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ABSTRACT OF THE DISSERTATION

SPATIO-TEMPORAL MULTIMEDIA BIG DATA ANALYTICS USING DEEP

NEURAL NETWORKS

by

Samira Pouyanfar

Florida International University, 2019

Miami, Florida

Professor Shu-Ching Chen, Major Professor

With the proliferation of online services and mobile technologies, the world has

stepped into a multimedia big data era, where new opportunities and challenges

appear with the high diversity multimedia data together with the huge amount of

social data. Nowadays, multimedia data consisting of audio, text, image, and video

has grown tremendously. With such an increase in the amount of multimedia data,

the main question raised is how one can analyze this high volume and variety of

data in an efficient and effective way. A vast amount of research work has been

done in the multimedia area, targeting different aspects of big data analytics, such

as the capture, storage, indexing, mining, and retrieval of multimedia big data.

However, there is insufficient research that provides a comprehensive framework for

multimedia big data analytics and management.

To address the major challenges in this area, a new framework is proposed based

on deep neural networks for multimedia semantic concept detection with a focus on

spatio-temporal information analysis and rare event detection. The proposed frame-

work is able to discover the pattern and knowledge of multimedia data using both

static deep data representation and temporal semantics. Specifically, it is designed

to handle data with skewed distributions. The proposed framework includes the

following components: (1) a synthetic data generation component based on simula-

vi



tion and adversarial networks for data augmentation and deep learning training, (2)

an automatic sampling model to overcome the imbalanced data issue in multimedia

data, (3) a deep representation learning model leveraging novel deep learning tech-

niques to generate the most discriminative static features from multimedia data, (4)

an automatic hyper-parameter learning component for faster training and conver-

gence of the learning models, (5) a spatio-temporal deep learning model to analyze

dynamic features from multimedia data, and finally (6) a multimodal deep learn-

ing fusion model to integrate different data modalities. The whole framework has

been evaluated using various large-scale multimedia datasets that include the newly

collected disaster-events video dataset and other public datasets.
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CHAPTER 1

INTRODUCTION

1.1 Background and Introduction

The explosive growth and widespread accessibility of digital data have led to a

surge of research activity in the big data, and data sciences fields. The conventional

approaches for data management have achieved limited success as they are incapable

of handling the huge amount of complex data with high volume, high velocity, and

high variety [6, 7, 8, 9, 10].

In the last few years, the fast and widespread use of multimedia data, including

image, audio, video, and text, as well as the ease of access and availability of mul-

timedia sources, have resulted in a big data revolution in multimedia management

systems [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Multimedia

data analytics addresses the issue of manipulating, managing, mining, understand-

ing, and visualizing different types of data in effective and efficient manners to solve

real-world challenges. The solutions include but are not limited to text analysis,

image/video processing, computer vision, audio/speech processing, and database

management for a variety of applications such as healthcare, education, entertain-

ment, and mobile devices [27, 28, 29, 30, 31, 32, 33, 34, 35].

For decades, machine learning and data mining researchers have tried to dis-

cover the patterns and data representations from the raw data [36, 37]. The field

of machine learning is witnessing its golden era as deep learning slowly becomes

the leader in this domain. Deep learning uses multiple layers to represent the ab-

stractions of data to build computational models. Some key enabler deep learning

algorithms such as Generative Adversarial Networks (GANs) [38], Convolutional

Neural Networks (CNNs) [39, 40], and model transfers have completely changed our
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perception of information processing. With the acute development in deep learning

and its research venues being in the top limelight, deep learning has gained extraor-

dinary momentum in speech, language, and visual detection systems. However,

several domains are practically still untouched by Deep Neural Networks (DNNs)

either due to their challenging nature or the lack of data availability for the general

public. This creates significant opportunities and fertile ground for rewarding future

research avenues.

The scope of this dissertation is to provide a systematic and comprehensive

framework for multimedia big data analytics using deep neural networks. This study

aims to address some of the main challenges in this area and provide solutions to

manage and analyze multimedia big data effectively. There exist many challenges

to analyze such data which can be summarized as follows:

• The success of many machine learning and deep learning algorithms heavily

depends on the existence of clean, large-scale, and annotated datasets. Col-

lecting such datasets is challenging and time-consuming. This issue is even

more daunting in real-world applications such as disaster information man-

agement [41, 42, 43, 44] or autonomous driving cars [45] in which the dataset

should represent different locations, noise, lighting, etc., as well as rare sce-

narios (e.g., accidents, bad weather, unusual movements). Automatic data

generation using simulators and generative models is an efficient solution to

synthetically generate large-scale datasets with sufficient varieties. However,

bridging the gap between real-world and synthetic data is still an open ques-

tion.

• Another main challenge faced by the multimedia community is the non-uniform

distribution of real-world datasets [46]. This problem is known as “data im-

balance problem”, in which some of the classes contain much fewer samples

2



than the others. Examples of the imbalanced data problem include rare dis-

ease identification, fraud detection, and natural disaster recognition. It has

been widely shown in the literature that techniques such as data resampling

(oversampling and under-sampling) can enhance the prediction results of rare

classes, especially for the binary classification tasks (e.g., cancer detection).

However, it is challenging to employ such techniques on a multi-class or multi-

label imbalanced data problem while maintaining the temporal information

on the multimedia data.

• Discovering the patterns and discriminative features from raw data has been a

challenging task in machine learning area. This method is called representation

learning. Unlike conventional machine learning and data mining techniques,

deep learning is able to generate very high-level data representations from

massive volumes of raw data. Therefore, it has provided a solution to many

real-world applications. However, deep learning usually requires large-scale

datasets with manually labeled data. The most relevant future machine learn-

ing problems will not have sufficient training samples with labels [47]. Current

deep learning models will also need to adapt to the rising issues such as data

sparsity, missing data, and messy data in order to capture the approximated

information through observations.

• Many real-world problems are characterized as time series (e.g., human activ-

ity recognition, stock prediction, and sentiment analysis), and it is critical to

discover the temporal patterns in a time series problem [48, 49]. For exam-

ple, video data consisting of sequences of image frames can be considered as

a time series problem in which both static and motion information need to be

extracted and analyzed [50, 51]. However, most existing multimedia classifi-

cation techniques either ignore temporal information or utilize very complex
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engineering features for spatio-temporal data analysis [52, 53] to model the

temporal features which are not very efficient in practice.

• Multimedia data usually contains various types of modalities such as image,

audio, and text. For example, a video may contain sequences of frames, audio

clips, as well as text descriptions and meta data. These data modalities are

usually complementary, which can be integrated to enhance the final decisions.

However, many existing studies only focus on one or two data modalities due

to the complexity and difficulty of multimodal data collection, analysis, and

fusion [54]. In addition, despite the great success of deep learning models

on processing of single data modalities, there are a few studies to propose a

comprehensive deep learning framework for multimodal data analysis.

1.2 Proposed Solutions

To address these challenges, this dissertation presents a new multimedia big data

framework that effectively handles the multi-class multi-label data imbalance prob-

lems using DNNs. The proposed solutions include:

• Synthetic data generation: To address the big data collection and gener-

ation issues, in this dissertation, novel synthetic data generation techniques

are proposed that are later integrated to our proposed deep learning models.

In particular, deep adversarial networks and simulators are leveraged to gen-

erate synthetic data for deep learning training automatically. These models

are specifically applied to real-world applications such as disaster information

management and autonomous driving. This study extends the idea of domain

adaptation and randomization to bridge the reality gap between simulation

and the real world. Also, it utilizes generative models to transfer various styles
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to regular data, which increases the generalization capability of deep learning

models while reducing the need to have large-scale annotated datasets.

• Automatic sampling for imbalanced data: To address the data imbal-

ance problem, in this study, an automatic sampling method is proposed to

be integrated with CNNs. First, an early spatio-temporal oversampling is

presented specifically for video data, that contains spatial and temporal infor-

mation. The proposed spatio-temporal oversampling model utilizes random

data augmentation techniques to generate new synthetic data for minority

classes in the imbalanced dataset. Second, the dynamic sampling model is in-

tegrated with existing CNNs to automatically modifies the samples of classes

in each training iteration. This model is proposed to further enhances the

classification performance especially for those classes with minor or complex

samples.

• Deep static representation learning: Successful machine learning models

generally rely on rich data representations since various hidden characteris-

tics and patterns can be derived from original data. Thus, in this dissertation,

efforts have been devoted to generate the most discriminative data representa-

tion using unsupervised transfer learning. As a single model may not be able

to handle large datasets with multiple feature sources, an integrated model

is utilized to enhance the data representation by taking advantages of multi-

ple pre-trained deep learning models. This study proposes a mixture of deep

learning feature extractors integrated with an enhanced ensemble algorithm.

Also, a new deep learning structure is designed based on Inception and Resid-

ual modules to efficiently extract significant and robust features from the raw

data.
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• Deep spatio-temporal learning: Upon the proposed spatio-temporal syn-

thetic sampling schema and multimedia deep representation learning, a new

deep learning structure is proposed to classify data with spatio-temporal in-

formation. In particular, deep Recurrent Neural Networks (RNNs) with bidi-

rectional and residual connections are integrated to capture past and future

temporal information from time-series data which remembers the information

for a longer period of time compared to the conventional machine learning

algorithms. Specifically, the model is employed for a large-scale video clas-

sification task to discover the dynamics and motions using DNNs without

utilizing complex engineering features.

• Multimodal deep learning fusion: DNNs have been successfully applied

for single modality feature extraction and classification. To further extend

the proposed framework, we propose a novel deep learning model to extract

unsupervised features from multiple modalities (e.g., image, text, audio) and

train a new fusion model to combine different data modalities in an effective

manner. Particularly, a multi-label multimodal deep learning model is pro-

posed to integrate the deep spatio-temporal features obtained for each data

modality. This model will efficiently discover the correlation between different

modalities and the final classes in the dataset.

1.3 Contributions

This dissertation has several major contributions as listed below:

• An automatic sampling is proposed for imbalanced data classification. This

method includes spatio-temporal synthetic oversampling and dynamic sam-

pling. Both methods are designed to overcome the bias in deep neural net-
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works especially in datasets with skewed distribution. The first method is

used as a preprocessing step to balance the dataset and generate synthetic

video samples for minority classes. While there might be still some complex

classes in the dataset which can be distinguished using the dynamic sampling

combined with CNNs.

• A new hyper-parameter learning is proposed for DNNs namely “Trend-based

Learning Rate Annealing (T-LRA)”. T-LRA is a drop-based learning rate

scheduling that improves the SGD algorithm in deep learning. It reduces the

task of selecting an appropriate learning rate using the statistical trends of the

training process. Specifically, T-LRA automatically determines how and when

to modify the learning rate based on the previous losses during the training.

In particular, it is applied to the CNNs. To the best of our knowledge, this

is the first algorithm that schedules the learning rate using statistical trend

analysis.

• A new deep spatio-temporal model is proposed namely “CNN-ResBiLSTM”

for large-scale multimedia classification. This model integrates the pre-trained

CNN deep representations with a new temporal structure. The temporal com-

ponent contains two-layers of Residual Bidirectional Long Short Term Memory

(LSTM) to capture dynamics, motion, and temporal information from video

datasets. This component does not require any handcrafted features for mo-

tion analysis and automatically combines space and temporal features from

the video.

