.62
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07
https://lirias.kuleuven.be/handle/123456789/280932
https://lirias.kuleuven.be/handle/123456789/280932
https://lirias.kuleuven.be/handle/123456789/280932
http://dx.doi.org/10.1007/978-3-642-45221-5_51
http://dx.doi.org/10.1007/978-3-642-45221-5_51
http://dx.doi.org/10.1007/978-3-642-45221-5_51
http://dx.doi.org/10.1007/978-3-642-45221-5_51

[21] J. Ma, Abductive reasoning module for sicstus prolog (2012).
URL http://www-dse.doc.ic.ac.uk/cgi-bin/moin.cgi/abduction

[22] S. B. Akers, Binary decision diagrams, IEEE Trans. Comput. 27 (6)
(1978) 509–516. doi:10.1109/TC.1978.1675141.
URL http://dx.doi.org/10.1109/TC.1978.1675141

[23] R. Bryant, Graph-based algorithms for boolean function manipulation,
Computers, IEEE Transactions on C-35 (8) (1986) 677–691. doi:10.

1109/TC.1986.1676819.

[24] T. L. Griffiths, M. Steyvers, Finding scientific topics, Proceedings of the
National Academy of Sciences 101 (suppl 1) (2004) 5228–5235. arXiv:

http://www.pnas.org/content/101/suppl_1/5228.full.pdf, doi:

10.1073/pnas.0307752101.
URL http://www.pnas.org/content/101/suppl_1/5228.abstract

[25] E. Hörster, R. Lienhart, M. Slaney, Image retrieval on large-scale image
databases, in: Proceedings of the 6th ACM International Conference
on Image and Video Retrieval, CIVR ’07, ACM, New York, NY, USA,
2007, pp. 17–24. doi:10.1145/1282280.1282283.
URL http://doi.acm.org/10.1145/1282280.1282283

[26] D. Andrzejewski, X. Zhu, M. Craven, B. Recht, A framework for incor-
porating general domain knowledge into latent dirichlet allocation using
first-order logic, in: IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, 2011, pp. 1171–1177.
URL http://ijcai.org/papers11/Papers/IJCAI11-200.pdf

[27] K. Lang, Newsweeder: Learning to filter netnews, in: in Proceedings of
the 12th International Machine Learning Conference (ML95), 1995.

[28] Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei, Hierarchical dirichlet
processes, Journal of the American Statistical Association 101.

[29] T. Lu, C. Boutilier, Effective sampling and learning for mallows models
with pairwise-preference data, Journal of Machine Learning Research 15
(2014) 3783–3829.
URL http://jmlr.org/papers/v15/lu14a.html

37

http://www-dse.doc.ic.ac.uk/cgi-bin/moin.cgi/abduction
http://www-dse.doc.ic.ac.uk/cgi-bin/moin.cgi/abduction
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://www.pnas.org/content/101/suppl_1/5228.abstract
http://arxiv.org/abs/http://www.pnas.org/content/101/suppl_1/5228.full.pdf
http://arxiv.org/abs/http://www.pnas.org/content/101/suppl_1/5228.full.pdf
http://dx.doi.org/10.1073/pnas.0307752101
http://dx.doi.org/10.1073/pnas.0307752101
http://www.pnas.org/content/101/suppl_1/5228.abstract
http://doi.acm.org/10.1145/1282280.1282283
http://doi.acm.org/10.1145/1282280.1282283
http://dx.doi.org/10.1145/1282280.1282283
http://doi.acm.org/10.1145/1282280.1282283
http://ijcai.org/papers11/Papers/IJCAI11-200.pdf
http://ijcai.org/papers11/Papers/IJCAI11-200.pdf
http://ijcai.org/papers11/Papers/IJCAI11-200.pdf
http://ijcai.org/papers11/Papers/IJCAI11-200.pdf
http://jmlr.org/papers/v15/lu14a.html
http://jmlr.org/papers/v15/lu14a.html
http://jmlr.org/papers/v15/lu14a.html

[30] T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering - an empirical
survey, in: Data Mining, Fifth IEEE International Conference on, 2005,
pp. 4 pp.–. doi:10.1109/ICDM.2005.138.

38

http://dx.doi.org/10.1109/ICDM.2005.138

Appendix A. Execution of an abductive logic program

In this section we explain how to compute all abudctive solutions for
an abductive program and a query. We use a proof procedure similar to
ASystem [18, 21], however our treatment of abducibles is different. The
proof procedure is top-down and can be viewed as a tree where every node
represents a state.

A denial is a formula ∀Y⊥ ← Γ, where Γ is a set of literals and Y is a
set of logical variables. In the rest of the paper ⊥ is considered implicit.

An ASystem state S is a tuple (G,∆,N), where:

• G is a set of goals where each goal can be a literal or a denial. All
the variables except the ones universally quantified in the denials are
existentially quantified.

