

ASSOCIATION MECHANISMS IN
 WIRELESS SDN NETWORKS

 by

 Alexandros-Stylianos Valantasis

Department of Electrical and Computer Engineering

 UNIVERSITY OF THESSALY

VOLOS 2017,GREECE

1

 Title Thesis:

 “ASSOCIATION MECHANISMS IN WIRELESS SDN NETWORKS”

 "Μηχανισμοί Σύνδεσης σε Ασύρματα Δίκτυα καθορισμένα από Λογισμικό"

 Author:

 Alexandros-Stylianos Valantasis

 Supervisors:

 Athanasios Korakis, Assistant Professor

 Antonios Argyriou, Assistant Professor

Presented to the Department of Electrical and Computer Engineering of
The University of Thessaly at Volos in Partial Fulfillment

of the Requirements for the Degree of

DIPLOMA OF SCIENCE IN COMPUTER AND COMMUNICATION
ENGINEERING

 THE UNIVERSITY OF THESSALY

 SEPTEMBER 2017

2

Declaration of Authorship

I, Alexandros-Stylianos Valantasis, hereby certify that this thesis titled,
”Association Mechanisms in Wireless SDN Networks” has been composed
by me and is based on my work, unless stated otherwise.

The research was carried out wholly during the candidacy for the graduate
degree of Diploma of Science in Computer and Communication Engineering
at the University of Thessaly, Department of Electrical and Computer
Engineering,Volos,Greece.

I have documented every source and material I have quoted or consulted at
the References section.

3

Dedicated to my Family & Friends

4

Ευχαριστίες

Με την περάτωση αυτής της εργασίας, θα ήθελα να ευχαριστήσω τον
επιβλέποντα αναπληρωτή καθηγητή του τμήματος Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών, κ. Αθανάσιο Κοράκη για την εμπιστοσύνη που
έδειξε στο πρόσωπό μου αλλά και την πίστη του στις δυνατότητές μου,
προσφέροντας μου την ευκαιρία να ασχοληθώ με το συγκεκριμένο θέμα και
να αποκτήσω ουσιαστικά εφόδια μέσα από αυτήν τη διαδικασία.
Επίσης, θα ήθελα να ευχαριστήσω τους εργαζόμενους στο Εθνικό Κέντρο
Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ) Βόλου, οι οποίοι με
βοήθησαν να ξεπεράσω τυχόν δυσκολίες που προέκυψαν.
Ιδιαίτερη ευχαριστία θα ήθελα να απευθύνω στον κ. Κωνσταντίνο Χούμα για
τις ουσιώδεις υποδείξεις και παρεμβάσεις, καθώς και για την καθημερινή του
ενασχόληση και καθοδήγηση που βοήθησαν σε μεγάλο βαθμό στην
εκπόνηση της παρούσας εργασίας.
Τέλος, ένα μεγάλο ευχαριστώ στην οικογένεια μου και τους φίλους μου, στους
ανθρώπους που με τους όποιους πέρασα χαρούμενες και λυπημένες στιγμές
και μου παρείχαν ουσιαστική υποστήριξη σε αυτό το ταξίδι της γνώσης μέχρι
και το τέλος.

5

Περίληψη

Στη σημερινή εποχή, ο αριθμός των χρηστών με πρόσβαση στο διαδίκτυο
(Internet) μέσω ασύρματων τοπικών δικτύων (WLANs) IEEE 802.11
αυξάνεται καθημερινά. Ο μεγάλος αριθμός εισερχομένων χρηστών, που
καθορίζουν τους πελάτες, θέλει να μπορεί να διασυνδέεται ανά πάσα στιγμή
με το κατάλληλο Access Point, με συνέπεια η πολυπλοκότητα του δικτύου να
αυξάνεται και οι διαχειριστές του δικτύου να μην μπορούν να ικανοποιήσουν
αποτελεσματικά τις ανάγκες του κάθε χρήστη. Για να αποφευχθεί η
παραπάνω πολυπλοκότητα, είναι ουσιαστικό να υπάρχει ένας μηχανισμός
εξισορρόπησης του φορτίου (load balance) που υπάρχει στο δίκτυο.
Πολλές επιστημονικές προσεγγίσεις έχουν γίνει για το προαναφερθέν θέμα,
εξετάζοντας κάθε φόρα διαφορετικούς μηχανισμούς σύνδεσης (association
mechanisms) σε WiFi δίκτυα. Ωστόσο, οι περισσότεροι από αυτούς είτε είναι
ξεπερασμένοι είτε δεν εισάγουν ένα αποτελεσματικό μηχανισμό που να
περιλαμβάνει την έννοια του Software Defined Networking(SDN).
Για το σκοπό αυτό, η συγκεκριμένη διπλωματική εργασία, αξιοποιώντας την
πρωτοποριακή αρχιτεκτονική του SDN, η οποία διαχωρίζει το επίπεδο
ελέγχου (control plane) από το επίπεδο δεδομένων (data plane) αλλά και τις
δυνατότητες του OpenFlow πρωτοκόλλου, εισάγει έναν αξιόπιστο αλγόριθμο
για τη σύνδεση των εισερχόμενων χρηστών με το καλύτερο διαθέσιμο Access
Point του δικτύου.
Ο αλγόριθμος που παρουσιάζεται εξετάζει την κίνηση του φόρτου μέσα στο
δίκτυο, μέσω διαφόρων στατιστικών στοιχείων που αποστέλλονται από τα
Access Points στον ελεγκτή του SDN. Τέλος, ο αλγόριθμος υπολογίζει μια
τιμή, το διαθέσιμο εύρος ζώνης δια-μεταφοράς (available throughput
bandwidth) του κάθε Access Point που μπορεί να παρέχει στον εισερχόμενο
χρήστη.
Ο παραπάνω μηχανισμός παρουσιάζεται (demonstrate) μέσω μιας
διαδικτυακού τύπου διεπαφής (web-based network interface) όπου ο χρήστης
μπορεί εύκολα να παρατηρήσει τα χαρακτηριστικά του δικτύου και να
αξιολογήσει την αποδοτικότητα του αλγορίθμου.

6

Abstract

Nowadays, the number of users accessing the Internet via IEEE 802.11
WLANs (Wireless Local Area Networks) and associate with Access Points is
increasing day by day. These big amounts of incoming users, who define the
client devices, amplify the network complexity; as a result the network
administrators can not satisfy efficiently each user’s needs.
To avoid the above complexity, it is vital to balance the load of the entire
network. Many scientific approaches have been introduced regarding the
aforementioned topic, considering different mechanisms of WiFi association,
but, most of them are out of date or do not introduce an efficient mechanism
which includes the SDN concept. For that purpose, this thesis, taking
advantage of the SDN innovative architecture, to separate control plane from
data plane, and OpenFlow abilities, introduces a reliable algorithm for the
association of the incoming user to the best available Access Point.The
algorithm presented makes a load traffic examination via various statistics
Access Points sends to the SDN controller and, finally, calculates the
available throughput bandwidth of each Access Point can provide to the
incoming user. All the aforementioned mechanism is demonstrated via a
network web based interface where the network administrator can easily
observe the network characteristics and evaluate the efficiency of the
implemented algorithm.

7

Table of Contents

Introduction 11

1.1 Organization 12

Background 13
2.A Wireless Networks & Association Techniques 14

2.A.1 WLAN and association process 14
2.A.2 Related works in WiFi association mechanisms 16
2.A.3 Related works in WiFi association with SDN 19

2.B Software Defined Networking 22
2.B.1 Traditional Architectures and Limitations 22
2.B.2 Software Defined Networking 23
2.B.3 SDN Protocol-OpenFlow 26

OpenFlow Architecture 27
OpenFlow Switch 32
OpenFlow Controller 35

Design & Implementation 39
3.1 Scenario 40
3.2 Algorithm 42

Current throughput load of AP 42
Capacity of Wireless link 43
Available Bandwidth 44

3.3 Tools Used 48
3.3.1 Ryu Controller 48
3.3.2 Open vSwitch 49
3.3.3 Mininet 51
3.3.4 Network Benchmarking Tool 52
3.3.5 NITOS Testbed 53

Demo 57
4.1 Demo Construction 58
4.2 Demonstration of Scenario 62

Conclusion 67
5.1 Future Work 68

REFERENCES 69

8

List of Figures & Tables

Figure 2.1: WiFi Association Process

Figure 2.2: Architecture of traditional network

Figure 2.3: SDN Centralized vs Distributed control path

Figure 2.4: SDN Architecture

Figure 2.5: OpenFlow Architecture

Figure 2.6: OpenFlow Flow Entry

Figure 2.7: OpenFlow Version History

Figure 2.8: OpenFlow Switch

Figure 2.9: Group Table

Figure 2.10: Pipeline Process

Figure 2.11: SDN Controller

Figure 3.1: Basic Scenario

Figure 3.2: Ryu Architecture

Figure 3.3: OpenVSwitch

Figure 3.4: Mininet Emulator

Figure 3.5: Iperf Tool

Figure 3.6: Tholos Indoor testbed

Figure 3.7: Icarus Node

Table 1: Icarus Node Specification

Figure 4.1: Nodes Configuration

9

Figure 4.2: Links Configured

Graph 4.3: Graph of Traffic in Network

Figure 4.4: Start of the Scenario

Figure 4.5: Host5 → Phone 1 Transmission

Figure 4.6: Host2 → Phone 3 Transmission

Figure 4.7: Snapshot of Step2

Figure 4.8: Snapshot of Step 3

Figure 4.9: Snapshot of Step 4

10

1

Introduction

Today, the number of users accessing the Internet via IEEE 802.11 WLANs
(Wireless Local Area Networks) is increasing day by day. These big amounts
of incoming users, who define the client devices, amplify the network
complexity; as a result the network administrators can not satisfy efficiently
each user's needs.