• A novel multimodal multi-label fusion which considers the correlations be-

tween different data modalities and final classes is proposed. It bridges the

gap between low-level data representations and high-level abstractions. This
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multimodal data fusion model is proposed to enhance the final classification

performance and reduce the complexity of multiple modalities.

• Two new applications are used in this dissertation to evaluate the proposed

framework. Specifically, autonomous driving in simulation is used to assess

the proposed synthetic data generation and domain randomization techniques.

This is the first time domain randomization is used for the application of

“deep driving” which can avoid obstacles. Disaster information management

is another new application used in this study to evaluate the whole multimedia

deep learning framework.

1.4 Scope and Limitations

The proposed framework has still several limitations and assumptions as follows:

• Without loss of generality, the proposed framework is evaluated on video and

image datasets. However, proposed models such as automatic sampling, hyper-

parameter learning, spatio-temporal deep learning, and multimodal fusion can

be extended to cover other data types.

• The hyper-parameter learning model concentrates on learning rate scheduling

as one of the main hyper-parameters in DNNs. However, there are other

parameters such as momentum, kernel size, number of layers, and number of

epochs that can be automated in the future.

• Although the unsupervised deep representation is used in this dissertation, the

proposed framework mainly focused on supervised learning and multimedia

classification tasks. Some of the proposed techniques can be easily extended

for unsupervised learning, however, it is out of the scope of this dissertation.
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• The proposed framework alleviates the big data challenges in multimedia data

using efficient algorithms and techniques which speed up the training and test-

ing process. However, the distributed processing and other big data solutions

(such as GPU programming, Hadoop, Spark) are not taken into considerations

in this framework.

1.5 Outline

This dissertation is organized as follows. Chapter 2 reviews the literature in the area

of multimedia big data analytics including domain adaptation, imbalanced data clas-

sification, multimodal deep learning, and spatio-temporal data analytics. The pro-

posed framework and its main components are presented in chapter 3. In chapter 4,

two new techniques are proposed for synthetic data generation using simulators and

adversarial networks. Chapter 5 discusses the proposed sampling techniques includ-

ing spatio-temporal synthetic oversampling and dynamic sampling. In chapter 6,

several techniques are discussed for multimedia static deep representation learning

including ensemble deep learning and deep Residual-Inception network. Chapter 7

presents a new algorithm for automatic hyper-parameter learning in deep learn-

ing. Chapter 8 describes the proposed spatio-temporal deep learning model and its

components. In chapter 9, a new multi-label multimodal deep learning fusion is

presented. Finally in chapter 10, the conclusions and several future directions are

given.
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CHAPTER 2

RELATED WORK

In this chapter, the literature in the area of domain adaptation and random-

ization, imbalanced data classification, visual and multimodal deep learning, and

spatio-temporal data analytics are presented.

2.1 Domain Adaptation and Randomization

Deep learning achievements heavily depend on the existence of large-scale datasets [55,

56]. Collecting such datasets in real-world is expensive and laborious. In particu-

lar, for different real-world applications, it is challenging to collect large-scale data

for a diverse set of scenarios (e.g., day and night, various lighting conditions, users

movements, etc.).

An alternative technique to collect a large amount of data is data augmentation

with label-preservation that is commonly used in various computer vision appli-

cations [57, 58]. The goal of data augmentation is to enhance generalization and

overcome the overfitting problem [55]. However, data augmentation cannot generate

a high variability in the environment. since it is usually limited to image brightness,

translation, color, and cropping rather than generating completely new scenes and

scenarios.

In recent years, GANs have shown promising results in domain adaptation and

deep learning generalization [59, 60, 61]. In addition, recent advances in deep learn-

ing enable the transformation of styles from one domain (source) to another domain

(target) [59, 62, 63, 64, 65, 66]. In [62], separation and recombination of content

with neural representations were used to transfer the style. A generalized frame-

work that combines untied weight sharing, discriminative modeling, and a GAN loss

was proposed for visual style transformation [63]. Also, an unsupervised pixel-level

10



domain adaptation method without the need of source and target domain pairs was

developed to learn the style transformation [64]. Hoffman et al. [59] proposed a

model based on cycle-GAN that is able to capture both pixel-level and image-level

domain shifts. Shrivastava et al. [65] developed a method to improve the perfor-

mance of unsupervised adversarial domain adaptation by combining techniques such

as local adversarial loss, periodically updated discriminator using refined image his-

tory and self-regulation term. The Multi-Style Generative Network (MSGNet) [66]

uses a CoMatch Layer approach that learns to match the lower order statistics of

content image with the style images. Long et al. [67] extends the conditional GANs

by studying the cross-covariance dependency between the domain-specific feature

representations and classifier predictions. Nevertheless, GAN models still need real-

world data for training which is usually expensive.

Another practical approach for synthetic data generation and style transfer is

utilizing simulators. Collecting data from game engines and generating synthetic

data for deep learning training has attracted significant attention in recent years.

It is used for car and pedestrian detection [68, 69, 70] as well as robotic grasping

and motion control [71, 72, 73]. Synthetic data is also utilized in different tasks

such as optical flow and geometric problems [74, 75]. Flying Chairs dataset, for

instance, is a popular example of synthetic data generated for optical flow learning

with CNNs [76]. However, few deep learning models are generated based on only

synthetic data due to the reality gap challenge. In other words, the networks that

are purely trained on synthetic data may not generalize well to the real world.

Conventional approaches usually use synthetic data to train the network and then

fine tune it on the real-world data [77]. Moreover, some studies used photo-realistic

synthetic images to bridge the reality gap [69, 75]. However, generating photo-

realistic images is expensive and often requires laborious manual designing.
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Compared to the aforementioned approaches, DR is a relatively new topic among

deep learning training methods. DR is originally used in various robotics ap-

plications to transfer deep learning from simulation to the real world [73, 78].

CAD2RL [73] is one of the first applications of DR that flies a quadcopter through

indoor environments using reinforcement learning. Although CAD2RL is based on

only simulation data, it is still leveraging realistic scenes (e.g., chairs, doors, etc.) in

the simulation which represent the real world quite well. Tobin et al. [78] proposed

DR for object localization and robot manipulation. Using data from simulator and

non-realistic textures, they are able to train a deep learning model for object de-

tection that is accurate to 1.5cm in the real world. Similarly, Bousmalis et al. [72]

leveraged both domain adaptation and randomization to transfer simulation to the

real world for robotic grasping systems. In that work, a GAN is employed to make

synthetic images more realistic. In a recent work by Tremblay et al. [68], it is shown

how DR can be used for object (cars) detection and it also illustrates the benefit of

fine-tuning deep neural networks on real data after training on simulated data.

2.2 Imbalanced Data Classification

A critical challenge in multimedia data is how to process data with skewed distri-

butions or in other words, the imbalanced datasets. This can be seen commonly

in real world multimedia applications where the classes are not distributed uni-

formly [79, 80, 81, 82, 83, 84]. There are usually two classes: the major classes (or

called the negative classes) and the minor one (or called the positive class), where

we are more interested in detecting the minor class. For instance, in medical lab

results, cancer instances are rare but more important than those instances for reg-

ular diseases. Other applications of imbalanced data are fraud activities detection,
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bomb detection, failure predictions of technical equipment, etc. [85, 86]. In such

conditions, conventional machine learning and data mining algorithms often fail to

detect the minor class, and they are biased toward the negative classes, which may

have serious effects. Suppose an instance of a medical lab result is predicted as

non-cancer (a negative class), while in reality the patient has the cancer. This error

is called false negative, which can cause very serious harm.

Regarding the data imbalance issue, conventional approaches can be mainly cat-

egorized into the following groups [85, 87, 88]: Sampling methods, cost sensitives

learning, and hybrid algorithms. Typically, sampling methods modify the data dis-

tribution in order to balance the dataset and improve the classification results. There

are two main re-sampling approaches in the literature: over-sampling the minority

(positive) class [89] or under-sampling the majority (negative) class [90]. In other

words, the techniques in this group either decrease the frequency of the majority

class (under-sampling) or increase the frequency of the minority class (oversam-

pling) [88]. Either way can be used in any machine learning algorithm as a prepro-

cessing phase. Although these techniques can address the data imbalance problem,

they may discard potentially important information or increase the likelihood of

overfitting. More advanced techniques such as Synthetic Minority Over-sampling

Technique [91] are proposed to avoid overfitting and information loss.

The solutions of the latter group are algorithmic techniques in which the classi-

fiers are designed to naturally handle the imbalanced datasets [92, 93]. For example,

Cost Sensitive Learning (CSL) modifies the learning process by incorporating the

misclassification costs of the different classes [94]. Currently, CSL has been applied

in various learning algorithms such as decision trees [95], AdaBoost [96], and Naive

Bayes [97]. Also, ensemble techniques such as bagging and boosting can improve the

performance of classification and overcome the overfitting problem [98]. Recently,
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various hybrid methods have been proposed, which combine the traditional solutions

for data imbalance subject [98].

Existing work on imbalanced data classification is mainly limited to binary clas-

sification since multi-class imbalanced data classification has more complicated re-

lations between its classes. An intuitive strategy to handle multi-class imbalanced

data is to apply decomposition methods to turn the problem into a set of binary clas-

sification problems [99]. However, this method needs careful combination strategies

to reconstruct the original multi-class dataset.

In the deep learning literature, the challenges of imbalanced data classification

have not been thoroughly investigated. Few recent studies have focused on this

problem by generating synthetic data [100] or changing the loss function to improve

the detection performance of minority classes [101]. To the best of our knowledge,

there is no framework for multi-class and multi-label multimodal imbalanced data

classification using deep neural networks

2.3 Deep Learning

Deep learning techniques have become the main parts of various state-of-the-art

multimedia systems and computer vision [102]. More specifically, CNNs have shown

significant results in different real-world tasks, including image processing, object

detection, video processing, etc. This section discusses more details about the most

recent deep learning models and algorithms proposed over the past few years for

multimedia data processing.
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2.3.1 Visual Data Processing

In 1998, LeCun et al. presented the first version of LeNet-5 [103]. LeNet-5 is a

conventional CNN that includes two convolutional layers along with a subsampling

layer and finally ended with a full connection in the last layer. Although, since the

early 2000s, LeNet-5 and other CNN techniques were greatly leveraged in different

problems, including the segmentation, detection, and classification of images, they

were almost forsaken by the data mining and machine learning research groups.

More than one decade later, CNN algorithm has started its prosperity in computer

vision communities. Specifically, AlexNet [40] is considered the first CNN model

that substantially improved the image classification results on a very large dataset

(e.g., ImageNet). It was the winner of the ILSVRC 2012 and improved the best

results from the previous years by almost 10% regarding the top 5 test error. To

improve the efficiency and the speed of training, a GPU implementation of the CNN

is utilized in this network. Data augmentation and dropout techniques are also used

to substantially reduce the overfitting problem.

Since then, a variety of CNN methods have been developed and submitted to the

ILSVRC competition. Among them, ZFNet [104] demonstrates its supremacy and

could achieve the lowest top 5 error 11.7 in the ILSVRC 2013. Although ZFNet is

very similar to AlexNet and can be considered a fine tuning of that network, it still

provides some key ideas and modifications. In 2014, two influential but different

models are presented which mostly focused on the depth of neural networks. The

first one, known as VGGNet [105], includes a very simple 19 layer CNN. In this

network, at each layer, the spatial size of the input is reduced, while the depth of

the network is increased to achieve a more effective and efficient model. Although

VGGNet was not the winner of the ILSVRC 2014, it still shows a significant improve-

ment (7.3% top 5 error) over the previous top models which came from its two major
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specifications: the simplicity and depth. In contrast to VGGNet, GoogleNet [2], the

winner of this competition (6.7% error), proposed a new complex module named

“Inception”, allowing several operations (pooling, convolutional, etc.) to work in

parallel. This network is basically inspired by the Network in Network model [4],

which provides dimensionality reduction using micron neural network (1× 1 convo-

lutions).

