679 research outputs found

    Avoiding Abelian powers in binary words with bounded Abelian complexity

    Full text link
    The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden's theorem, they proved that if a word avoids Abelian kk-powers for some integer kk, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian kk-powers occur in a word having bounded Abelian complexity? In particular, does every uniformly recurrent word having bounded Abelian complexity begin in an Abelian kk-power? While this is true for various classes of uniformly recurrent words, including for example the class of all Sturmian words, in this paper we show the existence of uniformly recurrent binary words, having bounded Abelian complexity, which admit an infinite number of suffixes which do not begin in an Abelian square. We also show that the shift orbit closure of any infinite binary overlap-free word contains a word which avoids Abelian cubes in the beginning. We also consider the effect of morphisms on Abelian complexity and show that the morphic image of a word having bounded Abelian complexity has bounded Abelian complexity. Finally, we give an open problem on avoidability of Abelian squares in infinite binary words and show that it is equivalent to a well-known open problem of Pirillo-Varricchio and Halbeisen-Hungerb\"uhler.Comment: 16 pages, submitte

    On a generalization of Abelian equivalence and complexity of infinite words

    Full text link
    In this paper we introduce and study a family of complexity functions of infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+ \cup {+\infty} and AA be a finite non-empty set. Two finite words uu and vv in A∗A^* are said to be kk-Abelian equivalent if for all x∈A∗x\in A^* of length less than or equal to k,k, the number of occurrences of xx in uu is equal to the number of occurrences of xx in v.v. This defines a family of equivalence relations ∼k\thicksim_k on A∗,A^*, bridging the gap between the usual notion of Abelian equivalence (when k=1k=1) and equality (when k=+∞).k=+\infty). We show that the number of kk-Abelian equivalence classes of words of length nn grows polynomially, although the degree is exponential in k.k. Given an infinite word \omega \in A^\nats, we consider the associated complexity function \mathcal {P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of kk-Abelian equivalence classes of factors of ω\omega of length n.n. We show that the complexity function P(k)\mathcal {P}^{(k)} is intimately linked with periodicity. More precisely we define an auxiliary function q^k: \nats \rightarrow \nats and show that if Pω(k)(n)<qk(n)\mathcal {P}^{(k)}_{\omega}(n)<q^k(n) for some k \in \ints ^+ \cup {+\infty} and n≥0,n\geq 0, the ω\omega is ultimately periodic. Moreover if ω\omega is aperiodic, then Pω(k)(n)=qk(n)\mathcal {P}^{(k)}_{\omega}(n)=q^k(n) if and only if ω\omega is Sturmian. We also study kk-Abelian complexity in connection with repetitions in words. Using Szemer\'edi's theorem, we show that if ω\omega has bounded kk-Abelian complexity, then for every D\subset \nats with positive upper density and for every positive integer N,N, there exists a kk-Abelian NN power occurring in ω\omega at some position $j\in D.

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving

    A Note on Efficient Computation of All Abelian Periods in a String

    Get PDF
    We derive a simple efficient algorithm for Abelian periods knowing all Abelian squares in a string. An efficient algorithm for the latter problem was given by Cummings and Smyth in 1997. By the way we show an alternative algorithm for Abelian squares. We also obtain a linear time algorithm finding all `long' Abelian periods. The aim of the paper is a (new) reduction of the problem of all Abelian periods to that of (already solved) all Abelian squares which provides new insight into both connected problems

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    All Growth Rates of Abelian Exponents Are Attained by Infinite Binary Words

    Get PDF
    We consider repetitions in infinite words by making a novel inquiry to the maximum eventual growth rate of the exponents of abelian powers occurring in an infinite word. Given an increasing, unbounded function f: ? ? ?, we construct an infinite binary word whose abelian exponents have limit superior growth rate f. As a consequence, we obtain that every nonnegative real number is the critical abelian exponent of some infinite binary word
    • …
    corecore