For that purpose, many scientific approaches have been made in the topic of
load balancing and how the clients would efficient associate to Access Points
in a WiFi network, with only a few having addressed a reliable mechanism
including the SDN concept.

With SDN (Software Defined Network) being an innovative networking
paradigm with great potentials and high flexibility in managing and deploying
network services, because of its innovative architecture to separate the
control plane from data plane, this thesis will take advantage of these skills to
introduce a reliable association algorithm in a WiFi network.

11

1.1 Organization

The rest of this dissertation is organized as follows:

In chapter 2, we present basic background information about the wireless
networks and the association process, such as a comprehensive overview of
Software Defined Networks and OpenFlow architecture. Also, chapter 2
refers to a variety of scientific researches related with the area of association
in traditional WiFi networks and examines the advantages and disadvantages
of each one. Finally, chapter 2 introduces some pioneer researches in the
aforementioned topic including the SDN concept.

In chapter 3, details about the algorithm implementation and design are
provided. Specifically, chapter 3 elaborates the scenario for the evaluation of
the algorithm, the whole algorithm logic, the basic metrics included in the
mathematical formula and also the programming operation of the basic
components of the algorithm.Moreover, chapter 3 presents the tools, which
participated in the construction of the algorithm and some general information
about each of them.

Finally, in chapter 4 we present the demonstrated algorithm process via a
network web interface and how this process is done; in the last chapter 5, we
summarize and conclude this thesis and propose directions for future
research.

12

2
Background

This thesis introduces an algorithm associating users to best available APs
(Access Points) in a WiFi network taking advantage of SDN and OpenFlow
opportunities. For that reason, in this chapter an inclusive overview of SDN,
OpenFlow, IEEE 802.11(WiFi) architecture, such as association in WiFi are
presented.

Especially, this chapter is divided in 2.A and 2.B. In 2.A, the wireless
networks and association process are introduced, while related works which
had been made in the research topic of association in a WiFi, with and
without the SDN, are briefly presented.

In 2.B, we analyze the basic architecture of SDN and OpenFlow, basic
components of them such as OpenFlow Switch and OpenFlow Controllers,
and finally we describe the entire relationship between these innovative
concepts.

13

2.A Wireless Networks & Association
Techniques

2.A.1 WLAN and association process

Today, the number of users accessing the Internet via IEEE 802.11 WLANs
(Wireless Local Area Networks) is increasing day by day. The users, who
define the client devices, can vary from tablets and laptops to smartphones.
According to the Juniper Research report [1], the volume of data traffic
generated by mobile devices will hit nearly 197,000 petabytes (PB) by 2019
that mainly offloaded to WiFi. In order to serve this growing number of users
with different characteristics, WLANs must have many Access Points, which
provide the functionality needed to satisfy these heterogeneous clients.

A typical wireless local network (WLAN) has three basic components: Access
Point (AP), Wireless Stations(STA) and Basic service sets (BSS).The
wireless station can be any device being able to communicate using the
802.11 standard (WiFi) and can vary from laptop, smart phone, workstation to
printers and scanners.The Access Point is a wireless device with two
functionalities. The first one is that it acts as a network platform for
connections between WLANs or to a wired LAN while the second one is that
it acts as a relay between stations attached to the same AP.

Finally, the basic service set (BSS) is the logical component of wireless
architecture, in contrast with the other two (wireless station and the access
point) which are both physical components. In general, the BSS is a set of
wireless stations controlled by a single management function and has two
configuration options. In an IBSS, the stations communicate directly to one
another without the need for an access point. In a BSS infrastructure, there is
a connection to the wired network. An extended service set (ESS) is a set of
infrastructure BSSs that appears as a single BSS. This is important for

14

connection redundancy but some security issues arise that need to be
addressed.

The most important procedure in a wireless local network is the connection of
stations with the APs. The selection of the AP that a WLAN station connects
with must be done prudently as it determines the performance of the station.
In the nomenclature of IEEE 802.11, such AP selection procedure is referred
to as association. In WiFi, the association process is divided into three steps:
scanning, authentication and association.

 Figure 2.1 WiFi Association Process

Scanning

The main purpose of scanning is the selection of the appropriate AP to be
associated with, in all available channels. Scanning can be active or
passive.In passive mode, the station finds APs by listening to periodic beacon
frames. The station using active scanning broadcasts a probe request frame

15

on each channel and may receive multiple probe response frames from
different APs working on the same channel.Typically, the majority of WLANs
operate with active scanning for association.

Authentication

After scanning process, the station sends an authentication request to the
selected AP for connection. In case of no password set on the AP (just like
the open Wi-Fi found in public places), the AP replies with an authentication
request at once and association begins. When the WiFi is
password-protected, the AP sends an authentication reply message to the
host. Then, the host must enter the right password and send this encrypted
information back to the AP. Finally, the AP decrypts this message and if the
correct password is inserted, the AP sends a successful authentication
message to the host and the authentication procedure is finished.

Association

Following the authentication, the host sends an association request message
to the AP.Then, the AP responds with an association reply message including
its MAC address.At this point the connection is established and the host can
exchange data with the AP.

2.A.2 Related works in WiFi association mechanisms

As we have already mentioned, the most crucial procedure in a wireless local
network is association between Stations and Access Points.The challenging
problem in this procedure is how to find the appropriate Access Point for
efficient association with the station.

16

RSSI Approach

The most commonly used metric for the association between access points
and stations is the received signal power from an AP, known as RSSI
(Received Signal Strength Indication). After scanning, a station chooses the
AP from which it receives frames with the highest RSSI. However – as the
field literature stresses – such an RSSI based association is not necessarily
the most appropriate association mechanism. In addition, the RSSI based
association might result in unbalanced and not the best available throughput
among BSSs (Basic Service Sets)[2-3]. Therefore, a station associated with
the highest RSSI AP might suffer from low throughput that is caused by the
overloaded bandwidth utilization in that BSS. For these reasons, an
alternative association mechanism is considering signal to interference and
noise (SINR) per connection, as well as asymmetric traffic, which proposed in
[4]. Although this approach considered uplink channel conditions as well, thus
offering a significant improvement, it was not able to lead to the best available
throughput performance[15].

AP Load Approach

Another association strategy is to examine the load of all available Access
Points and choose the appropriate one. The authors in [5], explained a
selection mechanism that estimates the load of AP based on momentary
measurements of the transmission rate and the fraction of time an AP obtains
the channel for its transmissions. However, this technique has the
disadvantage of considering only downlink traffic and therefore supposes that
channel conflict is only among APs.
An alternative projects belonging in the AP Load Approach field are [2],[6]. In
that case the AP load is treated a metric reflecting the AP’s weakness to
satisfy the requirements of its associated stations.Another approach followed
in [7], consider association decisions on a stat called airtime cost, which
regards both uplink and downlink traffic as well as AP load.The
aforementioned share the common characteristic of considering the AP load
estimation influenced by transmissions only of associated users.[15]

17

AP Load Approach including Neighbor nodes

Similar to the above the author in [8] introduces an AP load assumption with a
differentiation that influences an AP load metric not only by the associated
stations but also from other neighboring stations and their transmissions.
Thus, the authors consider AP load over all neighboring nodes. The main
disadvantage of this assumption is that it is not taking into account the
importance of rate adaptation mechanisms because transmissions rates are
fixed.[15]

Traffic Intensity Approach

The main difference from the above approaches is that it takes into
consideration non-saturated traffic, which means that users transmit and
receive not all the times. The author [9] introduces a new approach, a Traffic
Intensity, in which APs should assign an activity level estimator to their
associated STAs based on observations of their traffic intensity.
Nevertheless, this approach fails to characterize the traffic intensity of
neighboring nodes that belong to adjacent cells, although these contend for
channel usage or even interfere with transmissions in the cell under
consideration.[15]

Available Bandwidth Approach

In this approach, the author [10] introduced a new association metric,
mentioned as EVA (Estimated aVailable bAndwidth). With EVA, stations can
find the appropriate AP that provides the maximum achievable throughput
among scanned APs. EVA is designed to calculate the available bandwidth
on a channel with respect to a station that is going to join a WLAN (Wireless
Local Area Network). For the estimation of the available bandwidth, EVA
estimator considers the level of conflict on a BSS by calculating collision
probability and channel idle ratio based on channel state. After searching all
accessible channels for available APs, a station with the EVA estimator
chooses the AP that provides the largest EVA. The main disadvantage of
EVA association approach is that it has not the functionality to manage
hidden node terminals and their effect, which appear very often in dense
WLANs.