Microsoft deep residual network (known as ResNet) [1] took the lead in the

2015 competitions including ILSVRC 2015 and COCO detection and segmentation

tasks by introducing the residual connections in CNNs and designing an ultra deep

learning model (50-152 layers). This model achieved an incredible performance

(3.6% top 5 error) which means, for the first time, a computer model could beat

human brains (with 5-10% error) in image classification. On the contrary of the

extremely deep representation of ResNet, it can handle the vanishing gradients [106]

as well as the degradation problem (saturated accuracy) in deep networks by utilizing

residual blocks.

In the last few years, several variations of ResNet have been proposed. The

first group of methods has tried to increase the number of layers more and more.

Current CNN models may include more than 1000 layers [107]. Finally, in 2017,

ResNeXT [108] is proposed as an extension of ResNet and VGGNet. This simple

model includes several branches in a residual block, each performing a transforma-

tion which is finally aggregated by a summation operation. This general model

can be further reshaped by other techniques such as AlexNet. ResNeXT outper-

forms its original version (ResNet) using half of the layers and also improves the

Inception-v3 as well as Inception-ResNet networks on the ImageNet dataset. Fig-

ure 2.1 demonstrates the revolution of depth and performance in image classification

(e.g., ImageNet) over the time. The problem of supervised image classification is
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regarded as “solved” and the ImageNet classification challenge concluded in 2017.

On the other hand, video analytics has attracted considerable attention in the

computer vision community and is considered as a challenging task since it includes

both spatial and temporal information. In an early work, large scale YouTube

videos containing 487 sport classes are used to train a CNN model [109]. The model

includes a multi-resolution architecture which utilizes the local motion information

in videos and includes context stream (for low-resolution image modeling) and fovea-

stream (for high-resolution image processing) modules to classify videos. An event

detection from sport videos using deep learning is presented in [110]. In that work,

both spatial and temporal information are encoded using CNNs and feature fusion

via regularized Autoencoders.

3-Dimensional CNN (C3D) [111] has demonstrated a better performance on video

analysis tasks over the traditional 2D CNNs. It automatically learns spatiotemporal
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features from video inputs and models the appearance and motions at the same time.

Two-stream networks [112] are another set of video analysis techniques that model

spatial (RGB frame) and temporal information (optical flow) separately and average

the predictions in the last few layers of the network. This network is extended in a

recent work called Inflated 3D ConvNet (I3D), utilizing the idea of C3D. It is also

pre-trained on Kinetics dataset [113].

Deep Long Short Term Memory (LSTM) networks have been widely utilized in

different applications such as NLP, speech processing, and time-series that require

long-term temporal information. Specifically, it is used for video classification tasks

in recent few years [114, 115]. Deep residual networks (ResNet) [1] were originally

proposed by Microsoft Research (MSR) for an image competition task (ILSVRC

2015). This idea was later applied to many different applications and also video

classification tasks [116].

2.3.2 Multimodal Learning

Multimodal contents provide a vast amount of data from social media websites such

as Facebook and YouTube in a daily manner. Multimedia data is not restricted to

a single modality and usually contains multimodal data, such as textual, visual and

acoustic [117]. An intelligent multimodal analysis framework is proposed in [118] to

extract information and aggregate the semantic information efficiently. Multimedia

data represents features from different media sources. In [119], the fusion techniques

such as PCA and ICA that are popularly applied to multimedia data are discussed.

Feature extraction and feature fusion are two crucial improvements for multimodal

data analysis. Multimodal fusion methods, especially bimodal, have been proposed

in numerous research studies, but optimal solutions remain elusive. A multimodal
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analysis is frequently applied to facial expression and face recognition tasks [120].

Several fusion models [121, 122, 123] target the facial expressions by fusing the speech

models with the visual models. Specifically, in [123], bi-directional Long Short-Term

Memory (LSTM) networks are utilized to improve the classification performance

compared to the traditional Hidden Markov Model (HMM) and Support Vector

Machine (SVM) classification frameworks. There has been a surge of progresses in

the field of deep multimodal representation learning in the past several years. Most

of the models present improvement in bi-modal learning with specific tasks, such

as facial expression, emotion recognition [124]. EmoNets [124] explored multiple

combination methods to fuse modalities into one classifier by using SVM and won

the EmotiW challenge in 2013. In [125], it is shown that finding the relationship

between the image data and the audio data in the early stage is not straightforward

since there is no direct connection between the raw pixels and audio waveforms

or spectrograms. Thus, a cross-modality feature learning is proposed for speech

recognition which generates the shared representation features utilizing the videos

of the lip movements. Finally, in [126], Gibbs sampling is applied to generate the

fused representation for bi-modal feature learning.

Despite the fast growth of deep learning and its applications (e.g., NLP, computer

vision, and speech processing), current research in multimedia big data analysis us-

ing deep learning is still in its initial stage. Multimodal deep learning techniques

are needed to analyze different modalities of data [124]. Moreover, handling high-

dimensional, heterogeneous, and unlabeled multimedia data is a great potential for

the future deep learning research. However, computational efficiency still remains

a big challenge in multimedia deep learning since deep learning requires a great

amount of resources and (usually) more training time in comparison to the tradi-

tional machine learning approaches.
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2.3.3 Hyper-parameter Learning for Neural Networks

Artificial neural networks have been widely used in a wide range of applications.

Specifically in recent years, it has been extended to deep learning, which has shown

its strength in dealing with real-world problems [55]. Till now, several algorithms

have been proposed to train neural networks and minimize the loss functions, in-

cluding Stochastic Gradient Descent (SGD) [127], AdaDelta [128], AdaGrad [129],

Adam [130], to name a few. In a gradient descent process, selecting the appropriate

parameters such as the learning rate (step size) is crucial for a better and faster

learning. It also needs expert knowledge and differs for each problem. LeCun et

al. [131] proposed an online estimation of principal eigenvalues and eigenvectors

of the loss function’s Hessian or second derivative matrix. Generally, the optimal

learning rate can be selected as the inverse of the largest eigenvalue of the Hessian

matrix. However, since computing the Hessian matrix for large learning algorithms

(e.g., backpropagation) with thousands of parameters is computationally expen-

sive, an online version of this algorithm was proposed by LeCun et al. In another

work [132], the learning rate is changed in each epoch based on the weights and

gradient values of the previous epoch in order to minimize the loss function. This

method is inspired by the learning rate adaptation proposed in [133], which derives

two-point step sizes approximation to the secant equation.

AdaGrad [129] has shown promising results on the large learning tasks. This

method utilizes the first order information but relies on some second order features

and annealing. In this method, small gradients have large learning rates and vise

versa. However, it is very sensitive to the initial conditions and network hyperpa-

rameters. AdaDelta [128], an extension of AdaGrad, is a dynamic method adapting

the learning rate over time using only the first order information. This approach

overcomes some of the AdaGrad problems such as continual decay of the learning
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rate during the training process and the need for manually selecting the global learn-

ing rate. Adam [130] is another algorithm for the first-order optimization of gradient

descent. It combines the advantage of AdaGrad and RMSProp [134], an optimiza-

tion for online and non-stationary environments. Currently, Adam has been applied

in popular deep learning architectures [1] and has shown its effectiveness.

2.4 Spatio-Temporal Data Analytics

Video classification is challenging due to its multimodality and spatio-temporal na-

ture [25]. Traditional methods combined several modality representations to en-

hance the classification performance. Chen et al. [135] proposed a multimodal data

mining framework for semantic event detection from sports videos. Despite the great

capability of the framework, it still needs human efforts for temporal analysis and

also uses handcrafted features. In computer vision, several techniques have been

proposed to detect motion and temporal information from videos. Among them,

optical flow [52] and iDT [53] are able to generate discriminative motion features

from the data. However, using engineering techniques for temporal analysis is a

computationally expensive task.

Deep learning has been applied greatly in recent years to overcome the challenges

of traditional methods and generate general-purpose models for feature analysis, ei-

ther static or temporal [136, 137]. Spatio-temporal deep learning techniques can be

divided into two groups: 1) Those generating separate models for each modality and

fusing the information in the final layers [112], and 2) Those designing a comprehen-

sive model to handle spatio-temporal information and their connections in one single

model [111]. The 3D convolutional neural networks (called C3D) [111] fall under

the second category that inherently applies both pooling and convolutional layers in
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the 3D space. In that work, the third dimension is time. This network requires very

large-scale datasets to converge and very powerful and parallel machines including

GPUs with high memory to train the deep 3D networks.

LSTM was originally proposed in 1997 [138] which is a variant of RNNs. Deep

LSTM networks have been widely utilized in different applications such as NLP,

speech processing, and time-series that require long-term temporal information.

Specifically, it is used for video classification tasks in recent few years [114, 115].

Deep residual networks (ResNet) [1] were originally proposed by Microsoft Research

(MSR) for an image competition task (ILSVRC 2015). This idea was later applied

to many different applications and also video classification tasks [116].

All the aforementioned methods employ complex and computationally intensive

handcrafted features such as optical flow [52] or iDT [53] for video classification and

usually fuse several models to capture the spatio-temporal information. Moreover,

these techniques usually ignore the imbalanced distribution of real-world data and

are only evaluated on very balanced datasets.
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CHAPTER 3

OVERVIEW OF THE PROPOSED FRAMEWORK

Multimedia semantic concept detection is an emerging research area in recent

years. Many multimedia search engines often use textual descriptions and metadata

to retrieve data such as image or video. However, due to the limitation and sub-

jectivity of multimedia metadata, such engines may not provide accurate results.

Thus, automatic concept detection is crucial in multimedia analysis. Therefore, the

goal of this work is to address existing challenges in multimedia big data analysis

and support multimedia semantic representation.

Currently, many research studies have been done in multimedia data manage-

ment. However, very few research provides a comprehensive framework to address

the multimedia challenges such as imbalanced data problem, large-scale data prepa-

ration, multimodal data representation learning, and spatio-temporal information

extraction. For this purpose, in this dissertation, an integrated framework is pro-

posed for multimedia big data analytics especially multimedia semantic concept

detection. The whole framework is shown in Figure 3.1 which consists of five

major components: synthetic data generation, automatic sampling for imbalanced

data classification, deep static representation learning using transfer learning, deep

spatio-temporal learning, and multimodal deep learning fusion. These components

are coherently integrated to address the challenges in multimedia big data and sup-

port different functionalities in this area. In this framework, synthetic data are

automatically generated using generative models and simulators to overcome lack

of real-world data. A novel sampling technique is proposed to handle imbalanced

data problem. Also, DNNs are utilized as the main learning algorithm due to their

great capability in multimedia data analytics. Specifically, an ensemble of deep rep-

resentation learning together with an efficient Residual-Inception model are utilized
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for static feature analysis of visual data. This framework also utilizes an automatic

parameter learning to further enhance the efficiency of model training. A deep

spatio-temporal model is proposed to handle both static and temporal features in

multimedia data, then different modalities (e.g., audio, image, etc.) are combined

using a novel fusion model.

