33,387 research outputs found

    {Development of a mobile manipulator robot kit for educational purposes

    Get PDF
    This thesis focuses on designing, building, and developing a prototype of a mobile robot base for a manipulator mobile robot using the Robot Operating System (ROS) 2 as a part of a larger project conducted by the mechatronics department at the University of Agder. This thesis has four main goals: 1) Design an affordable mobile robot base that fits the uArm manipulator. 2) Develop the required ROS2 packages for the selected hardware components in order to perform mobile robot localization, mapping, and autonomous navigation using the SLAM toolbox and Nav2 framework. 3) Construct a prototype of the designed mobile robot base. 4) Test the developed ROS2 packages by performing autonomous navigation in a dynamic environment. The test results showed that the Uiabot prototype succeeded in building a 2D representation of the environment, navigating successfully in this dynamic environment, and avoiding static and dynamic objects

    Planning Approaches to Constraint-Aware Navigation in Dynamic Environments

    Get PDF
    Path planning is a fundamental problem in many areas, ranging from robotics and artificial intelligence to computer graphics and animation. Although there is extensive literature for computing optimal, collision-free paths, there is relatively little work that explores the satisfaction of spatial constraints between objects and agents at the global navigation layer. This paper presents a planning framework that satisfies multiple spatial constraints imposed on the path. The type of constraints specified can include staying behind a building, walking along walls, or avoiding the line of sight of patrolling agents. We introduce two hybrid environment representations that balance computational efficiency and search space density to provide a minimal, yet sufficient, discretization of the search graph for constraint-aware navigation. An extended anytime dynamic planner is used to compute constraint-aware paths, while efficiently repairing solutions to account for varying dynamic constraints or an updating world model. We demonstrate the benefits of our method on challenging navigation problems in complex environments for dynamic agents using combinations of hard and soft, attracting and repelling constraints, defined by both static obstacles and moving obstacles

    Occupancy Map Construction for Indoor Robot Navigation

    Get PDF
    Robot mobile navigation is a hard task that requires, essentially, avoiding static and dynamic objects. This chapter presents a strategy for constructing an occupancy map by proposing a probabilistic model of an ultrasonic sensor, during robot indoor navigation. A local map is initially constructed using the ultrasonic sensor mounted in the front of the robot. This map provides the position of the nearest obstacles in the scene useful for achieving the reactive navigation. The encoders allow computing the robot location in the initial local map. A first path for robot navigation based on the initial local map is estimated using the potential field strategy. As soon as the robot starts its trajectory in real indoor environments with obstacles, the sensor continuously detects and updates the occupancy map by the logsig strategy. A Gaussian function is used for modelling the ultrasonic sensor with the aim of reaching higher precision of the distance measured for each obstacle in the scene. Experiments on detecting, mapping and avoiding obstacles are performed using the mobile robotic platform DaNI 2.0 and the VxWorks system. The resulted occupancy grid is analysed and discussed at the end of this document

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments

    An enhanced classifier system for autonomous robot navigation in dynamic environments

    Get PDF
    In many cases, a real robot application requires the navigation in dynamic environments. The navigation problem involves two main tasks: to avoid obstacles and to reach a goal. Generally, this problem could be faced considering reactions and sequences of actions. For solving the navigation problem a complete controller, including actions and reactions, is needed. Machine learning techniques has been applied to learn these controllers. Classifier Systems (CS) have proven their ability of continuos learning in these domains. However, CS have some problems in reactive systems. In this paper, a modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. The learning process has been divided in two main tasks: first, the discrimination between a predefined set of rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalised solution. The results show the ability of the system to continuous learning and adaptation to new situations.Publicad

    Applying classifier systems to learn the reactions in mobile robots

    Get PDF
    The navigation problem involves how to reach a goal avoiding obstacles in dynamic environments. This problem can be faced considering reactions and sequences of actions. Classifier systems (CSs) have proven their ability of continuous learning, however, they have some problems in reactive systems. A modified CS, namely a reactive classifier system (RCS), is proposed to overcome those problems. Two special mechanisms are included in the RCS: the non-existence of internal cycles inside the CS (no internal cycles) and the fusion of environmental message with the messages posted to the message list in the previous instant (generation list through fusion). These mechanisms allow the learning of both reactions and sequences of actions. This learning process involves two main tasks: first, discriminate between rules and, second, the discovery of new rules to obtain a successful operation in dynamic environments. DiVerent experiments have been carried out using a mini-robot Khepera to find a generalized solution. The results show the ability of the system for continuous learning and adaptation to new situations.Publicad

    Neural Network Local Navigation of Mobile Robots in a Moving Obstacles Environment

    Get PDF
    IF AC Intelligent Components and Instruments for Control Applications, Budapest, Hungary, 1994This paper presents a local navigation method based on generalized predictive control. A modified cost function to avoid moving and static obstacles is presented. An Extended Kaiman Filter is proposed to predict the motions of the obstacles. A Neural Network implementation of this method is analysed. Simulation results are shown.Ministerio de Ciencia y TecnologĂ­a TAP93-0408Ministerio de Ciencia y TecnologĂ­a TAP93-058
    • …
    corecore