18

Hidden Node Terminals Approach

As we have already mentioned, the variety of association approaches does
not give much attention to the effect of hidden node terminals. For that
purpose, the author in [11] proposed a metric that includes contention and
interference as well. This approach focuses on the effect of interfering nodes
and uses a factor that captures the error probability due to collisions,
considering it as a value proportional only to the number of STAs associated
to each AP and STAs that belong to neighboring cells and operate on the
same channel. The disadvantage of this assumption is that it does not
consider APs transmitting on downlink as potential interference. In addition,
this approach is not able to distinguish between nodes that just contend for
channel usage and nodes that appear hidden.[15]

2.A.3 Related works in WiFi association with SDN

All the approaches mentioned above have advantages and disadvantages.
However, their main disadvantage is the scope of approaching the problem of
WiFi association. All these techniques revolve around finding a solution and
making changes in the driver. These changes are carried out in the physical
and data link layer of OSI model and not in the above layers as desirable.

Because of this, a small change in the network policy may need all the
devices to be congured, something increasing the complexibility of the entire
network and making it very difficult to researchers to introduce new network
protocols. Additionally, most of these solutions are generally
proprietary,which makes it difficult to extend their functionality and improve
their flexibility such spectrum efficiency and QoS requirements can be
considered.

As we have already mentioned, the majority of WiFi association approaches
allow clients and not the infrastructure to make AP association decisions, not
always evaluated as the optimal ones. For all these reasons, it is imperative

19

to bring up a new approach to the problem of WiFi assignation.This can
“satisfied” via SDN.
Software-Defined Networking (SDN) has emerged as an open, efficient and
flexible network management concept for large networks. By decoupling the
control plane from the data plane, SDN can centralize network management
operations in a single entity, often referred to as a controller.Due to its
flexibility, the SDN concept is also currently being adopted for wireless
network management, including WiFi networks.

There has been a number of projects that tried to extend SDN to wireless
networks,especially WiFi, and implemented QoS management and efficient
resource allocation in them.Contributions such as OpenRoads[12],
OpenSDWN[13], EmPOWER[14] and Odin[16] build new mechanisms on top
of OpenFlow in order to support mobility, virtualization, and Service Set
IDentifier (SSID) management. However, we are interested in projects using
SDN to address the problem of AP selection.[48]

In [47], the author presents a version of AP selection approach based on
SDN. Specifically, he have introduced the FF concept, which is an algorithm
that calculates and assigns a performance metric Fittingness Factor to each
AP, to allow the controller to associate the most suitable AP to a device.[48]

Building on the previous project, the author in [48], proposes a more dynamic
AP selection approach, in which the controller managing the WiFi network
selects the most suitable AP for a specific application.This approach is based
on an algorithm that calculates and assigns a performance metric to each AP,
called Fittingness Factor (FF), which is a function addressing the suitability of
the available spectrum resources to the application requirements.Before
assigning an AP, the algorithm calculates another parameter, called Network
Fittingness Factor that takes into account the QoS requirements of a wireless
user joining the network, the current network capacity, and the quality of the
connectivity provided to the remaining wireless users.[48]

In [49], the authors propose the use of a dynamic AP selection algorithm
implemented in a SDN-based framework. In this work, the devices receive
network resource-related statistics from the SDN controller, which guide the
client device to associate itself with the best available AP.This association is
based on the received statistics that jointly consider the network load in terms
of the AP bandwidth and RSSI value.[48]

20

Finally in [50], a new approach called meSDN is introduced. The meSDN
project presents an innovative idea and considers not the down-link
transmission (from AP to clients), which can be controlled using OpenFlow
rules, but the uplink transmission (trafc originating from client to AP).The
main idea of meSDN is that requires participation of client devices. Now, the
OpenFlow rules in an AP can be controlled by the client before traffic arrives
in the AP.

As mentioned above, a very popular AP association approach in WiFi is to
examine the load of APs. Even though many scientific approaches have been
made in the aforementioned topic, only a few have addressed the issue of
network load balance including the SDN concept. For that reason, this thesis
proposes an algorithm which makes load balance of APs in software defined
wireless network. In particular, the thesis examines the load of OpenFlow
APs with a metric of throughput and associates the incoming stations to the
appropriate APs, according to the available bandwidth each AP can provide.

21

2.B Software Defined Networking

2.B.1 Traditional Architectures and Limitations

Network devices as we know it today show limitations due to their
conventional architecture. These devices have software which controls the
network. Additionally, they deal not only with data plane, but also with control
plane using networking information in order to generate the forwarding table
used by data plane to route packets accordingly. In the traditional way, the
two planes are combined in one device itself using standard protocol. Thus,
traditional network devices operate autonomously with different
characteristics, capabilities, management interfaces and policies definition.
Therefore, network configuration is manual and each device has to be
configured separately [17]. Even though proprietary solutions exist to facilitate
complex network management, these only work in homogeneous networks
and according to traditional networking paradigms.[51]

 Figure 2.2: Architecture of traditional network

22

The evolution of telecommunications, software and hardware technology is
rapid.Although evolution is visible, the only technology area that is visibly
stagnated is networking.The reason for such stagnation is the fact that it is a
closed system, meaning only vendors of the network devices have access to
device configuration,preventing the change of device characteristics.This
does not allow the implementation of new ideas that may arise by the network
research community or by new requirements of network operators and
limiting the scope for developing and implementing innovations.[51]

2.B.2 Software Defined Networking

Software-Defined Networking (SDN)[18] was introduced in 2010. This
innovative networking architecture overlays the limitations of management
and controls the network, while, also serves as the networking paradigm
which aims to provide the entire research network community a fast and
simple method to test new technologies and ideas.

SDN proposes a new architecture, where decouples the network control and
management from the data plane. This separation is a departure from the
traditional way and is the state-of-art concept who makes the network easily
programmable.

Due to this separation,we can abstract the complex process from the
repetitive forwarding process.The complex process can be automated and
managed separately in a centralized SDN controller.

The basic idea of SDN architecture is that it decouples the control plane from
data plane. The above process has as result the creation of an open interface
between the two planes.The control plane,now, located outside of the
network devices (router, switch) in a controller which manages the forwarding
tables of network devices. The data plane forwards the data according to its
flow (forwarding) tables, which previously control plane (controller) had
inserted.This approach makes the implementation of new networking
management techniques much easier, since a new routing protocol can be
tested without requiring conversions of the network device configuration.[19]

23

There are three different ways of control and data plane separation.

The first approach is the strictly centralized control. Here, a controller
manages all the forwarding elements in the system, retains a global view of
the entire network and can easily ensure that the network is in a consistent,
optimal configuration. It is the simpler, agent-less solution, since no extra
functionality needs to be installed on network nodes. Nevertheless, as usual
centralized logic, it can lead to single point of failure.

The second approach is the logically-centralized control, where network
devices have partial functionality embedded in them and act as intermediary
across the first and third approach.

Lastly, the third approach is the fully distributed control. In this approach, a
local controller runs on each compute node and manages the forwarding
element directly (and locally). Thus, the control plane becomes distributed
across the network. However, the virtual network topology needs to be
synchronized across all the local controllers. This is accomplished by using a
distributed database. The main advantage is that fully distributed control
achieves significantly better scalability, highly-available by design and no
single-point-of-failure against centralized control.Nonetheless, no global view
of the network is available, while extra computing must be done on the local
host.

 Figure 2.3: SDN Centralized vs Distributed control path

24

SDN architecture consists of three basic layers: the application layer, the
control layer and the infrastructure layer. In addition, there are Application
Programming Interfaces (APIs), called Northbound and Southbound APIs,
which provide the essential communication tools between these layers.

Infrastructure Layer: It is at the lowest level in the SDN architecture as it’s
the physical layer that contains all the hardware for forwarding packets at line
rate. Software runs on these hardware devices providing a control data plane
interface (Southbound API).

Southbound API: The Southbound API handles the communication between
the control layer and the hardware devices inside the infrastructure layer with
a standard protocol.

Control Layer: The most important entity of the SDN architecture. Control
layer contains the controller who has the basic logic and strategy for the
network. It has the functionality to communicate with the network devices in
the lower layer (Infrastructure) via Southbound API and inform them of how to
forward their packets. Also control layer can communicate with the upper
layer (Application) through Northbound API via Rest calls.

Application layer: This layer contains all the actual software applications,
where all features and services are defined. Applications want to know all the
information about the network devices and topology in order to make
decisions according to the changes in the network. For that reason, it uses
functions of the Northbound API and provides variety of network
functionalities e.g. loadbalancers, monitoring, routing.

Northbound API: The controller provides an API to programmers to
communicate with the lower layer. This bidirectional communication between
applications and control planes enables support for switching, routing,
firewall,etc. as it abstracts the forwarding device. The majority of the SDN
controllers interface via Rest APIs or APIs in JAVA and PYTHON.

25

 Figure 2.4: SDN Architecture

Taking the aforementioned into account, SDN brings a boost in networking
technology due to the innovative notion of controlling and management of the
network via programming.

2.B.3 SDN Protocol-OpenFlow

OpenFlow[20] is the most popular standard for the connection of the control
plane and the data plane. It is defined as a communication protocol enabling
access to the forwarding plane of a network device through the network.This
protocol permits the process of the packet forwarding to be specified not by
the network devices, but, by software. Also, it was developed by engineers
from Stanford and California University in 2007 and the calibration process is
being managed by the Open Network Foundation (ONF).

26

OpenFlow Architecture

The architecture OpenFlow is designed in such a way as to separate the data
plane and the control plane, while it executes control, based on packet's
information.

