124,308 research outputs found

    Modeling of the decision-supporting process on the possibility of concluding the contract on the therapeutic services provision. РОЗВИТОК АРХІТЕКТУР, ТЕОРЕМ ТА МОДЕЛЕЙ ВЛАСТИВОСТЕЙ РОЗПОДІЛЕНИХ СИСТЕМ ЗБЕРІГАННЯ ІНФОРМАЦІЇ

    Get PDF
    Today, we live in the world of information technologies, which have penetrated into all possible spheres of human activity. Recent developments in database management systems have coincided with advances in parallel computing technologies. In view of this fact, a new class of data storage has appeared, namely globally distributed non-relational database management systems, and they are now widely used in Twitter, Facebook, Google and other modern distributed information systems to store and process huge volumes of data. Databases have undergone a certain evolution from mainframe architecture to globally distributed non-relational repositories designed to store huge amounts of information and serve millions of users. The article indicates the drivers and prerequisites of this development, and also considers the transformation of models of properties of database management systems and theorems that formalize the relationship between them. In particular, the conditionality of the transition from the ACID property model to the BASE model is considered, which relaxes the requirements for data consistency, which is necessary to ensure the high performance of distributed databases with many replicas. In addition, a concise justification of the SAR and PACELC theorems, which establish mutually exclusive relationships between availability, consistency, and speed in replicated information systems, is provided, and their limitations are analyzed. The compatibility issues of the consistency models used by different non-relational data stores are noted, and, as an example, the possible consistency settings of the NoSQL databases Cassandra, MongoDB, and Azure CosmosDB are discussed in detail. The results of the evolution of distributed database architectures are summarized using the GSN (Goal Structuring Notation). Further directions of scientific research and ways of further developing globally distributed information systems and data repositories are also outlined

    Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia

    Get PDF
    WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional noninterconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system

    Diverse, remote and innovative - Prospects for a globally unique electricity network and market in Western Australia

    Get PDF
    WA’s electricity industry supply infrastructure comprises the South West Inter-connected System (SWIS), the North West Interconnected System (NWIS) and 29 regional non-interconnected power systems 1. WA exhibits a diversity of generation systems located in some of the most isolated regions of Australia, supplying a wide range of energy demand profiles. These characteristics and the unique networks that comprises WA’s electricity infrastructure makes WA a unique place to research, develop and integrate new technical options within a world-class industrialised electricity system

    Active architecture for pervasive contextual services

    Get PDF
    International Workshop on Middleware for Pervasive and Ad-hoc Computing MPAC 2003), ACM/IFIP/USENIX International Middleware Conference (Middleware 2003), Rio de Janeiro, Brazil This work was supported by the FP5 Gloss project IST2000-26070, with partners at Trinity College Dublin and Université Joseph Fourier, and by EPSRC grants GR/M78403/GR/M76225, Supporting Internet Computation in Arbitrary Geographical Locations, and GR/R45154, Bulk Storage of XML Documents.Pervasive services may be defined as services that are available "to any client (anytime, anywhere)". Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of as-similating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself.Peer reviewe

    Active architecture for pervasive contextual services

    Get PDF
    Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of assimilating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry
    corecore