17 research outputs found

    Performance Analysis of AF Relaying With Selection Combining in Nakagami-m Fading

    Get PDF
    This paper investigates the performance analysis of a selection combining scheme, which utilizes a variable gain amplify and forward relay over a Nakagami-m fading channel. A selection combiner at a destination node chooses the better link between a relay channel and a direct channel. We derived exact closed-form expressions for moments of signal to noise ratio (SNR), ergodic capacity, and average symbol error probability. Simulation examples confirm that our exact formulas offer a more accurate analysis tool for selection combining than other prevailing approximations without extra complexity. The derived expressions serve as a useful tool for system design due to their validity for any SNR and arbitrary system parameters

    Impact of Primary Network on Secondary Network With Generalized Selection Combining

    Get PDF

    Novel Physical Layer Authentication Techniques for Secure Wireless Communications

    Get PDF
    Due to the open nature of radio propagation, information security in wireless communications has been facing more challenges compared to its counterpart in wired networks. Authentication, defined as an important aspect of information security, is the process of verifying the identity of transmitters to prevent against spoofing attacks. Traditionally, secure wireless communications is achieved by relying solely upon higher layer cryptographic mechanisms. However, cryptographic approaches based on complex mathematical calculations are inefficient and vulnerable to various types of attacks. Recently, researchers have shown that the unique properties of wireless channels can be exploited for authentication enhancement by providing additional security protection against spoofing attacks. Motivated by the vulnerability of existing higher-layer security techniques and the security advantages provided by exploring the physical link properties, five novel physical layer authentication techniques to enhance the security performance of wireless systems are proposed. The first technique exploits the inherent properties of CIR to achieve robust channel-based authentication. The second and third techniques utilize a long-range channel predictor and additional multipath delay characteristics, respectively, to enhance the CIR-based authentication. The fourth technique exploits the advantages of AF cooperative relaying to improve traditional channel-based authentication. The last technique employs an embedded confidential signaling link to secure the legitimate transmissions in OFDM systems

    Resource Allocation for Broadband Wireless Access Networks with Imperfect CSI

    Get PDF
    The high deployment and maintenance costs of last mile wireline networks (i.e., DSL and cable networks) have urged service providers to search for new cost-effective solutions to provide broadband connectivity. Broadband wireless access (BWA) networks, which offer a wide coverage area and high transmission rates in addition to their fast and low-cost deployment, have emerged as an alternative to last mile wireline networks. Therefore, BWA networks are expected to be deployed in areas with different terrain profiles (e.g., urban, suburban, rural) where wireless communication faces different channel impairments. This fact necessitates the adoption of various transmission technologies that combat the channel impairments of each profile. Implementation scenarios of BWA networks considered in this thesis are multicarrier-based direct transmission and single carrier-based cooperative transmission scenarios. The performance of these transmission technologies highly depends on how resources are allocated. In this thesis, we focus on the development of practical resource allocation schemes for the mentioned BWA networks implementation scenarios. In order to develop practical schemes, the imperfection of channel state information (CSI) and computational power limitations are among considered practical implementation issues. The design of efficient resource allocation schemes at the MAC layer heavily relies on the CSI reported from the PHY layer as a measure of the wireless channel condition. The channel estimation error and feedback delay renders the reported CSI erroneous. The inaccuracy in CSI propagates to higher layers, resulting in performance degradation. Although this effect is intuitive, a quantitative measure of this degradation is necessary for the design of practical resource allocation schemes. An approach to the evaluation of the ergodic mutual information that reflects this degradation is developed for single carrier, multicarrier, direct, and cooperative scenarios with inaccurate CSI. Given the CSI estimates and estimation error statistics, the presented evaluation of ergodic mutual information can be used in resource allocation and in assessing the severity of estimation error on performance degradation. A point-to-multipoint (PMP) network that employs orthogonal frequency division multiple access (OFDMA) is considered as one of the most common implementation scenarios of BWA networks. Replacing wireline networks requires not only providing the last mile connectivity to subscribers but also supporting their diverse services with stringent quality of service (QoS) requirements. Therefore, the resource allocation problem (i.e., subcarriers, rate and power allocation) is modeled as a network utility maximization (NUM) one that captures the characteristics of this implementation scenario. A dual decomposition-based resource allocation scheme that takes into consideration the diversity of service requirements and inaccuracy of the CSI estimation is developed. Numerical evaluations and simulations are conducted to validate our theoretical claims that the scheme maximizes resource utilization, coordinates with the call admission controller to guarantee QoS, and accounts for CSI inaccuracy. Cooperation has recently received great attention from the research community and industry because of its low cost and fast deployment in addition to the performance improvement it brings to BWA networks. In cooperative scenarios, subscribers cooperate to relay each other's signals. For this implementation scenario of BWA networks, a robust and constrained Kalman filter-based power allocation scheme is proposed to minimize power consumption and guarantee bit error probability (BEP) requirements. The proposed scheme is robust to CSI inaccuracy, responsive to changes in BEP requirements, and optimal in allocating resources. In summary, research results presented in this thesis contribute to the development of practical resource allocation schemes for BWA networks

    On performance analysis of cognitive radios

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Cooperative spectrum sensing: performance analysis and algorithms

    Get PDF
    The employment of cognitive (intelligent) radios presents an opportunity to efficiently use the scarce spectrum with the condition that it causes a minimal disturbance to the primary user. So the cognitive or secondary users use spectrum sensing to detect the presence of primary user. In this thesis, different aspects related to spectrum sensing and cognitive radio performance are theoretically studied for the discussion and in most cases, closedform expressions are derived. Simulations results are also provided to verify the derivations. Firstly, robust spectrum sensing techniques are proposed considering some realistic conditions, such as carrier frequency offset (CFO) and phase noise (PN). These techniques are called the block-coherent detector (N2 -BLCD), the secondorder matched filter-I (SOMF-I) and the second-order matched filter-II (SOMF-II). The effect of CFO on N2 -BLCD and SOMF-I is evaluated theoretically and by simulation for SOMF-II. However, the effect of PN is only evaluated by simulation for all proposed techniques. Secondly, the detection performance of an energy detector (ED) is analytically investigated over a Nakagami-m frequency-selective (NFS) channel. Thirdly, the energy efficiency aspect of cooperative spectrum sensing is addressed, whereby the energy expenditure is reduced when secondary users report their test statistics to the fusion center (FC). To alleviate the energy consumption overhead, a censored selection combining based power censoring (CSCPC) is proposed. The accomplishment of energy saving is conducted by not sending the test statistic that does not contain robust information or it requires a lot of transmit power. The detection performance of the CSCPC is analytically derived using stochastic geometry tools and verified by simulation. Simulation results show that that the CSCPC technique can reduce the energy consumption compared with the conventional techniques while a detection performance distortion remains negligible. Finally, an analytical evaluation for the cognitive radio performance is presented while taking into consideration realistic issues, such as noise uncertainty (NU) and NFS channel. In the evaluation, sensing-throughput tradeoff is used as an examination metric. The results illustrate the NU badly affects the performance, but the performance may improve when the number of multipath increases

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum

    Advanced receivers for distributed cooperation in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulato
    corecore