 Figure 2.5: OpenFlow Architecture

From figure 2.4, OpenFlow network includes an OpenFlow Controller,
OpenFlow Switches and the OpenFlow protocol for the communication of the
above.

OpenFlow Connections

Communication between the switch and the controller is provided through a
secure and standard Transport Layer Security (TLS) or TCP connection with
default TCP port number 6633.

27

In the beginning, there is an exchange of credentials between the switch and
the controller. When a connection is established, a symmetric OFPT_HELLO
message is sent, either from controller or the switch, containing the
OpenFlow version.In case of connection interruption between the switch and
controller, the switch must immediately enter one of the following modes; it
can drop packets meant for the controller or act as a legacy switch.[38]

Flow Table

A Flow table[22] of a switch has all the information need the switch know for
the process of forwarding the packets. It contains prioritized rules of match
and action condition.The match condition judges which rule of the flow table
of this switch applies to the packet and then the action condition determines
how the packet should be managed. As packets arrive, the switch matches
the rules of its flow table to the headers of the packets and if there is a match,
then a specific action is chosen. In case of no rules-matching, the packet is
sent immediately to the controller via an OpenFlow message. This notification
is called a packet-in event. When the controller receives this packet-in event,
it can add a new rule to the flow table to handle this type of packet.[38]

OpenFlow Flow Entry

As seen in figure 2.5 each entry in the flow table of an OpenFlow switch is
divided in three parts: Rule, Action and Statistics.

28

 Figure 2.6 OpenFlow Flow entry

● Rule: It is the part matching the frames of the flows and specifying
which packets have to be handled by this entry.

● Action: Every time a packet matches a rule, a specific action must be
performed. For that reason,first, the action has to be defined.The basic
actions can be defined such forwarding to a number of ports, forwarding
to the controller,dropping the frame, and modifying frame fields.[19]

● Statistics: Whenever a flow rule is matched, the switch informs some
basic counters. These can be frame counters, which indicate how many
times a specific flow is matched. Also,there are flow, port and queue
counters, which keep statistics of the packets handled.

29

OpenFlow Message Types

The OpenFlow protocol defines three basic type of messages.The
controller-to-switch, the symmetric and the asynchronous.

Controller-to-switch: This kind of messages is initiated by the controller to
manage or inspect switch’s state. These appear with the following type:

● Features: Controller requests information about the switch’s features.

● Configuration: Controller sets and queries configuration parameters of
the switch.

● Modify-State: Controller manages the state of the switches, by adding /

deleting and modifying flow entries.

● Read-State: Controller collects statistics from the flow table of the

switch.

● Send-Packet: Controller sends a packet out of a specified port on the

switch.

● Barrier: Used by the controller to ensure message dependencies have

been met.

Symmetric: This type of messages is initiated either by the switch or the
controller and sent without solicitation.These appear with the following type:

● Hello: Hello messages are exchanged between the switch and

controller upon connection startup.

● Echo: Echo request/reply messages can be sent from either the switch

or the controller, and must return an echo reply.

● Vendor: Vendor messages provide a standard way for OF switches to
offer additional functionality.

30

Asynchronous: This type is initiated by the switch and used to inform the
controller about the update of network events. These appear with the
following type:

● Packet-in: For all packets that do not have a matching flow entry, a
packet-in event is sent to the controller.

● Flow-Removed: When a flow entry expires (its duration exceeds the

given timeout), this event is sent to the controller.

● Port-status: Switch sends port-status messages to the controller when
port configuration state changes.

OpenFlow Versions

OpenFlow has an active and continuously development with vital upgrades.
As indicated in the figure 2.6, the life of OpenFLow versions began in 2009
with OpenFlow version 1.0 and continues until today with the upcoming
OpenFlow version 2.0.

 Figure 2.7 OpenFlow Version History

This thesis has been developed with OpenFlow version 1.3

31

OpenFlow Switch

OpenFlow switch is a basic component in the OpenFlow network. It is the
network device that supports the OpenFlow protocol and forwards the
packets across the SDN. An OpenFlow switch usually contains one or two
flow tables, a group table, and a channel, where it can communicate with the
SDN controller for inserting or deleting flow entries in the flow table.[19]

 Figure 2.8: OpenFlow Switch

The basic component of OpenFlow switch is the flow table. As we have
already mentioned, it contains a set of flow entries. Each one consists of
match fields, counters and a set of instructions to apply on the matching
packets.

An OpenFlow switch also maintains various traffic statistics, including per-port
byte and packet counters, and per-flow table entry byte and packet counters.
In addition, each flow table entry can be configured with both hard and soft
time outs.

32

Each Flow entry contains:

● Match fields: it is the field matching the incoming packets.

● Priority: matching priority of the flow entry.

● Counters: it contains metrics for the mated packets.

● Instructions: to modify the action set or pipeline processing.

● Timeouts: maximum amount of time before flow expiration.

● Cookie: data value chosen by the Controller. Used by Controller.

Another basic component of OpenFlow switch is the group table. A group
table consists of group entries, which contains a number of flow entries all
sharing a common attribute.

 Figure 2.9: Components of Group Table

33

Each group entry consists of:

● Group Identifier: integer for group identification.

● Group Type: Group types can marked as Required or Optional. If a

group marked as Required ,can have two types available. The all and
the indirect. The Optional groups also can have two types available.
The select and the fast failover.

● Counters: it contains metrics for the mated packets.

● Action Buckets: each bucket contain a list of actions to execute.

Finally, in the OpenFlow switch a critical process is how the packets
associate with the flow table.This is determined in OpenFlow pipeline
process.

 Figure 2.10: Pipeline Process

As we can see from the Figure 2.10, the flow table has numbers starting from
zero. The process starts when a new packet arrives in the OpenFlow switch.

34

Then, if the packet matches a flow entry, the flow table executes the
instructions which are stored in the appropriate flow entry. These instructions
can be sent from the packet to another flow table according to the Goto
instruction or to terminate the pipeline process and the packet is processed in
proportion to the associated actions.

If the packet has no match with any flow entry of the flow table, the packet is
then inclined if the flow table has no table-miss flow entry. If not, the flow
table has a table-miss flow entry. Then the packet is processed according to
the table-miss configurations.[19]

OpenFlow switches divided in two categories, commercial and software.

Commercial switches are physical devices with hardware to support
OpenFlow. Typical commercial switches are HP [23], Pica8 [24], and NEC
[25].

Contrary to commercial switches, software switches have the ability to use
and install in every type of hardware. Typical commercial switches are
Open-WRT[26], and OpenVSwitch[27].

In this thesis we will use the OpenVSwitch.

OpenFlow Controller

The controller is the brain of the network which uses OpenFlow protocol to
interact with the switches. It can manage, control and administrate the flow
tables.

Also, all the SDN controllers are written in software and are an independent
application running in a dedicated server. Also they are flexible and dynamic,
because they are easily programmable in hardware.

35

As we said above, it has the whole functionality to communicate with the
application layer (via northbound api) to define the applications needs for
managing effectively the switch's behavior (via southbound api).

 Figure 2.11: SDN Controller

The switch's behavior is managed, by controlling its flow tables. Flow tables
can be inserted with rules formerly (pro-active) or after a packet arrives
(react-active).

● Reactive installation: When a new flow arrives to the switch, the
switch examines if there is a match for the specific flow in the flow table.
If the flow is not matched, the switch makes an OpenFlow packet-in
packet message and sends it to controller for instructions. The reactive
installation process,considers the OpenFlow controller’s command for
the creation of a rule in the flow table.[19]

36

● Proactive installation: To avoid the above technique,which demands
the controller reacting to packets, the proactive installation obliges the
OpenFlow controller to generate the flow tables ahead of time for all
traffic matches that could come into the switch. By pre-defining all the
flows in the flow table, the packet-in event never happens, as a result
the effacement of the latency communicating with the controller on
every flow.[19]

Nowadays, there is a variety of SDN controllers with different characteristics
and functionalities.They can vary from the programming language to software
performance. A few popular open source controllers are Pox [29], Nox
[28],Floodlight[30], OpenDayLight [33], Ryu[34] and Cisco APIC [35], HP
VAN[36], VMware NSX [37], Trema[32], Onos[31] are some popular
commercial ones.

● NOX [28]: NOX is an open-source platform, which is written in C++.
Also, it provides an OpenFlow 1.0 API.

● POX[29]: It consists in a NOX implementation written in Python. It is
suitable for research and academic purposes, because it is easy to start
with. The main advantage of NOX is that it is suitable for the
configuration of big complex networks and controller needs to be fast. A
disadvantage of POX is that it does not support multithreading.[19]

● Floodlight[30]: Floodlight is a controller based on Java, or Jython.
Floodlight was developed by David Erickson.It supports multithreading
and was developed so as to work with an increasing number of network
devices that support OpenFlow. The main advantage is that can it be
used in a heterogeneous network, because it can have a mix of
OpenFlow and non-OpenFlow devices inside the network.[19]

37

● OpenDayLight [33]: It is an open-source SDN controller dated back in
2013 and is widely used not only for academic purposes but also and
by industry members with the goal to make SDN more diaphanous and
to act as basis for Network Function Virtualization (NFV). It is written in
Java and is a highly available and scalable controller,suitable for
heterogeneous networks.[19]

● ONOS [31]: Developed in 2014, ONOS (Open Network Operating
System) is an open source project, created by The Linux Foundation.
The purpose of the project was to create a high performance
software-defined networking (SDN) operating system.[19]

● Trema [32] :Trema is a full-included framework developed by NEC and
based on the Ruby and C. The Trema framework supports only the
version 1.0 OpenFlow and it is also used as an emulator for OpenFlow
networks. [19]

38

 3

Design & Implementation

As we mentioned, the problem of efficient association to Access Points (APs)
in WiFi is critical for the networking research community. Even though many
scientific approaches have been made in the aforementioned topic, only a
few have addressed an efficient mechanism for association including the
SDN concept.