• ∆ is the abducible store, a set of abducibles.

• N is the denial store, a set of denials.

A selection strategy Ξ has a two-fold role: it selects a goal Gi from the
set G, and if the goal is a denial ∀Y ← Γ it further selects a literal from Γ.
A selection strategy is called safe if, in a denial goal, it never selects a nega-
tive literal if the arguments of the predicate include a universally quantified
variable.

Given an abductive framework (Π, AB), a query Q and a selection strat-
egy Ξ, an ASystem derivation tree is a tree such that:

• every node of the tree is an ASystem state.

• children nodes are generated by selecting a goal (and if the goal is a
denial, further selecting a literal in the denial) according to Ξ, and then
applying the proof procedure rules (defined later in the section) on the
selected goal.

• the initial state is S0 = (Q, ∅, ∅).

• a success state is one in which G = ∅. If the derivation flounders, i.e.
we cannot safely apply Ξ, then that state is a failure state. A state is
a leaf of the tree iff it is either a success or failure state.

39

We restrict our programs such that in a success state, the denial store
is empty. Let SSQ denote the set of success states for query Q. Then, the
result of an abductive query is the formula:

M(Q) =
∨

∆∈SSQ

(∧
ab∈∆

ab

)
It is not difficult to extend the result to non-empty denial stores, a case

in which M(Q) will not be in a disjunctive normal form (DNF), but rather
an arbitrary formula, as we do not take advantage of the particular DNF
encoding in the rest of the paper.

In defining an ASystem derivation tree, we mentioned the application of
proof procedure rules, which we proceed to define in the rest of the section.
Given an abductive framework 〈Π,AB〉, let Sk = (Gk,∆k,Nk) denote an
ASystem state, and let F be a goal selected by Ξ from Gk, such that G−k =
Gk \ {F}. By applying a suitable proof procedure rule, we obtain a child
state Sk+1 = (Gk+1,∆k+1,Nk+1). Some inference rules create more than one
child, and the children states will be separated by OR. In the description of
the rules, we mention only the updated goal and elements in the store, the
rest remain the same as in the parent state.

We use the following notation: Y denotes a set of variables, u denotes
a term, U , and Z denote vectors of terms. Equality between variables and
terms denotes unification, and is extended to vectors component-wise. Φ is
used to denote rule bodies, i.e. conjunctions of literals. The symbols a, i, l
and ka have the same meaning as in Section 2, p denotes a functor, L denotes
a literal. Var(U) denotes the set of variables in U , where U can be either a
predicate, a set of terms or a literal.

Based on the type of the selected goal (i.e. literal or denial) we distinguish
three inference rules for each type.

(1) If the selected goal is a literal F , then:
(D1) if F = p(u) and p is pb call, then:
Gk+1 = {u} ∪ G−k
else if F = p(U) is a non-abducible, let p(Zr) ← Φr, r = 1, . . . , R, be R

rules in Π, then:
Gk+1 = {U = Z1} ∪ Φ1 ∪ G−k
OR
Gk+1 = {U = Z2} ∪ Φ2 ∪ G−k
OR

40

. . .
Gk+1 = {U = ZR} ∪ ΦR ∪ G−k .

(A1) if F = p(l, i) is an abducible,
if F ∈ ∆k, then:
Gk+1 = G−i
else if @p(l2, i) ∈ ∆i, l2 6= l:
Gk+1 = {F} ∪ G−k
else FAIL
(N1) if F = ¬p(U) then:
Gk+1 = {← p(U)} ∪ G−k .
(2) In the case that the selected goal is a denial F , let F = ∀Y ← Γ, with

Γ 6= ∅, and let L be a literal selected by Ξ from Γ, such that Γ− = Γ \ {L}.
The rules for L are:

(D2) if L = p(u) and p is pb call, then:
Gk+1 = {∀Y ← {u} ∪ Γ−} ∪ G−k .
else if L = p(U) is a non-abducible, then:
Gk+1 = {∀Z+ ← Γ+ | p(Z)← Φ ∈ Π and Z+ = Y ∪ Var(p(Z)) ∪ Var(Φ)

and Γ+ = {U = Z} ∪ Φ ∪ Γ−} ∪ G−k .
(A2) F = p(l, i) is an abducible, then:
if F /∈ ∆k, let ka be the number of categories of the distribution inexed

by (a, i):
Gi+1 = {p(1, i)} ∪ G−i

OR
. . .
OR
Gi+1 = {p(l − 1, i)} ∪ G−i
OR
Gi+1 = {p(l + 1, i)} ∪ G−i
OR
. . .
OR
Gi+1 = {p(ka, i)} ∪ G−i

else FAIL
(N2) if L = ¬p(U) such that Var(L) ∩ Y = ∅, then:

Gk+1 = {p(U)} ∪ G−k
OR
Gk+1 = {← p(U), Y ← Γ−} ∪ G−k

41

Note that the differences with respect to the original ASystem rules con-
cern abducibles, i.e. (A1) and (A2), and additionally we allow calling terms
as abducibles by modifying (D1) and (D2). Furthermore, since we are
working with ground abducibles, we don’t need rules for (in)equalities or
constraints. Similarly to ProbLog, the abducibles are always memoized, i.e.
if we call the same abducible twice in a query, the second call will not modify
the state.

