13 research outputs found

    A Centralized Framework for Smart Access Point Selection based on the Fittingness Factor

    Get PDF
    Abstract: This paper focuses on addressing the Access Point (AP) selection problem by relying on a centralized controller that provides a global view of the network. This approach follows the Software-Defined Networking (SDN) concept, which has long been considered in the literature as an innovative method to control management functionalities for wired networks and that is also now becoming a hot topic in the context of Wi-Fi networks. The proposed AP selection approach is based on a novel algorithm which relies on the Fittingness Factor (FF) concept, to maximize a function that reflects the suitability of the available spectrum resources to the application requirements. Specifically, this paper describes the development of a framework that implements the FF-based algorithm for smart AP selection in a centralized controller. The simulated performance comparison of this algorithm against a strategy that maximizes the achievable data rate considered in many papers in the literature, illustrates the important achievements that have been obtained in terms of saved bandwidth and users' satisfaction

    MODEM CORDIC 16qAM en FPGA para satélites cognitivos

    Get PDF
    En este artículo se presentan los algoritmos de implementación para el modulador y demodulador en cuadratura 16 qAM como funciones SDR sobre Dispositivos Lógicos Programables, particularmente para plataformas FPGA. Se presenta el análisis del modelo, diseño e implementación del mismo, así como los resultados obtenidos pensando en la implantación del dispositivo como un componente de un transpondedor satelital cognitivo. El proceso de validación de la implementación se efectuó a través de las herramientas de diseño, simulación, síntesis y descarga de Xilinx sobre la FPGA Spartan 3E.This paper presents the implementation algorithms for quadrature modulator and demodulator 16 qAM as SDR functions on programmable logic devices, particularly for FPGA platforms. It presents all the model analysis, design and implementation of it, and considering the results of implantation of the device as a component of a cognitive satellite transponder. The validation process of the implementation was done through the design tools, simulation, synthesis, and downloads on Xilinx Spartan 3E FPGA

    A New Method of User Association in Wireless Mesh Networks

    Get PDF
    The IEEE 802.11 based wireless mesh networks (WMNs) are becoming the promising technology to provide last-mile broadband Internet access to the users. In order to access the Internet through the pre-deployed WMN, the user has to associate with one of the access points (APs) present in the network. In WMN, it is very common that the user device can have multiple APs in its vicinity. Since the user performance majorly depends on the associated AP, how to select the best AP is always remaining as a challenging research problem in WMN. The traditional method of AP selection is based on received signal strength (RSS) and it is proven inefficient in the literature as the method does not consider AP load, channel conditions, etc. This paper proposes a new method of user association in WMN such that the user selects the AP based on achievable end-to-end throughput measured in the presence of other interfering APs. The proposed association metric is independent of routing protocol and routing metric used in WMN. The simulation results show that our method outperforms the RSS based AP selection method in WMN

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    Specification of Cooperative Access Points Functionalities version 1

    Get PDF
    The What to do With the Wi-Fi Wild West H2020 project (Wi-5) combines research and innovation to propose an architecture based on an integrated and coordinated set of smart Wi-Fi networking solutions. The resulting system will be able to efficiently reduce interference between neighbouring Access Points (APs) and provide optimised connectivity for new and emerging services. The project approach is expected to develop and incorporate a variety of different solutions, which will be made available through academic publications, in addition to other dissemination channels. The present document includes the specification of the first version of the Cooperative AP Functionalities, which are being defined within Work Package (WP) 4 of the Wi-5 project. In this deliverable after the Executive Summary and the literature review, the first version of the Cooperative Access Point Solutions are illustrated. In particular, a section with a general cooperative framework that jointly includes functionalities for an optimized AP channel assignment, Radio Resource Management (RRM) and smart AP allocation is presented. The optimized APs channel assignment enables an important improvement of the network performance in terms of SINR. Furthermore, the results analysed in this deliverable validate the flexibility and practicality of the proposed algorithm in different scenarios. The smart AP allocation solution introduces the innovative Fittingness Factor (FF) concept that efficiently matches the suitability of the available spectrum resource to the application requirements. Moreover, the basis required for a seamless mobility functionality in the framework is also included in the section. Next, a first assessment of the algorithms proposed in this deliverable is presented through the analysis of several performance results in a simulated environment. In detail, the AP channel assignment and the smart AP allocation algorithms are assessed and compared against other strategies found in the literature. Finally, a set of monitoring procedures to be conducted on the Wi-5 APs and on the Wi-5 controller are presented. These procedures will allow the correct deployment of the cooperative APs functionalities proposed in this deliverable. After summarising the main conclusions, the document ends with future work

    Specification of Cooperative Access Points Functionalities version 2

    Get PDF
    The What to do With the Wi-Fi Wild West H2020 project (Wi-5) combines research and innovation to propose an architecture based on an integrated and coordinated set of smart Wi-Fi networking solutions. The resulting system will be able to efficiently reduce interference between neighbouring Access Points (APs) and provide optimised connectivity for new and emerging services. The project approach is expected to develop and incorporate a variety of different solutions, which will be made available through academic publications, in addition to other dissemination channels. This deliverable presents the specification of the second version of the Cooperative AP Functionalities that are being designed in the context of Work Package (WP) 4 of the Wi-5 project. Specifically, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, and a solution for vertical handover. The RRM achieves an important improvement for network performance in terms of several parameters through the channel assignment approach, that can be further improved by including the transmit power adjustment. The AP selection solution extends the approach presented in deliverable D4.1 based on the Fittingness Factor (FF) concept, which is a parameter for efficiently matching the suitability of the available spectrum resource to the application requirements. Moreover, the preliminary details, which will allow us to extend AP selection towards vertical handover functionality including 3G/4G networks, are also presented. The assessment of the algorithms proposed in this deliverable is illustrated through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, a set of monitoring capabilities implemented on the Wi-5 APs and on the Wi-5 controller are illustrated. These capabilities will enable the correct deployment of the cooperative APs functionalities proposed in this deliverable in realistic scenarios

    A Remote Capacity Utilization Estimator for WLANs

    Get PDF
    In WLANs, the capacity of a node is not fixed and can vary dramatically due to the shared nature of the medium under the IEEE 802.11 MAC mechanism. There are two main methods of capacity estimation in WLANs: Active methods based upon probing packets that consume the bandwidth of the channel and do not scale well. Passive methods based upon analyzing the transmitted packets that avoid the overhead of transmitting probe packets and perform with greater accuracy. Furthermore, passive methods can be implemented locally or remotely. Local passive methods require an additional dissemination mechanism in order to communicate the capacity information to other network nodes which adds complexity and can be unreliable under adverse network conditions. On the other hand, remote passive methods do not require a dissemination mechanism and so can be simpler to implement and also do not suffer from communication reliability issues. Many applications (e.g. ANDSF etc) can benefit from utilizing this capacity information. Therefore, in this thesis we propose a new remote passive Capacity Utilization estimator performed by neighbour nodes. However, there will be an error associated with the measurements owing to the differences in the wireless medium as observed by the different nodes’ location. The main undertaking of this thesis is to address this issue. An error model is developed to analyse the main sources of error and to determine their impact on the accuracy of the estimator. Arising from this model, a number of modifications are implemented to improve the accuracy of the estimator. The network simulator ns2 is used to investigate the performance of the estimator and the results from a range of different test scenarios indicate its feasibility and accuracy as a passive remote method. Finally, the estimator is deployed in a node saturation detection scheme where it is shown to outperform two other similar schemes based upon queue observation and probing with ping packets
    corecore