For that reason, this thesis introduces an algorithm associating users to best
available APs in a WiFi network while taking advantage of SDN and
OpenFlow opportunities. Especially, an SDN controller examines periodically
the load traffic of all Wifi APs and associates every incoming user to the best
available. This load traffic examination is done via various statistics APs send
to the SDN controller, which collects them and calculates the available
throughput bandwidth of each AP can provide to the incoming user.

The rest of the chapter is organized as follows: In 3.1 the basic
implementation scenario is explained, where the algorithm is based on. In 3.2
the principles and the construction of the algorithm is introduced, while in 3.3
the construction tools used are presented.

39

3.1 Scenario

To examine the algorithm efficiency, a basic scenario is introduced as shown
in Figure 3.1

 Figure 3.1: Basic Scenario

40

Scenario Components

As we can see in the scenario topology, the following components appear:
two WiFi Access Points, three cellphones and one core switch which is used
as a gateway to the Internet and --for this scenario-- is connected with three
virtual hosts.

The two WiFi Access Points are actually two OpenFlow Switches and
specifically two OpenVSwitch, which communicate via OpenFlow protocol
with an SDN Ryu Controller.In the scenario, the two WiFi APs have wired and
wireless interfaces.The wired interface is responsible for the wired connection
between the AP and the core switch,while the wireless interfaces are
responsible for the wireless connection with the cellphones. Similar to the
concept of APs, the core switch is an OpenFlow Switch, which connects with
the same SDN controller and its setup had been made in Mininet Emulator
and in NITOS testbed physical nodes as it did for the APs.The core switch is
connected with three Hosts via wired interfaces provided by Mininet.

Scenario

At the beginning of the experiment, the first cellphone (phone 1) comes and
wants to associate with an AP. Because of its network position, it had only the
AP 1 available for connection. Also, at that moment, the load traffic in the AP
1 is zero, because no connection is established, so the SDN controller
associates the phone 1 to the AP 1. During the above process, a new
cellphone (phone 3) comes and wants to associate with an AP.Similarly,
because of its position, it had only the AP 2 available for connection, so the
SDN controller associates the phone 3 to the AP 2.

When the two connections are established, the down-link transmission of
data began, from hosts to cellphone 1 and 3. The above transmissions create
load traffic in each AP.

The algorithm is designed when a new cellphone (phone 2) comes and wants
to connect to an AP. But now, phone 2 has two APs available for
association,because of its position in the network.In this case, the SDN
controller examines the load of the two available APs, by calculating the
throughput of the existing flows in each AP.Finally, the AP with the most
available free bandwidth calculated by controller will be associated with
phone 2.

41

3.2 Algorithm

Algorithm Explain

The basic concept of the algorithm is to efficiently manage the load traffic of
all WiFi APs and associate the incoming user with the most appropriate.

The algorithm implementation is included in an SDN Ryu Controller, which is
connected with all available OpenFlow Switches (two WiFi APs, one core
switch).

The algorithm estimates three basic metrics for the calculation of the load
traffic of APs.

First, calculate the current throughput load of AP, second the wireless link
capacity and last it estimates the available Bandwidth an AP can provide
from the abovementioned metrics.

Current throughput load of AP

The controller inquires periodically after 10 seconds, the flow statistics from
the two Wifi APs. These statistics are obtained from APs flow tables and
reflect the load traffic of AP. When the controller acquired these statistics, the
algorithm starts the calculation with the below formula

hroughput its 0 sect = ∑
i

0
((byte (t) yte (t 0)))i − b i − 1 × 8 b ÷ 1

,where i is the number of flows in each AP’s flow table, except the flow with
destination the cellphone 2.

42

As we can see, the algorithm takes a statistic, the counted byte ,and
subtracts it from the previous counted byte. The result is multiplied by 8,
because we want the throughput to be in bits and finally is divided by 10,
because 10 is the period of measurement. The result represents the current
down-link throughput of all flows in an AP in bits/second. Because we want to
examine the load traffic of the AP, we must include in the above formula all
the existing flows of down-link transmission in each AP.

Specifically, in AP 1, the formula includes all the existing flows which manage
down-link traffic from all available Hosts(host1,host2,host5) to cellphone 1.
Similarly, in AP 2 we concentrate in all existing flows which manage down-link
traffic from all available Hosts (host1,host2,host5) to cellphone 3.

As we can observe, the formula did not include down-link flows with
destination the cellphone 2, because as we described above in the
scenario,the cellphone 2 is the target phone we want to find the best available
AP to associate. So we do not include flows to phone 2 in our measurement,
because they will affect the final throughput calculated measurement.

The above process calculating the throughput of all down-link flows in the two
APs in bits/second and for that reason is called current throughput load of AP.

Capacity of Wireless link

In addition to the calculation of current throughput load of AP, the algorithm
examines the real capacity of the wireless link of each AP. We want to know
the exact capacity of wireless link because we concentrate in the down-link
transmission between APs and cellphones.

For the examination of capacity of the wireless link we tried a variety of
techniques.First, we want to get this information from the wireless driver of
the APs, but the wireless driver did not offer this kind of information. Finally,
the measurement of real capacity of wireless link is done with the Iperf tool
between two physical nodes, which is wirelessly connected in NITOS testbed.
We observed that the maximum bandwidth the wireless link can provide
between two NITOS nodes, is approximately in a range between 25-30M
bits/second. So, we assumed that the upper bound of a NITOS wireless link
is 30 Mbit/sec and for that reason the maximum capacity of the wireless link
between an AP and a cellphone is 25-30 Mbit/sec.

43

Available Bandwidth

Having managed the current throughput load of AP and the capacity of the
wireless link the algorithm with a simple subtraction calculate the available
bandwidth

available bandwidth = capacity of the wireless link - current throughput load of
AP

which represent the load condition of the wireless link.

The SDN controller, knowing every moment the load condition of the wireless
link of each AP can associate the cellphone 2 with the AP with the maximum
available bandwidth.

Algorithm Programming Components

The entire algorithm logic is included in the SDN Ryu Controller. We will
present some basic parts of the programming code, where the algorithm is
based on. For the programmable part of the algorithm we used functions
provided by OpenFlow protocol to obtain our metrics.

As mentioned above, the controller inquires periodically after 10 second flow
statistics especially from the two Wifi APs. In particular, the controller calls a
function

def send_flow_stats_request(self, datapath) every 10 seconds.

44

The function send_flow_stats_request has as definition the variable datapath,
which is the address of the two WiFi APs.

The controller send a OFPFlowStatsRequest to the specified by datapath
AP.This message request all the information for flows in flow table and
specific request information for flows matching

OFPMatch(eth_type=ether_types.ETH_TYPE_IP).

This means that the controller requests information for all the IP flows in the
two APs flow tables.

The answer to the above request comes asynchronous to the controller. The
controller can receive it with

@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER).

So, when controller receives an OFPFlowStatsReply message from an AP, it
calls a function named def flow_stats_reply_handler(self, ev), which handles
the above message.

The function flow_stats_reply_handler(self, ev) first examines from which of
the two possible APs it received the reply message.

Next, from the variable ev it takes all information about the flows and more
specifically it gathers and sums the counted byte statistics matched for all IP
flows with destination the cellphone 1 or cellphone 3, according to the APs.

def flow_stats_reply_handler(self, ev):
msg = ev.msg
body = ev.msg.body
for stat in ev.msg.body:
ipv4_addr =stat.match['ipv4_dst']
if ipv4_addr != HOST2_IPADDR:
self.byte_count=stat.byte_count+ self.byte_count

45

The aggregation of counted byte for the specified flows is included in the
variable

self.byte_count

For the calculation of the current throughput load of APs we used the above
formula. So,

throughpout_flow=float((self.byte_count - self.last_flow_metric)*8)/10
self.last_flow_metric_s2=self.byte_count

Where the self.byte_count variable is subtracted with the previous calculated
metric (self.last_flow_metric) and multiplied by 8, because we want the
throughput to be in bits and finally is divided by 10, because 10 is the period
of measurement. The final result represents the current throughput of all flows
in a AP in bits/second.

At last, we stored the self.byte_count variable for our next throughput
calculation, when a new OFPFlowStatsReply message arrives.

The above process calculates the current throughput load of the two Aps. For
the association technique, first, the two throughput are compared and the AP
with the minimum throughput is the best available option to associate the
cellphone 2.