Appendix B. BDD sampling

To sample a BDD, as described in Algorithm 3, we first compute the back-
ward probability of the BDD, then we sample a path from root to the “true”
leaf. We use bdd .NNodes to denote the number of nodes in the BDD. Fur-
thermore, we assume the nodes of the BDD are sorted breadth-first from the
“true” leaf (node 1) to the root (node bdd .NNodes), and that the “false” leaf
is not represented in the BDD. Additionally, we use the following functions
for a BDD bdd :

• is leaf(bdd , node) returns “true” for node 1 and “false” for all other
nodes.

• label(bdd , node) returns the label of a non-leaf node, i.e. the level of
the node in the BDD (from 1 for the root node to Nbdd for the last
variable).

• children(bdd , node) returns the high (“true”) and the low (“false”)
children of a non-leaf node node.

• is leaf(bdd , node) returns “true” for node bdd .NNodes and “false” for
all other nodes.

• binomial(p, counts) returns the counts (success, failure) that result
from counts independent Bernoulli trials with probability of success p.

• label distrib(bdd , node, obs) returns a tuple (a, i, l) corresponding to
the draw represented by making node node “true” for observation obs
(decoding vvv to xxx).

• penultimate(bdd , obs , a, i) returns the penultimate category in the
conditional AD compilation of distribution indexed by a and i in ob-
servation obs .

42

• last(bdd , obs , a, i) returns the last category in the conditional AD com-
pilation of distribution indexed by a and i in observation obs . Note
that in general this is not an increment of the penultimate category,
since the PB program determines which categories are chosen in the
explanations of a particular observation.

Appendix C. Implementation

PB is implemented in YAP and Python (2.7), and is currently available as
a command-line script. YAP is used to parse input files and produce files for
probabilistic inference (e.g. solutions to each pb plate query, information
on the probability distributions). PyCUDD is used to compile ROBDDs and
computationally intensive parts of the sampling algorithm are implemented in
Cython. This prototype implementation and any additional files are released
under a GNU General Public License (GPL3).

For more information and documentation see:
http://raresct.github.io/peircebayes

To access the source code see:
http://www.github.com/raresct/peircebayes

To reproduce the experiments see:
http://www.github.com/raresct/peircebayes_experiments

43

http://raresct.github.io/peircebayes
http://www.github.com/raresct/peircebayes
http://www.github.com/raresct/peircebayes_experiments

Algorithm 3 BDD sampling (based on [11]).

function sample x(bdd , count , θθθobs)
beta ← backward(bdd , θθθobs)
sample bdd(beta, bdd , count , θθθobs)

end function
function backward(bdd , θθθobs)

beta ← Zeros(bdd .NNodes)
for node = 1, . . . , bdd .NNodes do

if is leaf(bdd , node) then
beta[node]← 1

else
p← θθθobs [label(bdd , node)]
(high, low)← children(bdd , node)
beta[node]← p× beta[high] + (1− p)× beta[low]

end if
end for
return beta

end function
function sample bdd(beta, bdd , count , θθθobs)

counts ← zeros(bdd .NNodes)
for node = bdd .NNodes , . . . , 2 do

if is root(bdd , node) then
counts [node]← count

end if
(high, low)← children(bdd , node)

p← θθθobs [label(bdd ,node)]×beta[high]
beta[node]

(high counts , low counts)← binomial(p, counts [node])
(a, i, l)← label distrib(bdd , node, obs)
~x∗ail ← ~x∗ail + high counts
if l = penultimate(bdd , obs , a, i) then

l2 ← last(bdd , obs , a, i)
~x∗ail2 ← ~x∗ail2 + low counts

end if
counts [high]← counts [high] + high counts
counts [low]← counts [low] + low counts

end for
end function

44

	Introduction
	The Probabilistic Model
	The Uncollapsed PB model
	The Collapsed PB model

	Syntax and Semantics
	Abductive Logic Programming and PB
	Knowledge compilation and multiple observations

	MCMC sampling
	Uncollapsed Gibbs sampling
	Collapsed Gibbs sampling

	Evaluation
	PB and collapsed Gibbs sampling (CGS) for LDA on synthetic data
	PB, CGS-LDA, VEM-LDA, PRiSM and Stan for LDA on synthetic data
	PB for seed LDA on 20 newsgroups dataset.
	PB for cluster LDA on arXiv abstracts
	PB for RIM on Sushi dataset

	Related Work
	Conclusions and Future Work
	Execution of an abductive logic program
	BDD sampling
	Implementation