3.1 Synthetic Data Generation

Existing deep learning models require very large-scale datasets with enough variety

that represent various scenarios and conditions in the real world. However, these

kinds of datasets may not be available for many multimedia applications. An effi-

cient solution to address this challenge is automatically generating synthetic data

for training deep learning models. This dissertation presents two novel synthetic

data generation methods for two challenging real-world applications:

• The first method addresses the problem of flood event detection from images

with real-world conditions [139]. This work proposes a new image classification

model based on adversarial data generation and augmentation to overcome the

unavailability of real-world data in rare scenarios.

• Another method based on simulation data is proposed for the application of

autonomous driving and obstacle avoidance [140]. This dissertation proposes

new domain and scenario randomization techniques to reduce the gap between

simulation and the real world.

The experimental results of both flood event detection and autonomous driving

models demonstrate the effectiveness of the proposed models compared to the con-

ventional methods. These technique increases the generalization in deep learning,
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improves the model performance, and reduces the need to have a large-scale anno-

tated dataset. Both models can be extended for other applications and domains.

3.2 Automatic Sampling for Imbalanced Data

Current deep learning techniques do not automatically consider the data imbalance

problem. As mentioned earlier, the existing machine learning techniques that handle

the imbalanced datasets can be divided into sampling and algorithmic methods. In

this dissertation, we proposed new methods to overcome the datasets with non-

uniform distributions in multi-class classification. This method mainly contains two

steps:

• We propose a new spatio-temporal synthetic oversampling [141] to automati-

cally resample the data using both spatial and temporal information.

• A dynamic sampling method [142] is presented which modifies the data sam-

ples of each class during the training using the evaluation score for that class

in the reference set.

3.3 Deep Static Representation Learning

Finding the best attributes or features which represent each data modality and

discover the knowledge and relationship between them, is an essential phase of data

mining. Thus, we propose a new multimedia representation learning using transfer

learning and pre-trained deep learning models. This component contains two main

parts:

• First, multimedia representation learning using an ensemble deep learning [143,

144, 145] which handles the imbalanced data problem and overfitting. Inspired
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by the great success of transfer learning and deep learning, the most discrimi-

native deep features are extracted from various pre-trained models and then a

new ensemble technique based on Support Vector Machine (SVM) is designed

to enhance the semantic event detection in imbalanced datasets.

• We further enhance this model by proposing a new deep learning model based

on traditional CNNs integrated into a two levels of Residual-Inception com-

bination [146]. The proposed model is able to automatically detect semantic

events from multimedia data.

In summary, based on the experiments on different multimedia datasets, the pro-

posed deep static representation learning model has shown its superiority and effec-

tiveness while maintaining low computational costs in multimedia semantic event

detection.

3.4 Automatic Hyper-parameter Learning

In this dissertation, we conduct an algorithm to automatically adjust the hyper-

parameters (especially learning rate) in deep neural networks [147]. In particular,

an automatic drop-based learning rate scheduling is proposed to improve the SGD

algorithm in deep learning. This work alleviates the task of selecting an appropriate

learning rate by analyzing the statistical trends of the training process in an online

manner. It automatically decides when to drop the learning rate based on the

losses in the previous training iterations. Specifically, this algorithm is applied on

CNNs and send the feedback to the learning model in each training iteration. It

not only improves the performance but also significantly speeds up the training and

convergence processes.
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3.5 Deep Spatio-Temporal Learning

Retrieving valuable information from large-scale multimedia data is yet another big

challenge. In recent years, video classification has attracted significant attention

in the multimedia and deep learning community. It is one of the most challenging

tasks since both visual and temporal information should be processed effectively.

Existing techniques either disregard temporal information between video sequences

or generate very complex and computationally expensive models to integrate the

spatio-temporal data. In this dissertation, we propose an effective deep learning

model for imbalanced video classification by utilizing both spatial and temporal

information [141]. The model includes a series of residual bidirectional LSTM to

capture temporal knowledge in video datasets. Experimental results on two imbal-

anced video datasets demonstrate the superiority of the proposed spatio-temporal

model compared to the state-of-the-art approaches.

3.6 Multimodal Deep Learning Fusion

When the volume of multimedia data increases exponentially, so do the complication

and connection between the data. As multimedia data contains various media types,

extracting multi-modal discriminative information from the data instances is imper-

ative. In general, multi-modal data can be categorized into visual (e.g., image and

video), audio, and textual modalities. It is critical how to effectively integrate the

information from different data modalities to better manage multimedia systems.

In this dissertation, we address this challenge by proposing a new multimodal deep

learning model [148, 149, 150, 151]. The main purpose of this model is to bridge

the gap between multimedia data low-level characteristics and its high-level seman-

tic content. This model combines the information generated from previous models
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(multimedia static representation learning and deep spatio-temporal learning) using

a new fusion model which considers the correlations between data modalities and

final classes. The results on a collected disaster-events video dataset demonstrate

the effectiveness of both visual model and fusion model compared to the baseline

approaches.
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CHAPTER 4

SYNTHETIC DATA GENERATION

Deep learning achievements heavily depend on the existence of clean, annotated,

and large-scale datasets [55, 56]. Collecting such datasets is expensive and labori-

ous. Moreover, many existing visual data classification techniques use datasets that

usually include high-resolution images without considering real-world noise. How-

ever, in many real-world applications, it is challenging to collect large-scale clean

data for a diverse set of scenarios and conditions (e.g., day and night, various light-

ing or weather conditions, users movements, etc.) that would allow the systems

to work robustly. Therefore, in this dissertation, new techniques are proposed for

synthetic data generation for deep learning training. In particular, two challenging

applications are used to evaluate the proposed solutions. The first application is a

flood event detection using GANs while the second one is an autonomous driving

and obstacle avoidance in simulation using domain randomization techniques.

4.1 Data Generation using Generative Adversarial Networks

Although machine learning and deep learning have achieved substantial progresses

in image classification, there are only very few methods that leverage deep learning

for real-world disaster detection and management [152]. This is mainly due to the

limited annotated data available in this domain. Existing work usually collects

the data from Web/social media and annotates them manually. Nevertheless, the

variability of images in such datasets may not be sufficient to create a robust model

which can be used in different real-world situations. For example, many flood images

in social media were taken during the day, most users posted clear images without

significant noise, etc. The model trained on such data cannot easily detect a specific
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(a)

(b)

Figure 4.1: Samples of (a) noisy and (b) normal flooding images

disaster from the real-world noisy images (e.g., blurry or night images). Figure 4.1(a)

shows several noisy flood images that cannot be detected by a deep learning model

trained on normal flood images (Figure 4.1(b)).

In this study, three sets of image styles including “night”, “blurry”, and “rainy”

is used. Since collecting and annotating these sets of images are difficult and tedious,

recent photorealistic style transfer techniques are utilized to transfer images between

two different domains (normal to style) in an unsupervised manner. Specifically, a

new data augmentation method based on Cycle-Consistent Generative Adversarial

Networks (CycleGANs) is proposed. For each set of styles, a CycleGAN is trained to

transfer the images from regular flood to the styled flood (e.g., to night-flood, rainy-

flood, and blurry-flood.). These images are later utilized in the data augmentation

step to train a Convolutional Neural Network (CNN). To the best of our knowledge,

this is the first work that applies style transfer to flood event detection. In addition,

this is the first flood detection framework that can detect unusual flood images

without seeing such irregular images in the training set.
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Figure 4.2: The proposed adversarial data augmentation model

4.1.1 Adversarial Data Augmentation

The proposed method aims to train a CNN model for image classification which is

robust to various contexts (styles), denoted as Y1, Y2, . . . , YN . For the application

of flood event detection, the training images are classified into two categories: flood

and non-flood. Therefore, a training dataset I = {I01 , I02 , . . . , I0M}, containing both

flood-related and non-flood images, is collected to train the model. Figure 4.2 depicts

the proposed adversarial data augmentation method in which CycleGAN is utilized

as data augmentation to enhance the CNN classifier for flood event detection.

Data augmentation is a common way to enhance the training dataset and im-

prove the performance of the CNN models and its generalization capability. The

conventional approaches performing data augmentation include flipping, scaling,

cropping, rotation, etc., which manipulate the pixel values in a simple manner.

However, the patterns of the images can significantly change in various contexts
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with a complicated transformation. In the case of flood event detection, the images

show different visual characteristics in day or night, in rainy or sunny weather, and

when the camera is moving or not. GAN has shown powerful performance to learn

the patterns/styles of contexts regardless of the objects in the images, and thus in

this work, we propose a novel approach of data augmentation by utilizing Cycle-

GAN [153] to perform carefully curated style transfer for flood in different contexts.

We first define the most common context as the regular context X. All the original

images in the training dataset are from X. Then, for each stylized target context Yi,

a CycleGAN model is trained to translate a given flood image from X to Yi without

any paired image samples. The goal is to learn a set of functions Gi : X → Yi, ∀i so

that the learned transformation of images after applying Gi(X) are indistinguish-

able from the style references Yi by using an adversarial loss. The adversarial loss

(LAdv) is applied to the mapping functions Gi(X) as follows.

LAdv(Gi, DYi , X, Yi) = Eyi∼p(yi)[logDYi(yi)] + Ex∼p(x)[log(1−DYi(Gi(x))] (4.1)

where Gi generates images Gi(x) or ŷi, and DYi discriminates the training sample

Gi(x) from the real target yi. A similar loss is applied to the inverse mapping Fi :

Yi → X and its discriminator DX . Since these adversarial mapping functions are

under-determined and prone to overfitting, further reduction of mapping functions

is achieved through cycle-consistency, i.e., x→ Gi(x)→ Fi(Gi(x)) ≈ x. Similarly,

another inverse cycle-consistency is introduced that learns the transformation back

yi → Fi(yi)→ Gi(Fi(yi)) ≈ yi. This is achieved by using a cycle consistency loss,

defined as:

Lcyc(Gi, Fi) = Ex∼p(x)[||Fi(Gi(x))− x||1] + Eyi∼p(yi)[||Gi(Fi(yi))− yi||1] (4.2)

The aforementioned generative model is trained with images of regular floods

as well as other stylized contexts. At the end, the reconstructed images Fi(Gi(x))
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closely match the input images x. These stylized images Gi(x) are then used in the

training of the CNN flood detection model.

Given all the CycleGAN models, each training image I0i can be transferred into

N types of contexts. The synthetic images can be represented by I1i , I
2
i , . . . , I

N
i , re-

spectively. In each training epoch, the switch randomly selects one of the transferred

or original contexts for each image in the training dataset. Then, it feeds the selected

images into the CNN model and updates the model parameters accordingly. In other

words, in each epoch, a proxy dataset Ik = {In1,k

1 , I
n2,k

2 , . . . , I
nM,k

M } is generated to

train the CNN model, where k is the epoch number and ni,k ∈ {0, 1, 2, . . . , N} is

the selected context of image I0i , randomly generated by the uniform distribution.

For the image classification, ResNet50 is applied, where the last layer is replaced

by a fully connected layer with sigmoid activation. After the CNN model is trained,

the test images are directly used to compute the prediction results, without using

any CycleGAN model to transfer the style.

4.1.2 Experimental Analysis

Datasets. We collected flood-related and non-flood images from YouTube and

Twitter with the corresponding keywords and tags. First, we used the keyword

“Harvey” which was a major hurricane that occurred in the United States in 2017

with a severe inland flooding to search flood-related videos on YouTube. Mean-

while, Twitter is leveraged to collect flood-related visual data via Twitter API [154].