As we can see, we compare the two throughput with

if self.throughpout_flow_list[2]<=self.throughpout_flow_list[3]:

If the current throughput load of AP 1 is less than AP 2 we associate the
cellphone 2 to the AP 1, by changing the flow table of the core switch.

match =
datapath.ofproto_parser.OFPMatch(in_port=3,eth_type=ether_types.ETH_TYPE_ARP,
arp_tpa=HOST2_IPADDR)
actions=[datapath.ofproto_parser.OFPActionOutput(1)]
self.add_flow(self.datapaths[1],1, match, actions , ofproto.OFPFC_MODIFY)

46

match =
datapath.ofproto_parser.OFPMatch(in_port=3,eth_type=ether_types.ETH_TYPE_IP,
ipv4_dst=HOST2_IPADDR)
actions=[datapath.ofproto_parser.OFPActionOutput(1)]
self.add_flow(self.datapaths[1],1, match, actions , ofproto.OFPFC_MODIFY)

By adding the above python commands, the controller sends a message to
the core switch (self.datapaths[1]) and changes the flows in its flow table.The
controller adds a new flow rules in core switch’s flow table, which indicates
that when a Host (host1,host2,host5) wants to communicate with the
cellphone 2, the only way is by sending the data traffic in the port(1), namely
the AP 1.

A similar process took place if the current throughput load of AP 2 was less
than AP 1. Then we associated the cellphone 2 by changing the flow table of
the core switch. The main difference, as we can see below, is that the
controller adds a new flow rule in core switch’s flow table, which indicates that
when a Host (host1,host2,host5) wants to communicate with the cellphone 2
the only way is by sending the data traffic not in the port(1) but in the port(2),
namely AP 2.

match =
datapath.ofproto_parser.OFPMatch(in_port=3,eth_type=ether_types.ETH_TYPE_ARP,
arp_tpa=HOST2_IPADDR)
actions=[datapath.ofproto_parser.OFPActionOutput(2)]
self.add_flow(self.datapaths[1],1, match, actions , ofproto.OFPFC_MODIFY)

match =
datapath.ofproto_parser.OFPMatch(in_port=3 ,eth_type=ether_types.ETH_TYPE_IP,
ipv4_dst=HOST2_IPADDR)
actions=[datapath.ofproto_parser.OFPActionOutput(2)]
self.add_flow(self.datapaths[1],1, match, actions , ofproto.OFPFC_MODIFY)

47

3.3 Tools Used

As previously described, the two Wifi Access Points and the core switch are
actually two OpenFlow Switches. The setup of core switch had been made in
Mininet Emulator and in NITOS testbed physical nodes while the two WiFi
Access Points setup based only in NITOS.All these components
communicate via OpenFlow protocol with an SDN Ryu Controller.

3.3.1 Ryu Controller

The SDN controller used in this thesis is a Ryu [34] controller. All the
programming logic and the algorithm implementation is included in the Ryu
controller.

Ryu is one of the most popular SDN controllers in the industry. Ryu is based
on Python and can support multi-threading.The main advantage of Ryu is that
provides software components with well defined API that make it easy for
developers to create new network management and control applications. It
currently supports a variety of southbound protocols such as OpenFlow,
OF-Config,etc.About OpenFlow, Ryu supports fully 1.0, 1.2, 1.3, 1.4, 1.5 and
Nicira Extensions. All of the code is freely available under the Apache 2.0
license.Last,Ryu have a main executable called Ryu manager where it listens
to a specific IP address and on port 6633, the standard OpenFlow port.[38]

48

 Figure 3.2: Ryu Architecture

3.3.2 Open vSwitch

The three basic components in our scenario (two WiFi APs, one core switch)
are OpenFlow Switches and specifically Open Vswitch.

The first OpenFlow switch is Open vSwitch(OVS)[39]. It is purely a software
based implementation which can use OpenFlow protocol to transmit flow
table data from controller to the switching hardware. It allows programmatic
control and vendor independent management interfaces. It is an alternative to
Linux native bridges and VLAN interfaces.

There are two basic components inside Open vSwitch. The first has the
control of the management layer and called ovs-vswitchd and the second one
has the control of the forwarding plane and called OVS kernel module.
Ovs-vswitchd is in the user space and communicates with the user and
collects packet information and flow routes while kernel module talks to the
NIC for collecting packets and it is in the kernel space.[38]

49

 Figure 3.3: OpenVSwitch

As we have mentioned, the setup of the WiFi APs had been made in the
physical nodes of NITOS testbed. For the connection of the WiFi physical
NITOS APs with the SDN controller, the WiFi APs must act as OpenFlow
Switch and especially Open Vswitch.

For the above configuration, two bash scripts were created.

ovs-vsctl add-br s3
ovs-vsctl set bridge s3 protocols=OpenFlow13
ovs-vsctl set-controller s3 tcp: $localhost address
ovs-vsctl add-port s3 eth1 -- set Interface eth1ofport=1
ovs-vsctl add-port s3 wlan0.sta2 -- set Interface wlan0.sta2 ofport=2
ovs-vsctl add-port s3 wlan0.sta1 -- set Interface wlan0.sta1 ofport=3

The above commands created an OpenFlow switch in the WiFi AP 2 ,which
has protocol version OpenFlow 1.3 and three ports one for the wired
connection to the core switch and two for the wireless connection to
cellphone 2 and 3.

Similarly the other script setup the WiFi AP 1 acting as OpenFlow Switch.

50

3.3.3 Mininet

The other basic component of the scenario is the core switch. The core
switch is an OpenFlow Switch, which connect with an SDN controller and via
three virtual hosts.The setup had been made in Mininet Emulator.

Mininet is a network emulator based in Python. Its main task is to establish
virtual hosts, switches and links, as a result in this virtual network topology
new techniques can be easily tested, before moving in a real network system.
Also, it supports multiple software based OpenFlow switches, custom
topologies and provides a Python API for programmability of the network.The
virtual components utilize the actual Linux network applications including the
kernel and network stack for emulating devices.

Mininet can be either installed on a Linux system or it can be run in a Virtual
Machine via VirtualBox[38].

 Figure 3.4: Mininet Emulator

51

For the above configuration of core switch,a python mininet script is written.
Especially with the following commands,

core switch = net.addSwitch('core switch' , dpid='1', protocols=["OpenFlow13"])

host 1 = net.addHost('host 1', ip='192.168.1.1/24', mac='00:00:00:00:00:01')
host 2= net.addHost('host 2', ip='192.168.1.2/24', mac='00:00:00:00:00:02')
host 3 = net.addHost('host 3', ip='192.168.1.3/24', mac='00:00:00:00:00:03')

the core switch and the three virtual hosts are created and then with

controller = net.addController('controller', ip=CONTROLLER_IP, port=6633)

net.get('core switch').start([controller])

the core switch is connected and communicates with the Ryu controller.

3.3.4 Network Benchmarking Tool

As we can imagine, all the algorithm implementation has purpose when the
hosts started to transmit data to the cellphones.The transmitted data will be
generated by a network tool called iperf[40].

Iperf [40] is a network testing tool, because it creates TCP and UDP data
streams. The main functionality is that can generate traffic between two
nodes and measure the throughput,bandwidth and the quality of a network
link,considering clients and servers functionalities.[38]

52

 Figure 3.5: Iperf Tool

In this thesis, first, iperf with UDP stream traffic is used for the evaluation of
the algorithm. Nevertheless, because of the wireless link between the APs
and the cellphones, we had no guaranteed that the bits sent will be received
by the cellphones. To tackle this problem, we had to use iperf with TCP
stream traffic. But with TCP stream, we could not generate a specific amount
of bits in our stream. Finally, we used iperf3[41], which gave us the
opportunity to generate specific amount of data stream bits and the
confirmation that anything sent would be successfully delivered to the
cellphones.

3.3.5 NITOS Testbed

During the development of the implementation, two environments for
evaluation and testing were used: Mininet emulator and the NITOS wireless
testbed.

53

First all the implementation was based on Mininet, in sense that all the basic
components such as the two APs, the core switch and the three hosts and
cellphones were configured in Mininet and not in NITOS. Thus, it was easy to
test our algorithm without extra work for further configuration. But, in the last
stage of the implementation, the wireless concept and the setup of WiFi
Access Points for association with the cellphones had to be introduced.
Thus,the setup of the the core switch, the two Wifi APs and the three
cellphones as the wireless connection between them implemented in the
physical nodes of NITOS testbed.

NITOS (Network Implementation Testbed using Open Source code) is a
wireless testbed managed by the Network Implementation Testbed
Laboratory (NITlab) of the Electrical and Computer Engineering Department
at the University of Thessaly in collaboration with the Center of Research and
Technology Hellas (CERTH).The NITOS testbed gives researchers the
opportunity to perform experiments and test their implementations in real-time
environments.It consists of wireless nodes based on open source software.

The NITOS facilities are the NITOS outdoor testbed, the CERTH indoor
testbed,and the Tholos indoor testbed.The control and Management
Framework (OMF) is being used in order to control and manage the
testbed.For this thesis, we will use six nodes from the Tholos indoor testbed.

 Figure 3.6: Tholos Indoor testbed

54

The Tholos indoor testbed is an isolated physical of nodes environment at the
University of Thessaly's campus building. It consists of 40 Icarus nodes which
contain multiple heterogeneous interfaces making the user capable of
performing several realistic scenarios.

The WiFi ICARUS nodes have been developed by NITlab team. The basic
manufacture characteristics of Icarus nodes are that they are equipped with
802.11a/b/g and 802.11a/b/g/n wireless interfaces and feature new
generation intel 4-core cpu's and new generation solid state drives.

