17,618 research outputs found

    Simple Dynamics for Plurality Consensus

    Get PDF
    We study a \emph{Plurality-Consensus} process in which each of nn anonymous agents of a communication network initially supports an opinion (a color chosen from a finite set [k][k]). Then, in every (synchronous) round, each agent can revise his color according to the opinions currently held by a random sample of his neighbors. It is assumed that the initial color configuration exhibits a sufficiently large \emph{bias} ss towards a fixed plurality color, that is, the number of nodes supporting the plurality color exceeds the number of nodes supporting any other color by ss additional nodes. The goal is having the process to converge to the \emph{stable} configuration in which all nodes support the initial plurality. We consider a basic model in which the network is a clique and the update rule (called here the \emph{3-majority dynamics}) of the process is the following: each agent looks at the colors of three random neighbors and then applies the majority rule (breaking ties uniformly). We prove that the process converges in time O(min{k,(n/logn)1/3}logn)\mathcal{O}( \min\{ k, (n/\log n)^{1/3} \} \, \log n ) with high probability, provided that scmin{2k,(n/logn)1/3}nlogns \geqslant c \sqrt{ \min\{ 2k, (n/\log n)^{1/3} \}\, n \log n}. We then prove that our upper bound above is tight as long as k(n/logn)1/4k \leqslant (n/\log n)^{1/4}. This fact implies an exponential time-gap between the plurality-consensus process and the \emph{median} process studied by Doerr et al. in [ACM SPAA'11]. A natural question is whether looking at more (than three) random neighbors can significantly speed up the process. We provide a negative answer to this question: In particular, we show that samples of polylogarithmic size can speed up the process by a polylogarithmic factor only.Comment: Preprint of journal versio

    The Pareto Frontier for Random Mechanisms

    Full text link
    We study the trade-offs between strategyproofness and other desiderata, such as efficiency or fairness, that often arise in the design of random ordinal mechanisms. We use approximate strategyproofness to define manipulability, a measure to quantify the incentive properties of non-strategyproof mechanisms, and we introduce the deficit, a measure to quantify the performance of mechanisms with respect to another desideratum. When this desideratum is incompatible with strategyproofness, mechanisms that trade off manipulability and deficit optimally form the Pareto frontier. Our main contribution is a structural characterization of this Pareto frontier, and we present algorithms that exploit this structure to compute it. To illustrate its shape, we apply our results for two different desiderata, namely Plurality and Veto scoring, in settings with 3 alternatives and up to 18 agents.Comment: Working Pape

    Computing Majority with Triple Queries

    Full text link
    Consider a bin containing nn balls colored with two colors. In a kk-query, kk balls are selected by a questioner and the oracle's reply is related (depending on the computation model being considered) to the distribution of colors of the balls in this kk-tuple; however, the oracle never reveals the colors of the individual balls. Following a number of queries the questioner is said to determine the majority color if it can output a ball of the majority color if it exists, and can prove that there is no majority if it does not exist. We investigate two computation models (depending on the type of replies being allowed). We give algorithms to compute the minimum number of 3-queries which are needed so that the questioner can determine the majority color and provide tight and almost tight upper and lower bounds on the number of queries needed in each case.Comment: 22 pages, 1 figure, conference version to appear in proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011

    Fast plurality consensus in regular expanders

    Get PDF
    Pull voting is a classic method to reach consensus among nn vertices with differing opinions in a distributed network: each vertex at each step takes on the opinion of a random neighbour. This method, however, suffers from two drawbacks. Even if there are only two opposing opinions, the time taken for a single opinion to emerge can be slow and the final opinion is not necessarily the initially held majority. We refer to a protocol where 2 neighbours are contacted at each step as a 2-sample voting protocol. In the two-sample protocol a vertex updates its opinion only if both sampled opinions are the same. Not much was known about the performance of two-sample voting on general expanders in the case of three or more opinions. In this paper we show that the following performance can be achieved on a dd-regular expander using two-sample voting. We suppose there are k3k \ge 3 opinions, and that the initial size of the largest and second largest opinions is A1,A2A_1, A_2 respectively. We prove that, if A1A2Cnmax{(logn)/A1,λ}A_1 - A_2 \ge C n \max\{\sqrt{(\log n)/A_1}, \lambda\}, where λ\lambda is the absolute second eigenvalue of matrix P=Adj(G)/dP=Adj(G)/d and CC is a suitable constant, then the largest opinion wins in O((nlogn)/A1)O((n \log n)/A_1) steps with high probability. For almost all dd-regular graphs, we have λ=c/d\lambda=c/\sqrt{d} for some constant c>0c>0. This means that as dd increases we can separate an opinion whose majority is o(n)o(n), whereas Θ(n)\Theta(n) majority is required for dd constant. This work generalizes the results of Becchetti et. al (SPAA 2014) for the complete graph KnK_n
    corecore