Both images and videos are collected from the tweets with hashtags “flooding” and

“flood”. The training set included all the data collected from YouTube, however

it randomly selected 30% of Twitter’s data. The remaining data from Twitter are

used as the testing set. All the images are manually labeled as flood and non-flood
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Table 4.1: The size of the collected flood image datasets

Training Test Style
Non-Flood Total 1866 1364 -

Flood

Total 8645 5072 21000
Regular - 3627 -
Night - 294 7000
Rainy - 799 7000
Blurry - 434 7000

for training and evaluation purposes, while the flood-related images are tagged as

“night”, “rainy”, and “blurry” for evaluation purposes only, i.e., the proposed model

is blind to these tags. Each image, if applicable, can have more than one tag. Mean-

while, we also collected style images from Google Images to train CycleGAN models

with the corresponding keywords. The number of images of each context is shown

in Table 4.1.

Computing Environment. An NVIDIA Tesla P100 GPU with 16GB of GPU

device memory is used to deploy the proposed model, including ResNet50 and all

the CycleGAN models in the experiment.

Hyperparameters. The ResNet50 model [1] pre-trained on ImageNet [155] is used

as the image classifier. Adam solver [130] with learning rate=1e-3 and decay=1e-6

is applied to train the image classifier for 100 epochs. We implement CycleGAN

to transfer the image style and train the models with Adam solver with learning

rate=2e-4 for 150 epochs.

Figure 4.3 shows several samples generated by Cycle-GAN style transfer model

on our dataset. The first row of images includes original images from the collected

dataset, while the subsequent rows demonstrate the synthetic images generated from

each Cycle-GAN for blurry, rainy, and night contexts, respectively. Although some

of the generated images are not realistic (e.g., blurry), it can still help the model to

generalize well and detect real-world flood images.
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(a) original

(b) blurry

(c) rainy

(d) night

Figure 4.3: Cycle-GAN style transfer samples on the flood dataset
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Table 4.2: Recall scores on the flood dataset separated by style

Method night rainy blurry
avg.
noisy

flood
(total)

CNN 0.785 0.795 0.791 0.790 0.898
Proposed
work

0.831 0.927 0.873 0.877 0.936

To demonstrate the effectiveness of the proposed model in transferring the style

for each context (night, rainy, and blurry), its performance (Recall) is compared

with the original CNN without style transfer (please refer to Table 4.2). Recall or

true positive rate is selected to show the number of correctly classified images for

each context. It can be seen from the table that the proposed work significantly

enhances the performance in all categories (the average recall in three categories is

increased by more than 8% and the total flood recall reaches 0.94). In other words,

the proposed model is able to accurately detect noisy and abnormal flooding samples

compared to the conventional CNNs.

Now the question is why Cycle-GAN is utilized in this work rather than other

style transfer techniques. To answer this question, we compare the proposed work

with two other relevant style transferred methods, namely MSGNet [66] and neural

style transfer by Gatys [62]. The MSGNet uses a CoMatch Layer approach that

learns to match the lower order statistics of content image with the style images.

While the Gatys uses separation and recombination of content with neural represen-

tations to transfer the style. Table 4.3 shows the comparison results between these

three style transfer techniques and the CNN model. As can be inferred from the

table, CNN has the highest precision compared to other techniques, meaning it can

detect non-flood images better than other methods. However, its recall value is the

lowest among the others. On the contrary, both style transfer methods can achieve

very high recall but significantly lower precision. Conclusively, the proposed work
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Table 4.3: Comparison results between different style transfer techniques and the
baseline

Method Precision Recall F1 Accuracy
CNN 0.916 0.898 0.907 0.855

MSGNet [66] 0.855 0.970 0.909 0.847
Style
transfer [62]

0.853 0.978 0.911 0.849

Proposed
work

0.896 0.936 0.916 0.864

beats all the benchmarks regarding the F1 score (the weighted average of precision

and recall) and accuracy.

Finally, Figure 4.4 depicts several noisy flood samples that are correctly classified

by our model, whereas the regular CNN cannot detect any of them. These results are

evident that the proposed adversarial augmentation model can significantly improve

the existing disaster management systems.

4.2 Data Generation using Simulation

Although GANs have shown promising results in domain adaptation and deep

learning generalization, they still need real-world data for training which is usu-

ally expensive. In particular, for some applications such as autonomous driving,

the dataset should represent different locations, obstacles, movements, lighting, etc.

Also, it is sometimes impossible to collect data for rare scenarios (e.g., accidents,

bad weather, and unusual driver behavior). To alleviate this problem, simulators

can be used to quickly generate a huge amount of synthetic data. Until now, sim-

ulators have been widely used in various computer vision and autonomous driving

applications [72, 76, 77, 156, 157, 158]. However, the question is how to effectively

make the network trained on synthetic data operate on real-world data, in other
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(a) blurry

(b) rainy

(c) night

Figure 4.4: Correctly classified samples by the proposed framework for each style
category on the flood dataset

words, how to bridge the reality gap.

4.2.1 Domain Randomization for Bridging the Reality Gap

The existing solutions to overcome the reality gap include generating photo-realistic

worlds [158], Generative Adversarial Networks (GANs) for image-to-image transla-

tion [153], and Domain Randomization (DR) [78]. The latter is the most inexpensive,

yet effective technique recently proposed by researchers to manage this challenge,

mostly in the field of robotics [71, 73]. DR aims to expose the network to simu-

lation’s data with a wide range of variability (e.g., lighting, texture, objects, etc.)

during the training to address the reality gap. This simple technique is able to re-
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Figure 4.5: Transferring the knowledge to the real world (center) from a photo-
realistic simulation (left) vs a primitive simulation (right)

duce (or eliminate) the need for large-scale real-world data since it forces the model

to generate the representation invariant to the appearance of the object and envi-

ronment [73]. In other words, the models trained on a wide variety of object meshes

and scenes can generalize to the realistic scenes that may be completely different

from the renderings generated for training [71]. DR has been recently investigated

in very few specialized object localization and detection tasks [68, 78, 159].

This work explores the DR potential for the application of autonomous driving

which can be later extended for other applications. More specifically, we investi-

gate whether networks trained using non-realistic simulation data can be used for

collision-free driving in photo-realistic simulators and to generate collision-free driv-

ing paths in the real world. This is the first application of DR for collision-free

autonomous driving using an end-to-end deep neural network. Different from some

existing work on DR, the collected synthetic images are not photo-realistic and do

not need to reflect real complex objects such as cars, pedestrians, and traffic signs.

In other words, the goal is to transfer the knowledge from a primitive simulator

with simple randomization techniques to a complex world instead of using expen-

sive photo-realistic simulation as shown in Figure 4.51. This technique significantly

reduces the time and cost of collecting realistic synthetic data.

1The left photo is taken from http://sonify.psych.gatech.edu/research/driving/index.
html
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Moreover, we extended DR to generate dynamic randomized scenarios during the

training. More specifically, a wide range of random scenarios (events) is generated

each representing a completely new world. Each world contains a new terrain,

texture, road, light, shadow, and multiple objects with different sizes, randomly

moving in various directions. We call this approach “Scenario Randomization”

(SR) which not only includes randomization for static objects and their texture

but also it randomizes the dynamic of objects (e.g., moving direction of obstacles).

After training the network on those primitive simulation worlds, it is tested on the

existing realistic simulation worlds for autonomous driving as well as two real-world

image datasets including a self-collected parking-lot dataset and Kitti. To be able

to evaluate the network in the real world without really driving a car, the future

driving path of the car is also predicted. The network receives a single image and

predicts the few next steering angles that are later translated to an estimated path.

The extensive experiments on simulators’ data demonstrate the effectiveness of DR

in training deep neural networks for collision-free autonomous driving in simulation

and also show interesting performance on real-world images.

The contributions of this method include: (1) Applying DR to a new and complex

application (collision-free deep driving); (2) Extending the idea of DR to SR with

leveraging dynamic objects with random movements in addition to the static do-

main randomization; (3) Demonstrating that obstacle avoidance can be learned with

simple geometric shapes rather than expensive photo-realistic objects; (4) Conduct-

ing comprehensive experiments to show the importance of various randomization

factors in making deep driving work in the simulation that also reveals interesting

results in the real-world.

The proposed model is shown in Figure 4.6. As can be seen from the figure, we

generated a very simple simulation world consisting of primitive object shapes and a
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Figure 4.6: The proposed model for collision-free autonomous driving based on
domain randomization

road using the Unity 3D game engine2. Thereafter, we apply various SR techniques

on this world and collect both images and the corresponding steering angles by

driving the car in simulation. These data are later used to train the neural network

and finally predict the future steering angles path on a realistic image.

In this work, we proposed three different domains (worlds) as shown in Figure 4.7.

The first domain is designed for the training purpose while the other two are used

only for testing the model. We need these three domains to see how the model

trained on Domain 1 can drive on more realistic simulated worlds (Domain 2) and

how it predicts the path in the real-world images (Domain 3).

Domain 1: The first domain is designed using a simulator (i.e., Unity game engine).

It contains a simple road and some basic primitives that the ego-car tries to avoid

as shown in Figure 4.7a. This domain does not include real texture (e.g., roads with

lane marking) or any real objects such as vehicles, pedestrians, tree, and bridge. In

Domain 1, we apply various DR and SR techniques and use the collected data from

this domain for model training. To collect the data, human users control the ego-car

in this domain to keep the car on the road while avoiding the obstacles.

2https://unity.com
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Domain 2: The next domain is also designed in the simulator but it includes more

photo-realistic elements similar to the real world. In Figure 4.7b, two samples of

Domain 2 are shown that include realistic objects such as trees, a lake, cars (static

and dynamic), real road texture, etc. This domain is only utilized for the validation

phase.

Domain 3: Finally, the last domain includes real-world images/video of outdoor

environments (e.g. highways, urban, and parking lots). Two image samples of this

domain are shown in Figure 4.7c. It must be noted that Domain 3 is only used for

final testing of the deep driving network and never used during training.

It is worth mentioning that Domains 1 and 2 are both designed based on the

Lake Track scene of the Udacity’s self-driving car simulator3. For Domain 1, we

only used the basic road track and removed all the realistic components. We also

modified the road size, shapes, and curves.

This work aims to add a variety of randomization to the original simulated

domain (Domain 1) which helps the model generalize to more realistic domains

(Domain 2 and Domain 3). In fact, the model is trained to see the new domain

merely as one more randomized flavor of the original domain. The randomization

factors include:

• Terrain: To cover various surroundings in the real world, we utilize several

unrealistic terrains (grounds) with various textures selected from a small set

of terrain textures (20 textures) which can help the model to drive in different

real-world environments (e.g., mountains, jungle, parking, highway, etc.)

• Road texture: for each scenario, a new road texture is randomly selected

from a set of road textures. This texture can be unrealistic and does not

include any lane marking or other realistic road texture. However, its variation

3https://github.com/udacity/self-driving-car-sim
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(a) Domain 1 without DR (left) and with DR (right)

(b) Domain 2 designed by us (left) and Udacity lake track (right)

(c) Domain 3 parking data collected by us (left) and Kitti (right)

Figure 4.7: Samples of three domains including Domain 1 or primitive simulation
(a), Domain 2 or photo-realistic simulation (b) and Domain 3 or the real world (c)

can help the model to generalize to real-world unseen textures. In particular,

we use 20 unrealistic road textures for training and 10 realistic textures for

testing.