 Figure 3.7: Icarus Node

55

The specification of Icarus Nodes can been included in the below table.

Specifications:

Motherboard Features two Gigabit network interfaces and supports two wireless
interfaces

CPU Intel® Core™ i7-2600 Processor, 8M Cache, at 3.40 GHz
RAM 8G DDR3
Wireless Interfaces Atheros 802.11a/b/g & Atheros 802.11a/b/g/n (MIMO)
Chassis Manager
card NITlab CM card

Storage Solid state drive
Power Supply 350 Watt mini-ATX
Antennas Multi-band 5dbi , operates both on 2.4Ghz & 5Ghz
Pigtails High quality pigtails (UFL to RP-SMA)

 Table 1: Icarus Nodes Specifications

As mentioned above, we used six Icarus nodes for our final implemented
scenario.

The two Icarus nodes have been configured as WiFi Access Points, via two
bash scripts,and they have created two different WLANs. Also, the rest of the
nodes have been configured as stations (cellphones), which have been
wireless connected in the two WiFi APs, while in the last one have been
implemented the core switch which functionality based in mininet.

56

4

Demo

After the successfully implementation of the algorithm, which has as result the
optimal association between cellphones and Access Points, this chapter of
this thesis is based on demonstration of the above process. Specifically, in
chapter 4.1 the basic components and the techniques for the construction of
demo are presented, while in 4.2 the basic scenario is demonstrated.

57

4.1 Demo Construction

For the demonstration of the project,we had to create a real-time network web
interface. This interface has the functionality to communicate successfully
with the Ryu controller and obtain various metrics. This functionality makes
the web interface act as a real-time interface,so that a user can easily verify
basic elements of the algorithm when the scenario is running.

First, the programming language used for the deployment of the above web
application was Html5,JavaScript and CSS.

HTML5[42] is a revision of HTML, the standard computer language devised
to allow website creation. These websites can then be viewed by anyone else
connected to the Internet. It is the fifth and current major version of the HTML
standard and was adopted by the new working group of the World Wide Web
Consortium in 2007. One of the biggest differences between HTML5 and
previous versions of the standard is that older versions of HTML require
proprietary plugins and APIs. HTML5 provides one common interface to
make loading elements easier.

Cascading Style Sheets (CSS)[43] is a style language used for describing
the presentation of a document.Most often used to set the visual style of web
pages and user interfaces written in HTML. Along with HTML and JavaScript,
CSS is a cornerstone technology used by most websites to create visually
engaging web pages, user interfaces for web applications, and user
interfaces for many mobile applications.

JavaScript [44] is a high level, object based, and interpreted programming or
script language from Netscape. Alongside HTML and CSS, JavaScript is one
of the three core technologies of World Wide Web.It is used to make web
pages interactive and provide online programs,including video games.
Nowadays,the majority of websites employ it, and all modern web browsers
support it without the need for further plug ins.It is a multi-paradigm language
and supports different programming styles.

58

Beyond the above three programming languages,the network real-time web
interface, is based on Cisco NeXt UI toolkit[45].

NeXt UI toolkit is an HTML5/JavaScript based toolkit for network web
application, which provides high performance and quality framework and
network centric topology component. Also, NeXt features MVVP, OOP and
DOM manipulation, while it renders network topologies and enables user
interaction with them through event listeners.

The basic advantage of NeXt UI is that the network topology is represented
as a JavaScript object, essentially consisting of nodes and links. So, the
developer can very easily construct a new network topology from beginning.

In this thesis all the network configured with NeXt UI toolkit, via two
JavaScript scripts. The first contains all the available information for the
configuration of the nodes and links in the topology. Specifically, via the first
script, in every node is configured the name, the type (phone, access point,
switch), the IP address and other basic elements.

 Figure 4.1: Nodes Configuration

59

Also with the same script all the links of the topology are configured.

 Figure 4.2: Links Configured

As mentioned, with the above script, all the network topology is configured.
But, without the second JavaScript script the network topology it would only
be a static snapshot in the web page with no functionality, real-time
measurements from Ryu controller and interaction with the user.

To turn the above network topology into “life”, we had to introduce a
connection mechanism between the Ryu controller and the web interface.The
purpose was, that in case of a change in the Ryu controller and especially in
the association algorithm, this will immediately reflect on the web interface.
The statistic we wanted to see real-time in our demo was the available
throughput in each WiFi APs.To establish the above real-time connection, a
local CSV file was used.

Specifically, the Ryu controller writes in a CSV file the available throughput of
each AP after 10 seconds and the web application read from the CSV file
after 3 seconds.Thus, any change occurring in the AP’s throughput,displays
real-time in the web page.

60

Also, the web interface,expect the real-time network topology contains and a
real-time traffic graph for the all transmitted flows inside the network.

 Graph 4.3: Graph of Traffic in Network

For the above implementation,we used the the JavaScript Graphic library
plotly.js.Plotly.js[46] is a free open source interactive, high-level, Javascript
graphing library, which is built on d3.js and webgl and supports over 20 types
of interactive charts, including 3D charts, statistical graphs, and SVG
maps.With plotly library we manage to create a real-time graph with the
throughput statistics of all flows the Ryu controller handles.That, gives the
opportunity to the user to examine the entire traffic in the network and
observe how the implemented association algorithm handles this traffic.

61

4.2 Demonstration of Scenario

In this chapter we will present what happens in the web interface when a
basic scenario is running. We will show the steps via snapshots, which
appeared in the user.

Step 1

First, as we mentioned in chapter 3.1 in the scenario explanation, the
cellphone 1 comes and associates with AP 1, the cellphone 3 associate with
the AP 2 and after that the cellphone 2 had the option to associate with one of
the two available APs.

 Figure 4.4: Start of the Scenario

62

The figure above is the network topology without any transmission flows
between the hosts and the cellphone. As we can see, there is only the static
topology with the information about all the network components and at right a
graph which represents the traffic in the network,which is in this case is zero.

Step 2

At the next moment, following the basic scenario, the transmission of data
between the Hosts starts --in our case host 5, and phone 1. Similarly, a new
transmission starts between host 2 and phone 3.Specifically, the flow from
Host 5 to phone 1 has throughput rate of 10 Mbits/second, while the flow from
Host 2 to phone 3 has rate of 15 Mbits/second. Because the transmission
between the Host 5 and phone 1 is performed through the AP
1, this information reflects in the AP 1 statistics .

 Figure 4.5: Host5 → Phone 1 Transmission

As we can see the WiFi AP 1 has throughput rate 9976520 or 10 Mbits/sec.
Similarly, the Wifi AP 2 has throughput rate of 15017288 or 15 Mbits/sec as
we can see below.

63

 Figure 4.6: Host2 → Phone 3 Transmission

The final snapshot of the two available flows and the throughput rate of it are
presented below. With the blue color appears the flow between the Host 5
and phone 1 with throughput rate of 10 Mbits/second as we can see in the
graph at the the right. With the orange color appears the flow between the
Host 6 and phone 3 with throughput rate of 15 Mbits/second.

 Figure 4.7: Snapshot of Step2

64

Step 3

After the transmission of data with destination the cellphone 1 and 3, a flow
started between the host 1 and phone 2.This flow is represented with green
color and has two available options to transmit the data. In this case data
transmission is done through AP 1 because of the throughput of AP 1 is less
than the throughput of AP 2.

 Figure 4.8: Snapshot of Step 3

Step 4

Assuming that the transmission rate of the blue flow changed from 10
Mbits/second to 20 Mbits/second, then the association algorithm would
decide that the best available AP is the AP 2.So, the green flow would go
through the AP 2.

65

 Figure 4.9: Snapshot of Step 4

66

 5

Conclusion

The problem of efficiently association the users with Access Points in WiFi is
critical and many scientific approaches have been made in the
aforementioned topic. But, only a few have addressed a reliable mechanism
for association including the SDN concept. Taking advantage of the global
network view of SDN and OpenFlow functionalities,this thesis proposes a
load balance solution for association the incoming users to the best available
APs. The solution presented in this thesis implements an algorithm,who
examines periodically the down-link load traffic of all Wifi APs and considering
the capacity of wireless link,associates every incoming user to the best
available. This load traffic examination is done via various statistics APs send
to the SDN controller, which collects them, calculates the available
throughput bandwidth of each AP can provide to the incoming user.

67

5.1 Future Work

A variety of scientific directions can be introduced as future work of this
thesis.

First of all,the thesis can be improved by changing the stability of the scenario
into a more dynamic approach. Specifically, the implemented algorithm can
be changed and have functionality in a dynamic network, where new stations
(cell phones) with different characteristics will come and leave during the
experiment process.

Moreover, another approach it would be to take advantage of the SDN ability
to manage a heterogeneous network and transform one of the two WiFi
Access Points in a LTE Access Point.This transformation will make the entire
thesis more realistic in the needs of daily routine.

Also, considering the significant raise of the IOT (Internet Of
Things)concept,which is based on a wireless network of sensors,is critical to
find an approach of managing the efficient communication between the
sensors.This management can be done via SDN.So,an another scientific
direction for the improvement of this thesis would be the replace of the two
WiFi access points with two LoRa sensors and examine efficient mechanisms
of communication between the sensors.

Last, another scientific direction for approaching the problem of load
balancing in a wireless network is to combine the SDN concept with Machine
Learning algorithms and Artificial Neural networks,so that better decisions will
be made.

