147 research outputs found

    Autoencoders and Generative Adversarial Networks for Imbalanced Sequence Classification

    Full text link
    Generative Adversarial Networks (GANs) have been used in many different applications to generate realistic synthetic data. We introduce a novel GAN with Autoencoder (GAN-AE) architecture to generate synthetic samples for variable length, multi-feature sequence datasets. In this model, we develop a GAN architecture with an additional autoencoder component, where recurrent neural networks (RNNs) are used for each component of the model in order to generate synthetic data to improve classification accuracy for a highly imbalanced medical device dataset. In addition to the medical device dataset, we also evaluate the GAN-AE performance on two additional datasets and demonstrate the application of GAN-AE to a sequence-to-sequence task where both synthetic sequence inputs and sequence outputs must be generated. To evaluate the quality of the synthetic data, we train encoder-decoder models both with and without the synthetic data and compare the classification model performance. We show that a model trained with GAN-AE generated synthetic data outperforms models trained with synthetic data generated both with standard oversampling techniques such as SMOTE and Autoencoders as well as with state of the art GAN-based models

    Learning Sensory Representations with Minimal Supervision

    Get PDF

    Digital Twin-enabled IoMT System for Surgical Simulation using rAC-GAN

    Get PDF
    A digital twin-enabled Internet of Medical Things (IoMT) system for telemedical simulation is developed, systematically integrated with mixed reality (MR), 5G cloud computing, and a generative adversarial network (GAN) to achieve remote lung cancer implementation. Patient-specific data from 90 lung cancer with pulmonary embolism (PE)-positive patients, with 1372 lung cancer control groups, were gathered from Qujing and Dehong, and then transmitted and preprocessed using 5G. A novel robust auxiliary classifier generative adversarial network (rAC-GAN)-based intelligent network is employed to facilitate lung cancer with the PE prediction model. To improve the accuracy and immersion during remote surgical implementation, a real-time operating room perspective from the perception layer with a surgical navigation image is projected to the surgeon’s helmet in the application layer using the digital twin-based MR guide clue with 5G. The accuracies of the area under the curve (AUC) of our new intelligent IoMT system were 0.92, and 0.93. Furthermore, the pathogenic features learned from our rAC-GAN model are highly consistent with the statistical epidemiological results. The proposed intelligent IoMT system generates significant performance improvement to process substantial clinical data at cloud centers and shows a novel framework for remote medical data transfer and deep learning analytics for digital twin-based surgical implementation

    Trustworthy and Intelligent COVID-19 Diagnostic IoMT through XR and Deep-Learning-Based Clinic Data Access

    Get PDF
    This article presents a novel extended reality (XR) and deep-learning-based Internet-of-Medical-Things (IoMT) solution for the COVID-19 telemedicine diagnostic, which systematically combines virtual reality/augmented reality (AR) remote surgical plan/rehearse hardware, customized 5G cloud computing and deep learning algorithms to provide real-time COVID-19 treatment scheme clues. Compared to existing perception therapy techniques, our new technique can significantly improve performance and security. The system collected 25 clinic data from the 347 positive and 2270 negative COVID-19 patients in the Red Zone by 5G transmission. After that, a novel auxiliary classifier generative adversarial network-based intelligent prediction algorithm is conducted to train the new COVID-19 prediction model. Furthermore, The Copycat network is employed for the model stealing and attack for the IoMT to improve the security performance. To simplify the user interface and achieve an excellent user experience, we combined the Red Zone's guiding images with the Green Zone's view through the AR navigate clue by using 5G. The XR surgical plan/rehearse framework is designed, including all COVID-19 surgical requisite details that were developed with a real-time response guaranteed. The accuracy, recall, F1-score, and area under the ROC curve (AUC) area of our new IoMT were 0.92, 0.98, 0.95, and 0.98, respectively, which outperforms the existing perception techniques with significantly higher accuracy performance. The model stealing also has excellent performance, with the AUC area of 0.90 in Copycat slightly lower than the original model. This study suggests a new framework in the COVID-19 diagnostic integration and opens the new research about the integration of XR and deep learning for IoMT implementation

    Spatio-Temporal Multimedia Big Data Analytics Using Deep Neural Networks

    Get PDF
    With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era, where new opportunities and challenges appear with the high diversity multimedia data together with the huge amount of social data. Nowadays, multimedia data consisting of audio, text, image, and video has grown tremendously. With such an increase in the amount of multimedia data, the main question raised is how one can analyze this high volume and variety of data in an efficient and effective way. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, there is insufficient research that provides a comprehensive framework for multimedia big data analytics and management. To address the major challenges in this area, a new framework is proposed based on deep neural networks for multimedia semantic concept detection with a focus on spatio-temporal information analysis and rare event detection. The proposed framework is able to discover the pattern and knowledge of multimedia data using both static deep data representation and temporal semantics. Specifically, it is designed to handle data with skewed distributions. The proposed framework includes the following components: (1) a synthetic data generation component based on simulation and adversarial networks for data augmentation and deep learning training, (2) an automatic sampling model to overcome the imbalanced data issue in multimedia data, (3) a deep representation learning model leveraging novel deep learning techniques to generate the most discriminative static features from multimedia data, (4) an automatic hyper-parameter learning component for faster training and convergence of the learning models, (5) a spatio-temporal deep learning model to analyze dynamic features from multimedia data, and finally (6) a multimodal deep learning fusion model to integrate different data modalities. The whole framework has been evaluated using various large-scale multimedia datasets that include the newly collected disaster-events video dataset and other public datasets

    Proceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)

    Get PDF
    This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023
    • …
    corecore