• Novel objects (types, size, color, texture): the 3D objects in Domain 1

include three simple primitives (cube, cylinder, sphere). In each scenario, the

program selects a random number (between 10 to 40) of objects from a list of

random object types with random scale, color, and texture and place them in

random positions (x, y, z) on the road using 3D waypoints in Unity. Different

from existing work [68], we use simple pattern-based textures instead of using

realistic textures from large-scale datasets.

• Light: in each scenario, a random intensity of light (between 0 to 2) is selected

which represents different time (day, night) and conditions of the real world.
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• Shadow: for shadow randomization, a special terrain with various heights is

designed. This terrain generates shadows in different parts of the road and

helps the model to learn object’s and the environment’s shadows.

• Dynamic objects: one of the major novelties of this work is handling both

static and dynamic objects with various movement trajectories. For this pur-

pose, a random path (right or left lane) with a random velocity (0 for static

objects, negative numbers for reverse driving, and positive numbers for normal

driving) is assigned to each object. Thus, the object can automatically follow

the waypoints in the assigned lane.

Through extensive research and experiments, it is shown that the aforementioned

factors play important roles in generalizing the model to the real worlds. Examples

of different randomizations are shown in Figure 4.8.

4.2.2 Data Preparation and Model Training

In this work, the goal is to steer the car on a road while avoiding the static and

dynamic obstacles. Therefore, the speed of the car is fixed using the auto-cruise

component in the simulator and only the steering angle for each frame is collected.

For training, the video frames from three cameras, placed in left, center, and right

positions of the ego-car, together with the corresponding steering angle applied by

the user are collected from Domain 1 with different domain and scenario random-

ization. Specifically, ten frames and steering angles are selected per second from the

simulation video at 40 frames per second (fps) rate. As mentioned in [160], images

from left and right cameras are required to train the agent on how to recover from

non-optimal positions, which is essential because of the cascading errors that occur

due to behavior cloning based imitation learning. Specifically, this method helps
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(a) Samples of terrain randomization

(b) Samples of road texture randomization

(c) Samples of object color/texture/scale randomization

(d) Samples of light intensity randomization

(e) Samples of shadow randomization

Figure 4.8: Examples of various randomizations applied to Domain 1

the model to avoid drifting off the road by augmenting with images that are shifted

laterally relative to the longitudinal axis of the car.

After collecting the data from the simulator, it is necessary to handle data out-

liers and smooth the steering angles since human are not always able to drive smooth

trajectories. Outliers are replaced by mean and the steering angle curve is smoothed

with a moving average with a window size of 20 based on our empirical study.

In this work, rather than generating steering angles as traditionally done [160],

we chose to generate a path to be able to test our model in the real world. To

do so, we collect the current and N − 1 future steering angles. Thus, the network
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can predict the path while driving on the road. The generated path can help us to

evaluate the model on real-world images and videos in an open-loop manner without

driving a real car. After the preprocessing step, the steering angles of the left and

right cameras are set by shifting the center cameras’ steering angle by a factor of γ

(to avoid driving off the road). In this work, the correction factor for the next N

consecutive steering angles is calculated as:

αL(R) = αC ± (γ ∗ (N − i2)/N) (4.3)

where α refers to the steering angle, L, C, and R refer to the left, center, and right

cameras, respectively, and i ∈ {0...N − 1} (i = 0 refers to the first steering angle).

The neural network architecture of the proposed end-to-end deep driving model is

shown in Figure 6.9. It takes a single image which goes through several convolutional

layers followed by four dense (fully-connected) layers. The last dense layer generates

ten outputs which correspond to the N steering angles. In other words, given a

single image, this regression model is able to predict the next N steering angles in

an end-to-end manner. The model outputs are later converted to the path in order

to visualize the performance of the model in the real world data.

4.2.3 Experimental Analysis

Datasets. Multiple datasets are used for training and evaluation, with a focus on

covering diverse simulated and real-world scenarios. The details of each dataset is

described below:

• Simulation dataset: As described before, our training data is collected from

Domain 1 (refer to Figure 4.7a). For each scenario, a new combination of

all randomization factors are automatically generated. To collect the images
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and the corresponding steering angles, we had test subjects drive the car in

the simulated world akin to playing a computer game (each played between

10-30 minutes). In total, the combined DR dataset contains around 200k

images. We also collected 30K-100K images for each flavor of randomization

(e.g. road texture, object, terrain, light, and shadow). For the baseline model

(“No Rand”), we used Domain 1 data without applying any randomization

technique for training, while keeping the total number of images fixed. For

evaluation, we utilized two different photo-realistic simulation worlds (please

refer to Domain 2 in Figure 4.7b). The first version is the lake track from

Udacity in which several obstacles (cars, objects, etc.) are added on the road

and the second simulation world designed by us includes moving cars, and also

photo-realistic road/terrain textures.

• Parking dataset: A dataset is collected by driving a car around our corporate

campus in California. This dataset is useful in evaluating the behavior of our

model in a complex real-world environment. Presence of a large number of

stationary parked vehicles is an additional benefit of this dataset for evaluation

of our obstacle avoidance model.

• Kitti: Finally, we downloaded several sets of Kitti raw data4 including city,

residential, and road categories to further evaluate our model on real-world

images.

Experimental Settings. In this work, the steering angle correction is empirically

set to +0.25 and −0.25 for the left and right shifts, respectively. N is set to 10

consecutive steering angles. The image size is set to 160*320px. The car speed

is fixed to 30mph during both data collocation and testing. For preprocessing, the

4KITTI Vision Benchmark Suite: http://www.cvlibs.net/datasets/kitti/raw data.php
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moving average window is set to 20. The sequence of steering angles and the camera

calibration are used to place a 2D path on the image for visualization purposes. This

projection assumes a flat ground plane for the road surface.

The deep learning model includes preprocessing layers to normalize the image

(mean centered) and crop the top parts of the image (remove the sky and only focus

on the road and obstacles). Similarly, the real-world images from parking and Kitti

datasets are preprocessed to follow the same format of the simulation data.

For deep learning training, the following settings are used: Number of epochs=5,

Optimizer=Adam, learning rate=0.0005, batch size=32, Loss function= Mean Squared

Error (MSE), activation functions=RELU, dropout=20%. The images collected

from 2/3 of the road from Domain 1 is used for the training and the remaining is

used for the validation. In all the experiments, the same deep learning model is used

for training and all the training images are obtained from Domain 1 without using

any real images.

We evaluate the performance of the deep learning model using Nvidia’s autonomy

metric [160] for simulation. This metric counts the number of human interventions

to retake the control of the car. In our case, there are two types of errors while

the model is driving the car: (1) collisions with an object (#Collisions), (2) events

where the car ends up outside of the road boundary (#Off − roads). We assign

the same penalty as [160] (6 seconds) when an error happens. Thus, autonomy is

calculated as:

autonomy = (1− (#Collisions+#Off−roads)∗6 [sec]
total time [sec]

) ∗ 100 (4.4)

When a collision or off-road event happens, we programmatically count the num-

ber of errors and reset the car’s location to the next waypoint on the road. This

reduces human intervention while testing the model.
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Ablation Study for Simulation Environment

The goal of this experiment is to see how the model trained on Domain 1 can drive in

a photo-realistic simulation environment. The first set of experiments is executed in

a new simulation environment (Domain 2) which is never seen during the training.

To test the impact of each randomization factor, we trained a model for every

single randomization and compared them with no randomization (No Rand) and

our model (DR), which is trained on all the randomizations together. Specifically, a

fixed amount of image data (30K) are collected for each randomization model (e.g.,

terrain, road texture, light, object scale/color/texture, and shadow). After training,

each model is tested on four different scenarios as follows: (1) Our designed Domain 2

including 7 static cars, (2) Our designed Domain 2 including 8 dynamic cars moving

in various directions, (3) Our designed Domain 2 including 6 static cars in the middle

of the road and 16 cars on the side (simulating a narrow parking space) (4) Domain

2 from Udacity (lake track) including 4 static cars and 2 cubes. In total, each model

is tested for 20 minutes on these four fixed scenarios. The result of this experiment

is shown in Table 4.4. This table shows total number of collisions, off-roads, and

autonomy. As can be seen from the table, with adding terrain randomization (R1),

the number of collisions and driving off the road decreases. With road texture

randomization (R2) the model confuses objects with the road textures causing more

collisions. However, this greatly helps the ego-car stay on the road. Similarly,

light (R3) and shadow (R4) are important factors for avoiding off the road driving.

Object randomization factors (R5 & R6) are obviously the best parameters for

reducing collisions. This is powerful as the object randomization appears to teach

the model the concept of avoiding obstacles. This is indicated by the fact that

despite the training set only containing simple geometric objects, the model avoids

more complex obstacles like cars and pedestrians. Finally, the combined domain
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randomization model can reduce the collision with a great margin while staying on

the road all the times. The autonomy of our DR model reaches 0.98 in this set of

experiments which is 11% higher than the one from the “No Rand” model.

To further investigate the impact of DR on simulation, randomization compo-

nents (R1 to R6) are added one by one to the dataset (while keeping the size of

the dataset fixed) and a model is trained for that specific combination. Although

the previous experiment shows our model is able to avoid dynamic objects without

seeing them during the training, we also use “object movement randomization” (R7)

to further enhance the model reaction to the moving objects. Each model is tested

in our designed Domain 2 for 30 minutes while changing the environment compo-

nents (e.g., light, shadow, terrain, static and dynamic objects, etc.) after each cycle.

More specifically, each model continuously tested over multiple cycles where each

cycle used a different environment (to have a fair comparison, we keep these changes

fixed for all the models). Figure 4.9 depicts the results of this experiment regarding

the autonomy metric. As can be inferred from this plot, R1-2 (terrain+road) can

extensively enhance the performance (especially decreasing the off-road) and adding

other randomization factors can gradually increase the model’s generality to real-

istic environments. The full randomization model (also includes object movement

randomization) achieves 99% autonomy.

Ablation Study for Realistic Environment

To evaluate the performance of our model in the real world, we utilized our col-

lected parking dataset and the public Kitty dataset as explained before. To do so,

the model receives a single image and generates a path demonstrating the future

direction of the car. Figure 4.10 shows several samples from both datasets with DR

and without DR. It can be clearly seen that when there are objects in its path the

51



Method # collision # off–roads autonomy

No Rand 16 11 87
Terrain (R1) 6 8 94
Road (R2) 20 1 90
Light (R3) 13 1 93
Shadow (R4) 23 1 88
Obj
Scale (R5)

13 4 92

Obj color &
texture (R6)

6 4 95

DR (Ours) 5 0 98

Table 4.4: Comparison results on simulation (Domain 2)
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Figure 4.9: Impact of adding individual randomization to the model on autonomy
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Accuracy (%)
Method Parking Kitti
No Rand 18.60 12.44

DR (Ours) 58.14 73.42

Table 4.5: Comparison results on real world (Domain 3)

DR model changes its path to avoid the objects, while the “No Rand” model can

barely stay on the road (it can be seen from the sharp trajectory to the either left

or right) or goes directly towards the object. For the Kitti dataset, the “No Rand”

model is showing a sharp turn to the left in almost all the images, while our DR

model smoothly changes its direction when observing an object close to it (e.g., first

and second rows in Figure 4.10 (b)). These results also show that our model can

deal with extra shadows (e.g., fourth rows in Figure 4.10 (a) and (b)) and detect

obstacles in noisy images (e.g., last row in Figure 4.10 (a) which is an image taken

through the windshield of the car using a cellphone camera with reflections from

the dash).

