285 research outputs found

    A Hierarchical Core Reference Ontology for New Technology Insertion Design in Long Life Cycle, Complex Mission Critical Systems

    Get PDF
    Organizations, including government, commercial and others, face numerous challenges in maintaining and upgrading long life-cycle, complex, mission critical systems. Maintaining and upgrading these systems requires the insertion and integration of new technology to avoid obsolescence of hardware software, and human skills, to improve performance, to maintain and improve security, and to extend useful life. This is particularly true of information technology (IT) intensive systems. The lack of a coherent body of knowledge to organize new technology insertion theory and practice is a significant contributor to this difficulty. This research organized the existing design, technology road mapping, obsolescence, and sustainability literature into an ontology of theory and application as the foundation for a technology design and technology insertion design hierarchical core reference ontology and laid the foundation for body of knowledge that better integrates the new technology insertion problem into the technology design architecture

    An Ontology-based model for providing Semantic Maintenance.

    No full text
    International audienceMaintenance is becoming more and more crucial in Asset Lifecycle Management information models. Issues such as collecting, handling and using the asset data produced during its lifecycle in a lean and efficient manner are on top of today's research. Customer satisfaction, compliance with environmental friendly legislation, product quality, high performance and reliability are only a few of the benefits improved maintenance methods and tools may provide to enterprises. In this work we combine the benefits of two previous developed models and we develop a model for Semantic Maintenance. The first model we are based on is the PROMISE semantic object model which was made for supporting Closed-Loop Product Lifecycle Management. The second model is the semantic model of e-maintenance developed in PROTEUS project. The new model described in this paper is named “SMAC-Model”. Its aim is to provide advanced maintenance services as well as feedback for the Beginning of Life and input for End of Life. The model is generic and may be used in various Asset Lifecycle Management cases. It is developed to facilitate complex physical assets and to work in industrial environment

    Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission

    Get PDF
    Current concepts of operations for human exploration of Mars center on the staged deployment of spacecraft, logistics, and crew. Though most studies focus on the needs for human occupation of the spacecraft and habitats, these resources will spend most of their lifetime unoccupied. As such, it is important to identify the operational state of the unoccupied spacecraft or habitat, as well as to design the systems to enable the appropriate level of autonomy. Key goals for this study include providing a realistic assessment of what "dormancy" entails for human spacecraft, exploring gaps in state-of-the-art for autonomy in human spacecraft design, providing recommendations for investments in autonomous systems technology development, and developing architectural requirements for spacecraft that must be autonomous during dormant operations. The mission that was chosen is based on a crewed mission to Mars. In particular, this study focuses on the time that the spacecraft that carried humans to Mars spends dormant in Martian orbit while the crew carries out a surface mission. Communications constraints are assumed to be severe, with limited bandwidth and limited ability to send commands and receive telemetry. The assumptions made as part of this mission have close parallels with mission scenarios envisioned for dormant cis-lunar habitats that are stepping-stones to Mars missions. As such, the data in this report is expected to be broadly applicable to all dormant deep space human spacecraft

    Modelling decision support systems using conceptual constraints: linking process systems engineering and decision making models

    Get PDF
    This paper presents the use of a Conceptual Constraint (CC) Domain to systematize the construction of Decision Making Models (DMMs). The modelling systematics include the integration between the CC Domain and production systems as well as an identification procedure which contains some steps aimed at constraint identification using the CC Domain. The CC Domain consists of different modelling elements such as Conceptual Constraints (generic constraint types), Conceptual Components (pieces of a constraint), and Conceptual Component Elements (pieces of a conceptual component that may be connected to production systems). In this instance, the CC Domain is integrated with the Process Systems Engineering (PSE) Domain as a production system domain. The PSE Domain contains information from the multi-level functional hierarchical in an enterprise and it will be used to cover a wide range of scenarios related to hierarchical integration of DMMs. In addition, an integration step between the CC and PSE Domains is illustrated. The focus of the work is to show how these models should be developed in order to be properly integrated, and how they are used by different functionalities with an identification procedure.Postprint (author's final draft

    Timing Predictability in Future Multi-Core Avionics Systems

    Full text link

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 372)

    Get PDF
    This bibliography lists 208 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    -ilities Tradespace and Affordability Project – Phase 3

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering and associated management practices – “SE and Management Transformation (SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise- oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Ontologies for Industry 4.0

    Get PDF
    The current fourth industrial revolution, or ‘Industry 4.0’ (I4.0), is driven by digital data, connectivity, and cyber systems, and it has the potential to create impressive/new business opportunities. With the arrival of I4.0, the scenario of various intelligent systems interacting reliably and securely with each other becomes a reality which technical systems need to address. One major aspect of I4.0 is to adopt a coherent approach for the semantic communication in between multiple intelligent systems, which include human and artificial (software or hardware) agents. For this purpose, ontologies can provide the solution by formalizing the smart manufacturing knowledge in an interoperable way. Hence, this paper presents the few existing ontologies for I4.0, along with the current state of the standardization effort in the factory 4.0 domain and examples of real-world scenarios for I4.0.Peer ReviewedPostprint (published version
    • 

    corecore