44 research outputs found

    Towards a Convenient Category of Topological Domains

    Get PDF
    We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a flexible toolkit for modelling computational effects as free algebras for algebraic theories. Our convenient category is obtained as an application of recent work on the remarkable closure conditions of the category of quotients of countably-based topological spaces. Its convenience is a consequence of a connection with realizability models

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties

    Semantics for first-order affine inductive data types via slice categories

    Full text link
    Affine type systems are substructural type systems where copying of information is restricted, but discarding of information is permissible at all types. Such type systems are well-suited for describing quantum programming languages, because copying of quantum information violates the laws of quantum mechanics. In this paper, we consider a first-order affine type system with inductive data types and present a novel categorical semantics for it. The most challenging aspect of this interpretation comes from the requirement to construct appropriate discarding maps for our data types which might be defined by mutual/nested recursion. We show how to achieve this for all types by taking models of a first-order linear type system whose atomic types are discardable and then presenting an additional affine interpretation of types within the slice category of the model with the tensor unit. We present some concrete categorical models for the language ranging from classical to quantum. Finally, we discuss potential ways of dualising and extending our methods and using them for interpreting coalgebraic and lazy data types

    Finite Presheaf categories as a nice setting for doing generic programming

    Get PDF
    The purpose of this paper is to describe how some theorems about constructions in categories can be seen as a way of doing generic programming. No prior knowledge of category theory is required to understand the paper. We explore the class of nite presheaf categories. Each of these categories can be seen as a type or universe of structures parameterized by a diagram (actually a nite category) C. Examples of these categories are: graphs, labeled graphs, nite automata and evolutive sets. Limits and colimits are very general ways of combining objects in categories in such a way that a new object is built and satis es a certain universal property. When con- centrating on nite presheaf categories and interpreting them as types or structures, limits and colimits can be interpreted as very general operations on types. Theorems on the construction of limits and colimits in arbitrary categories will provide a generic implementation of these operations. Also, nite presheaf categories are toposes. Because of this, each of these categories has an internal logic. We are going to show that some theorems about the truth of sentences of this logic can be interpreted as a way an implementing a generic theorem prover. The paper discusses non trivial theorems and de nitions from category and topos theory but the emphasis is put on their computational content and in what way they provide rich and abstract data structures and algorithms.Eje: Workshop sobre Aspectos Teoricos de la Inteligencia ArtificialRed de Universidades con Carreras en Informática (RedUNCI

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Approximation of Nested Fixpoints

    Get PDF
    The question addressed in this paper is how to correctly approximate infinite data given by systems of simultaneous corecursive definitions. We devise a categorical framework for reasoning about regular datatypes, that is, datatypes closed under products, coproducts and fixpoints. We argue that the right methodology is on one hand coalgebraic (to deal with possible nontermination and infinite data) and on the other hand 2-categorical (to deal with parameters in a disciplined manner). We prove a coalgebraic version of Bekic lemma that allows us to reduce simultaneous fixpoints to a single fix point. Thus a possibly infinite object of interest is regarded as a final coalgebra of a many-sorted polynomial functor and can be seen as a limit of finite approximants. As an application, we prove correctness of a generic function that calculates the approximants on a large class of data types

    Relative full completeness for bicategorical cartesian closed structure

    Get PDF
    corecore