Finally, the accuracy of these two models (No Rand and ours) is compared in

Table 4.5. Accuracy is calculated by (number of images with correct trajectories
total number of images

) ∗

100. It can be seen from the table that DR can greatly enhance the performance

of our obstacle avoidance model on the real-world images. These results show the

effectiveness of DR in bridging the reality gap for this application.

4.3 Conclusion

One of the main challenges in multimedia and deep learning is having enough train-

ing data which represent various conditions and scenarios in the real world. Syn-

thetic data generation is a practical technique to efficiently overcome this challenge.
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In this chapter, two methods for synthetic data generation is presented each ap-

plied to a new application. The first method is a data generation and augmentation

method based on Cycle-GAN for real-world flood event detection. While the second

method is based on the simulation’s data for autonomous driving in which enough

domain randomization is applied to bridge the reality gap between simulation and

the real world. The proposed techniques increase the generalization of deep learning

models in handling the unseen real-world scenarios while reducing the need to have

a large-scale annotated dataset. The experimental results on these two real-world

applications illustrate the effectiveness of the proposed methods in synthetic data

generation.
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(a) Parking samples no DR (left) DR (right) (b) Kitti samples no DR (left) DR (right)

Figure 4.10: Examples of results on parking and Kitti datasets
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CHAPTER 5

AUTOMATIC SAMPLING FOR IMBALANCED DATA

CLASSIFICATION

Most real-world data has a long tail distribution. In other words, some of the con-

cepts are very scarce while others are abundant. This phenomenon is widely seen

in different applications such as medical, object classification, and surveillance sys-

tems. The problem is to classify the minority cases from the overwhelming majority

cases correctly.

To address this challenge, this chapter presents a new automatic sampling method

that effectively handles the multi-class data imbalance problem. This component

first introduces a new sampling technique which generates synthetic videos for mi-

nority classes using a spatio-temporal oversampling approach. Also, it is extended

using a dynamic sampling model which automatically resamples the data during the

training of CNNs.

5.1 Spatio-Temporal Synthetic Oversampling

Studies have shown that the use of sampling methods consisting the modification of

the data distribution in an imbalanced dataset can help improve the classification

performance. Thus, a new video oversampling method is proposed which includes

two main components: random frame selection (temporal) and random augmenta-

tion (spatial). Suppose the multi-class training video dataset V includes N video

samples and M classes (V = {vi,j|i = 1, · · · , N ; j = 1, · · · ,M}, where vi,j refers

to the ith video sample belonging to the class j). The class set is CL = {clj|j =

1, · · · ,M} where clj refers to the jth class, that includes a different number of video
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samples nvj. The maximum number of samples in a class set is δ and each video

includes frmi,j frames.

Algorithm 1 illustrates the steps of the proposed spatio-temporal synthetic over-

sampling method which gets the video dataset V , the class list CL, δ, and α (se-

quence size) as the inputs and outputs the oversampled video dataset V̂ = {v̂i,j,fr|i =

1, · · · , N ; j = 1, · · · ,M ; fr = 1, · · · , freqj}, where v̂i,j,fr is the oversampled video

related to the ith video, jth class, and frth frequency. First, the frequency of over-

sampling for each class clj is calculated as freqj ←−
⌈

δ
nvj

⌉
, where de is the ceiling

function. In other words, the lower the number of samples in each class is, the

higher the number of oversampling frequency will be. For example, if the maximum

number of samples in all classes is δ = 100 and the number of videos in the class j

is nvj = 20, then freqj = 5. Therefore, this video is oversampled five times. Next,

for each video vi,j, the function GetFrames() generates all the frames frmi,j in the

video vi,j.

Since different videos have different numbers of frames, we turn each video into

α-frames sequences. So, for each frequency (e.g., {1, · · · , 5}), we either randomly

downsample the frames to α-frames using RandDown(.) function or upsample it to

α-frames using UpSample(.) function. If the number of frames in a video is higher

than the specified sequence size (α), RandDown(.) will return a random rescaled list

of frames by getting a number to skip between iterations (skip =
|frmi,j |

α
) and then

generating a random number for each skip. For example, if α = 5 and |frmi,j| = 25,

then skip = 5 and a random number between one to five is selected in each iteration

to generate the new rescaled frames.

The random frame selection process leads to a temporally oversampled dataset

which can generate synthetic video samples from the original dataset. Although

different frames are selected from each video in every iteration, they are spatially
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Algorithm 1 The proposed spatio-temporal synthetic oversampling algorithm for
an imbalanced video dataset
Input: Original training video dataset V = {vi,j|i = 1, · · · , N ; j = 1, · · · ,M},
Class list CL = {clj|j = 1, · · · ,M}, Maximum number of video samples δ, and
sequence size α.
Output: Oversampled video dataset V̂ = {v̂i,j,fr|i = 1, · · · , N ; j = 1, · · · ,M ; fr =
1, · · · , freqj}.
1: V̂ ← {};
2: for all class clj ∈ CL do

3: freqj ←−
⌈

δ
nvj

⌉
;

4: for all video vi,j ∈ V do
5: frmi,j ← GetFrames(vi,j);
6: for fr = 1, · · · , freqj do
7: if SizeOf(framesi,j) > α then
8: frmi,j ← RandDown(frmi,j);
9: else
10: frmi,j ← UpSample(frmi,j);

11: Seqi,j,fr ← {} ;
12: v̂i,j,fr ← {} ;
13: for all Img ∈ frmi,j do

14: ˆImg ← RandAug(Img);
15: v̂i,j,fr ← v̂i,j,fr + ˆImg;

16: end for
17: V̂ ← V̂ + v̂i,j,fr;

18: end for
19: end for
20: end for
21: return V̂
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similar to each other, which may cause overfitting during the training. This is one

of the main disadvantages of the oversampling techniques for imbalanced data.

To overcome this issue, we utilize augmentation techniques for image samples.

Essentially, we propose a random augmentation method RandAug(.) which applies

various image transformation to each oversampled video using random parameters.

In other words, a random uniform distribution is used to generate different pa-

rameters for image transformation. Specifically, the image transformation function

includes random rotation, translation, shear, and brightness. Finally, the new aug-

mented image ( ˆImg) is added as the frames of the new oversampled video v̂i,j,fr.

Finally, the new video set V̂ is returned and used for the final classification.

5.1.1 Experimental Analysis

The proposed sampling method is applied to two video datasets to evaluate its per-

formance, namely, the disaster video dataset introduced in [149] and public UCF101

action recognition dataset [49]. The disaster dataset was collected during two signif-

icant hurricanes (Irma and Harvey) and is naturally imbalanced. It includes seven

classes (demo, emergency response, flood/storm, human relief, damage, victim, and

speak) and the number of instances of each class varies from 40 to 400. On the other

hands, UCF101 with 101 action categories is selected, which is one of the most chal-

lenging datasets due to its diversity in terms of actions, views, background, camera

motion, and so on. However, different from the existing work on this dataset, the

training set is resampled to serve for imbalanced video classification. To do so, a

random number between 10 to the maximum number of instances in each class is

generated and then those numbers of samples are randomly selected from each class.

This means that each class contains at least 10 samples but may not include all of
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its original samples for training. The goal is to show how the proposed model can

enhance the multi-class classification on a large-scale dataset with skewed distribu-

tions. The first train/test split of this dataset suggested by the reference website is

used in this experiment.

In the preprocessing step, we first extract all the frames form each video. There-

after, we extract the features of every video frame through the last pooling layer

of InceptionV3, resulting in a feature set with 2048 dimensions. These extracted

features are later grouped into sequences. For the sake of simplicity and similar to

the experiments in [161], α is selected as 40. In other words, we turn each video

into a 40-frame sequence. For temporal analysis, a two-layer Residual Bidirectional

LSTM with 1024-wide followed by a 1024 fully connected layer and 50% dropout is

used. This relatively shallow network outperforms other deep stacked Residual Bidi-

rectional LSTM models. We use Adam stochastic optimization with an aggressively

small learning rate 0.000001 and L2 regularization with λ = 0.0003.

Tables 5.1 and 5.2 summarize the experimental evaluation with the comparison

against no-sampling models on the disaster dataset and imbalanced UCF101, re-

spectively. The tables include: (1) a model based on the CNN features and a simple

LSTM. Although this model utilizes the temporal information using LSTM cells, it

does not include any oversampling to handle the data imbalance problem; (2) the

same CNN-LSTM architecture as the previous baseline, but in this model, the class

weighting is added to automatically assign higher weights to the minority classes

in the learning process; (3) the same CNN-LSTM architecture which also includes

the proposed video oversampling; and (4) the same CNN-LSTM architecture which

includes both video oversampling and class weighting.

As shown in Table 5.1, in the first group, no video oversampling is applied and it

is assumed that deep learning can automatically handle the imbalanced data. It can
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Table 5.1: Performance evaluation results of the proposed spatio-temporal synthetic
oversampling algorithm on disaster dataset.

Approach Acc F1
Weighted
F1

No video oversampling
CNN-LSTM 0.589 0.339 0.526
CNN-LSTM+
class weighting

0.663 0.428 0.654

With video oversampling
CNN-LSTM 0.671 0.456 0.662
CNN-LSTM+
class weighting

0.678 0.477 0.688

Table 5.2: Performance evaluation results of the proposed spatio-temporal synthetic
oversampling algorithm on imbalanced UCF101.

Approach Acc F1
Weighted
F1

No video oversampling
CNN-LSTM 0.685 0.655 0.670
CNN-LSTM+
class weighting

0.680 0.660 0.670

With spatio-temporal video oversampling
CNN-LSTM 0.706 0.684 0.696
CNN-LSTM+
class weighting

0.690 0.669 0.679
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be seen that both accuracy and F1 measures are significantly improved with a simple

class weighting. This shows when the data samples of some of the classes are limited,

it is necessary to assign a higher weight to these classes so that the learning algorithm

will not bias toward the majority ones. In the second group, similar experiments are

conducted plus applying the proposed spatio-temporal synthetic oversampling. It

can be inferred from this set of results that the accuracy is boosted using the video

oversampling. More importantly, the F1 measure is significantly improved, which

shows the importance of this sampling technique over the weighting approaches. It

is worth mentioning that the combination of oversampling and class weighting can

enhance the performance results on this dataset since it is highly imbalanced.

Similar experiments are conducted on the UCF101 with imbalanced distributions

to further show the ability of the proposed work on a large dataset. The results are

shown in Table 5.2 which includes two sets of results: CNN-LSTM with no video

oversampling, and CNN-LSTM with video oversampling. Each set includes the

results with and without class weighting. Similar to the disaster dataset, data over-

sampling can improve the performance regarding both accuracy and F1 measures

in a multi-class classification task. More specifically, the accuracy and F1 metric

are improved by 1.5% and 0.3, respectively. Different from the disaster dataset, the

results are decreased when video oversampling is combined with the class weighting

technique. Based on our observations, more overfitting happens for this dataset,

which is a common disadvantage of class weighting and oversampling techniques. It

is also due to the fact that the disaster dataset is much more imbalanced than the

UCF-101 and needs more balancing strategies.
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5.2 Dynamic Sampling

The existing deep neural networks such as CNNs can achieve very high performance

using a balanced dataset (e.g., CIFAR, MNIST, Caltech, etc.) compared to the

conventional classifiers. However, based on our empirical study, they perform worse

in imbalanced datasets since they were not originally designed to address this prob-

lem. In addition, in current studies, few evaluation metrics have been utilized to

accurately measure the performance of the deep learning models on the minority

concepts.

