6,926 research outputs found

    Towards Avatars with Artificial Minds: Role of Semantic Memory

    Get PDF
    he first step towards creating avatars with human-like artificial minds is to give them human-like memory structures with an access to general knowledge about the world. This type of knowledge is stored in semantic memory. Although many approaches to modeling of semantic memories have been proposed they are not very useful in real life applications because they lack knowledge comparable to the common sense that humans have, and they cannot be implemented in a computationally efficient way. The most drastic simplification of semantic memory leading to the simplest knowledge representation that is sufficient for many applications is based on the Concept Description Vectors (CDVs) that store, for each concept, an information whether a given property is applicable to this concept or not. Unfortunately even such simple information about real objects or concepts is not available. Experiments with automatic creation of concept description vectors from various sources, including ontologies, dictionaries, encyclopedias and unstructured text sources are described. Haptek-based talking head that has an access to this memory has been created as an example of a humanized interface (HIT) that can interact with web pages and exchange information in a natural way. A few examples of applications of an avatar with semantic memory are given, including the twenty questions game and automatic creation of word puzzles

    3D Face Synthesis with KINECT

    Get PDF
    This work describes the process of face synthesis by image morphing from less expensive 3D sensors such as KINECT that are prone to sensor noise. Its main aim is to create a useful face database for future face recognition studies.Peer reviewe

    CGAMES'2009

    Get PDF

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Assistive translation technology for deaf people: translating into and animating Irish sign language

    Get PDF
    Machine Translation (MT) for sign languages (SLs) can facilitate communication between Deaf and hearing people by translating information into the native and preferred language of the individuals. In this paper, we discuss automatic translation from English to Irish SL (ISL) in the domain of airport information. We describe our data collection processes and the architecture of the MaTrEx system used for our translation work. This is followed by an outline of the additional animation phase that transforms the translated output into animated ISL. Through a set of experiments, evaluated both automatically and manually, we show that MT has the potential to assist Deaf people by providing information in their first language

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    Virtual Assisted Self Interviewing (VASI): An Expansion of Survey Data Collection Methods to the Virtual Worlds by Means of VDCI

    Get PDF
    Changes in communication technology have allowed for the expansion of data collection modes in survey research. The proliferation of the computer has allowed the creation of web and computer assisted auto-interview data collection modes. Virtual worlds are a new application of computer technology that once again expands the data collection modes by VASI (Virtual Assisted Self Interviewing). The Virtual Data Collection Interface (VDCI) developed at Indiana University in collaboration with the German Socio-Economic Panel Study (SOEP) allows survey researchers access to the population of virtual worlds in fully immersive Heads-up Display (HUD)-based survey instruments. This expansion needs careful consideration for its applicability to the researcher's question but offers a high level of data integrity and expanded survey availability and automation. Current open questions of the VASI method are an optimal sampling frame and sampling procedures within e. g. a virtual world like Second Life (SL). Further multi-modal studies are proposed to aid in evaluating the VDCI and placing it in context of other data collection modes.Interviewing mode, PAPI, CAPI, CASI, VASI, VDCI, second life
    corecore