68

REFERENCES

[1] “Mobile data to hit 197K PB by 2019, mainly offloaded to Wi-Fi”,
Available:https://www.mobileeurope.co.uk/press-wire/mobile-data-traffic-to-hit-197-000-pet
abytes-by-2019-mainly-offloaded-to-wi-fi

[2] Y. Bejerano, S.-J. Han, and L. Li, “Fairness and Load Balancing in Wireless LANs
Using Association Control,” in Proc. ACM MobiCom’04 , Philadelphia, PA, USA, Sept.
2004, pp. 315–329.

[3] Y. Bejerano and Randeep S. B. Mifi: “A framework for fairness and qos assurance for
current ieee 802.11 networks with multiple access points”.In IEEE/ACM Trans. Netw.,
14(4):849–862, 2006

[4] T. Korakis, O. Ercetin, S. Krishnamurthy, L. Tassiulas, and S. Tripathi, “Link Quality
based Association Mechanism in IEEE 802.11h CompliantWireless LANs,” in Proc.
RAWNET’06 , Boston, MA, Apr. 2006, pp. 725–730.

[5] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki and C. Diot.
“Measurement-based self organization of interfering 802.11 wireless access networks”. In
Proceedings of INFOCOM, pages 1451–1459. IEEE,2007.

[6] O. Ekici and A. Yongacoglu. “A novel association algorithm for congestion relief in ieee
802.11 wlans”. In Proceedings of IWCMC, pages 725–730, New York, NY, USA, 2006.
ACM.

[7] G. Athanasiou, T. Korakis, O. Ercetin, and L. Tassiulas. “Dynamic crosslayer
association in 802.11-based mesh networks”. In Proceedings of INFOCOM , pages
2090–2098. IEEE, 2007.

[8] K. Sundaresan and K. Papagiannaki. “The need for cross-layer information in access
point selection algorithms”. In Proceedings of SIGCOMM, pages 257–262, New York, NY,
USA, 2006. ACM.

[9] M. Abusubaih and A. Wolisz. “An optimal station association policy for multirate ieee
802.11 wireless lans”. In Proceedings of MSWiM , pages 117–123, New York, NY, USA,
2007. ACM.

[10] Heeyoung Lee , Seongkwan Kim , Okhwan Lee , Sunghyun Choi , Sung-Ju
Lee“Available Bandwidth-Based Association in IEEE 802.11 Wireless LANs”. IN
Proceeding School of Electrical Engineering & INMC, Seoul National University, Seoul,
151-744, Korea and Multimedia Communications & Networking Lab, Hewlett-Packard
Laboratories, Palo Alto, CA 94304.

69

[11] M. Abusubaih and A. Wolisz. Interference-aware decentralized access point selection
policy for multi-rate ieee 802.11 wireless lans.In Proceedings of PIMRC, pages 1–6. IEEE,
2008

[12]K.-K. Yap, et al., “OpenRoads: Empowering Research in Mobile Networks”, ACM
SIGCOMM Computer Communication, Vol. 40 Issue 1, Jan. 2010.

[13] J. Schulz-Zander, et al., “OpenSDWN: programmatic control over home and
enterprise WiFi”, ACM SIGCOMM Symposium on Software Defined Networking Research,
Santa Clara, CA, 14-17 Mar. 2016.

[14]R. Riggio, T. Rasheed, and F. Granell, “EmPOWER: A Testbed for Network Function
Virtualization Research and Experimentation”, IEEE SDN for Future Networks and
Services (SDN4FNS), Trento, Italy 11-13 Nov. 2013.

[15] Stratos Keranidis ,Thanasis Korakis,Iordanis Koutsopoulos,Leandros Tassiulas
“Contention and Traffic Load-aware Association in IEEE 802.11 WLANs:Algorithms and

Implementation”

[16]J. Schulz-Zander, L. Suresh, N. Sarrar, and A, Feldmann, “Programmatic
Orchestration of WiFi Networks,” USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Philadelphia, PA, USA, 19-20 June. 201

[17] Das, S., Parulkar, G., McKeown, N.: Unifying packet and circuit switched networks. In:
GLOBE-COM Workshops, 2009 IEEE. pp. 1–6. Department of Electrical Engineering,
Stanford University (December 2009)

[18] G. Ganger, J. Wilkes, W. USENIX Association, G. ACM Special Interest Group in
Operating Systems., and A. S. ACM Digital Library.,Proceedings of the 9th USENIX
Conference on File and Stroage Technologies. USENIX Association, 2011.

[19]“Implementing a traffic engineering service in SDN”, Athanassios Xirofotos
,Department of Electrical and Computer Engineering,Volos Thessaly 2017

[20]T. A. H. B. G. P. L. P. N. McKeown, "Openflow: Enabling innovation in campus
networks," in ACM SIGCOMM Computer Communications Review , New York, 2008.

[22]ONF, “OpenFlow Switch Specification Version: 1.2.0,” Current, vol. 0. pp. 1–312, 2011

[23]“Hp 3800 switch series (2011),” 2011. [Online]. Available:
http://h17007.www1.hp.com/us/en/networking/products/ switches.

[24] “Pica8 (2011),” 2011 .[Online]. Available:
http://www.pica8.com/open-switching/open-switching-overview.php

[25]“Watanabe, H.: Nec programmableflow-univerge pf5820. Tech. rep., NEC,” 2012.

[26] “Yiakoumis, Y.: Pantou : Openflow 1.0 for openwrt,” 2011. [Online]. Available:
http://www.openflow.org/wk/index.php/OpenFlow_1.0_for_OpeWRT

70

[27]“Open vSwitch: Production quality, multilayer open virtual switch,” 2013. [Online].
Available: http://openvswitch.org/ features/.

[28]“McCauley,M.: About NOX,” 2012. [Online]. Available:
http://www.noxrepo.org/nox/about-nox/.

[29]“McCauley, M.: About POX,” 2012. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/.

[30]“Floodlight Is an Open SDN Controller,” 2013. [Online]. Available:
http://www.projectfloodlight.org.

[31] “The Open Network Operating System (ONOS) is a software defined networking
(SDN) OS,” 2014. [Online]. Available: http://onosproject.org/.

[32] “Shimonishi, H.: Trema : Full-stack openflow framework in ruby and c,” 2009.

[33] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of OpenDaylight SDN
controller,” in Proceedings of the International Conference on Parallel and Distributed
Systems-ICPADS, 2014, vol. 2015–April, pp. 671–676.

[34]“Component-based software defined networking framework”,Build SDN Agilely
Available: https://osrg.github.io/ryu/

[35] “Cisco Application Policy Infrastructure Controller (APIC)” ,Available:
https://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infr
astructure-controller-apic/index.html

[36] “HP Virtual Application Networks (VAN) SDN Controller” ,Available:
https://www.sdxcentral.com/products/hp-virtual-application-networks-van-sdn-controller/

[37] “VMware NSX Network Virtualization and Security Platform” , Available:
https://www.vmware.com/uk/products/nsx.html

[38]”SOFTWARE DEFINED LOAD BALANCING OVER AN OPENFLOW-ENABLED
NETWORK” by DEEPAK VERMA University of Texas at Arlington May 2017

[39]J. P. T. K. E. J. J. A. Z. J. R. J. G. A. W. J. S. P. S. K. A. M. C. B. Pfaff, "The
Designand Implementation of Open vSwitch," inUSENIX/ACM Symposium on
NetworkedSystems Design and Implementation, 2015.

[40]"iPerf-The ultimate speed test tool for TCP, UDP and SCTP," [Online].
Available:https://iperf.fr/.

[41] “Invoking iperf3 — iperf3 3.2 documentation - ESnet Software”,Available:
http://software.es.net/iperf/invoking.html

[43] CSS,Available: https://en.wikipedia.org/wiki/CSS

[44] JavaScript,Available: https://en.wikipedia.org/wiki/JavaScript

71

[45] Cisco DevNet NeXt UI toolkit, Available: https://developer.cisco.com/site/neXt/

[46] The open source JavaScript graphing library that powers Plotly,
Available: https://plot.ly/javascript/

[47]A. Raschellà, F. Bouhafs, M. Seyedebrahimi, M. Mackay, Q. Shi, “A Centralized
Framework for Smart Access Point Selection based on the Fittingness Factor”,
International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16-18 May,
2016.

[48]Alessandro Raschellà, Faycal Bouhafs, Mirghiasaldin Seyedebrahimi, Michael
Mackay, Qi Shi, “Quality of Service Oriented Access Point Selection Framework for Large
WiFi Networks”

[49] K. Sood, S. Liu, S. Yu, Y. Xiang, “Dynamic Access Point Association Using Software
Defined Networking”, International Telecommunication Networks and Applications
Conference (ITNAC), Sydney, Australia, 18-20 Nov. 2015.

[50]J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.Kim, and T.
Nadeem, “mesdn: Mobile extension of sdn,” in Proceedings of the Fifth International
Workshop on Mobile Cloud Computing & Services, ser. MCS ’14. New York, NY,
USA: ACM, 2014, pp. 7–14.[Online]. Available:
http://doi.acm.org/10.1145/2609908.2609948

[51] Nádia Pires Gonçalves ,“A Testbed for research and development of SDN
applications
using OpenFlow.”

72