These challenges motivate us to propose a new deep learning model to tackle the

class imbalance problem in real-world data. This model modifies the existing CNNs

to handle imbalanced data for multi-class classification in an effective manner. For

this purpose, the proposed model dynamically modifies the samples of each class in

each iteration based on the F1-score of that class in the reference set. We propose to

integrate the scores of the F1-based model with the basic CNN model and utilize data

augmentation and transfer learning (fine-tuning the pre-trained models) techniques

to avoid overfitting toward the minority classes and to generalize the model. This

approach will significantly improve the performance of the minority classes and

maintain the performance of the majority ones.

The proposed model is depicted in Figure 5.1, which includes real-time data aug-

mentation module, CNN transfer learning module (will be discussed in chapter 6),

and dynamic sampling module. Real-time data augmentation module is used to

generate the transformed images for each training batch, transfer learning module

is utilized to fine-tune the model, and dynamic sampling module is designed to

automatically generate new samples based on the performance of the reference set.
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Figure 5.1: The proposed dynamic sampling model

5.2.1 Real-time Data Augmentation

One of the main challenges of deep learning is that large amounts of labeled data

are required to achieve a reasonable detection performance. One solution to this

limitation is data augmentation which artificially creates training data via multiple

transformations. Augmentation can improve the generalization and prevent overfit-

ting while reducing the need for large-scale datasets. This process can be done either

offline before training the model or real-time in each iteration of learning. In offline

augmentation, we need to re-create the dataset before starting the training process.

However, in real-time augmentation, we only transform a small batch of images that

are required for each training iteration. In this step, we generate batches of image

data via real-time data augmentation. This approach directly augments the input

data to the model in the data space. Following [55], several random transforma-

tions including rotation, shear, flip, brightness, and shift are applied to the training

samples, so that the model never sees twice the same image.
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5.2.2 Dynamic Sampling in CNNs

The training data used for transfer learning is critical to calibrate the parameters in

the CNN model. In this dissertation, the dynamic sampling mechanism is proposed

to tackle the imbalanced data problem. Inspired by how humans practice similar

questions to avoid the same error happening again, we utilize the performance metric

on the reference dataset to adjust the class distribution of the training samples. Here,

the F1-score metric is used, and the score is calculated based on the one-against-all

assumption for each class.

Algorithm 2 Model Training Framework with F1-Based Dynamic Sampling

Input: Training Images Xtrain, Reference Images Xref , Initial Model MS, and Class
List C.
Output: Dynamic-Sampling-Based Model M1.

1: M1
0 ←MS, i← 1, N∗ ← |Xtrain|

|C| ;
2: for all class cj ∈ C do
3: Ni,j ←− N∗;

4: end for
5: while ¬IsFullyTrained(M1

i−1) do
6: Xi ← ImageSampling(Xtrain, Ni);
7: M1

i ← Train(M1
i−1, Xi);

8: F1i ← UpdateF1(M1
i , Xref);

9: for all class cj ∈ C do
10: Ni+1,j ← UpdateSampleSize(F1i, cj);

11: end for
12: i← i+ 1

13: M1 ←M1
i−1

In the proposed method, the target model M1 is initialized by MS, trained by

the set of images Xtrain, and the dynamic sampling is performed based on the set of

images Xref . All the classes are given in the list C = {cj}. Algorithm 2 shows the

model training framework with dynamic sampling, where |Xtrain| is the size of the

training dataset and |C| is the number of classes. In iteration i, the training images

Xi are sampled from Xtrain in the target domain and augmented as mentioned in
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section 5.2.1. The number of the images of each class is determined by its F1-scores

in the previous iteration F1i−1. After the model is trained by the generated sample

set, the updated model is used to predict the concept of each image in the reference

dataset Xref , where the images are completely different from those in the testing

dataset (obtained from either a different camera or different time). The F1-scores

of class cj in iteration i, f1i,j, are thus calculated.

f1i,j =
2 · Reci,j · Prei,j
Reci,j + Prei,j

(5.1)

where Prei,j and Reci,j are the precision and recall metrics of the class cj in iteration

i. Note that F1i = {f1i,j} is the vector of the F1-scores of all the classes in iteration

i. If a class has a higher F1-score, it can be better distinguished from the other

classes in C. Hence, it becomes more important to improve the performance of the

classes with lower F1-scores and thus more samples (images) from these classes will

be selected in the next iteration; while the total number of images trained in each

iteration remains the same. Eq. (5.2) defines the number of images of cj of the next

iteration. The number of images in any class cj is initialized to N∗ which is the

average number of samples in all classes, i.e., f10,j = N∗.

UpdateSampleSize(F1i, cj) =
1− f1i,j∑

ck∈C
(1− f1i,k)

×N∗ (5.2)

5.2.3 Experimental Analysis

Dataset Description and Preprocessing. For this experiment, we use an image

dataset automatically collected from network cameras as described in [162]. The

data from network cameras have a wide range of characteristics. They may have

different formats (such as Motion JPEG and MP4), different spatial resolutions (i.e.,

numbers of pixels), and temporal resolutions (i.e., frame rates). Some cameras allow

viewers to select resolutions and frame rates but most cameras allow no options. The
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data from some cameras may be noisy due to many reasons, for example, lens covered

by dust, sand, and spider webs, or the views are blocked by trees. These restrictions

impose additional challenges to data analysis. The system has no control over the

data quality because the authors do not own these cameras. The pre-processing

phase focuses on organizing and refining the dataset by creating annotations and

reducing noise. In the current annotation workflow, multi-labels are not taken into

account. Therefore, each image only represents one scene and focuses on its most

significant concept.

The initial dataset contains thousands of images retrieved from the cameras,

which are then split into smaller directories for annotation. The team uses a Java

annotation software to label the images and save the results to a comma-separated

file. The file includes the image names (camera ids with timestamp) and the cor-

responding labels. The final cleaned dataset contains over 10,000 images captured

from network cameras. Those images include 19 semantic concepts (scenes) such

as highway, intersection, yard, and mountain. The dataset is carefully divided into

70% training, 10% reference, and 20% testing so that each set includes different sam-

ples from all classes. All the images are resized to 299*299 pixels. In this dataset,

the Positive to Negative (P/N) ratio for each concept ranges from 1.088 (concept

“highway”) to as low as 0.002 (concept “airport”), which leads to an imbalanced

data classification problem.

Result Evaluation. The F1-score (Avg. F1) is adopted as the main evaluation

metric since it is the most valuable comparison metric for imbalanced data and is the

trade-offs between precision and recall. Moreover, the Weighted Average F1-score

(WAvg. F1) and top-1 accuracy (Acc.) metrics are used to show that the proposed

model can improve not only the prediction of individual minority classes but also

the overall performance results. Here, WAvg. F1 is the average of the F1-scores
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of each class times its ratio of positive to all samples. The results of the proposed

network are compared with the following models: (1) “Basic CNN”: a model based

on VGGNet [163] running from scratch on our dataset (deeper models such as Incep-

tion will not converge well on this dataset); (2) “Deep CNN features+SVM”: using

a deep CNN model as a fixed feature extractor and a linear support vector machine

as a classifier; (3) “TL+No Aug.”: a fine-tuned CNN model without data augmenta-

tion; (4) “TL+Basic Aug.”: a fine-tuned model with real-time data augmentation;

and finally (5) “TL+Balanced Aug.”: a fine-tuned CNN model plus a modified

data augmentation in which each training batch includes a balanced number of

classes. This model utilizes both oversampling and undersampling techniques. In

all transfer learning models, Inception-v3 is used as the base CNN model. Stochas-

tic Gradient Descent (SGD) [164] is used as the optimization with learning rate

0.0001 and momentum 0.9. The “ImageDataGenerator” layer in Keras [165] is used

for augmentation. Specifically, the augmentation parameters used in this work are:

shear range=0.2, horizontal flip=True, rotation range=10, width shift range=0.2,

and height shift range=0.2. Moreover, the threshold of model fusion, Tr, is selected

as 0.3 based on the model performance on the reference data.

Table 5.3 illustrates the detailed performance results on this dataset. As can be

inferred from the table, training a CNN from scratch performs the worst for all three

evaluation metrics. This is due to the need for large-scale datasets to accurately

update the random weights in CNNs. Transfer learning can significantly improve

the results compared to basic CNN as shown in the third row of the table. However,

it still cannot handle imbalanced data precisely. Similarly, the “TL+No Aug.”

model performs poorly on the dataset regarding the Avg. F1-score. However, the

model “TL+Basic Aug.” increases all the metrics compared to the no augmentation

model. The “TL+Balanced Aug.” model (a hybrid oversampling and undersampling
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model) can obviously improve the Avg. F1-score; however, its Acc. and WAvg. F1-

scores are less than the ones in the original augmentation model. In other words,

conventional imbalanced data techniques boost the performance of the minority

classes by sacrificing the majority ones. Finally, the last row of the table shows

how the proposed method improves the performance results for all three evaluation

metrics. That is, it improves the prediction performance of the minority classes and

also maintains the average accuracy.

Table 5.3: Performance evaluation of the proposed dynamic sampling.

Model Acc. Avg. F1 WAvg. F1
Basic CNN 0.649 0.254 0.630
Deep CNN
Features+SVM

0.746 0.528 0.747

TL+No Aug. 0.765 0.432 0.755
TL+Basic Aug. 0.792 0.502 0.779
TL+Balanced Aug. 0.759 0.553 0.766
Proposed Dynamic Sampling Model 0.802 0.599 0.794

Figure 5.2: Comparison of F1-scores for each concept in the network camera dataset

The visualized performance results are demonstrated in Figure 5.2 which shows

each concept (class) along with its P/N ratio in the parentheses. As can be seen from
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this figure, the distribution of the data is highly skewed. Several concepts have very

low P/N ratios (e.g., airport, bridge, and playground), few concepts have higher P/N

ratios (e.g., mountain view, intersection, and water), and the “highway” concept

has a very high P/N ratio. “Basic CNN” has the lowest F1-score in all classes and

cannot detect any instances in classes with very low P/N ratios. The “TL+No Aug.”

model improves the results compared to “Basic CNN”, but it still cannot detect the

minority classes. “Deep CNN features+SVM” performs better than all other models

in concept “Park+Building”, while it performs poorly in almost all other classes.

“TL+Balance Aug.” can detect some instances in the minority classes, though its

performance is much lower than the “TL+Basic Aug.” model in other classes (e.g.,

highway and intersection). Despite the good performance of the “TL+Basic Aug.”

model in some concepts (e.g., yard and street), it cannot detect any instances in the

low P/N ratio classes. Finally, the proposed model can significantly improve the

detection performance of the minority classes, while maintaining or even improving

the performance of all other concepts. This shows the effectiveness of the proposed

model to classify imbalanced and heterogeneous data from the real-world datasets.

5.3 Conclusion

This chapter proposes two sampling methods to handle imbalanced data classifi-

cation. First, it introduces the new spatio-temporal oversampling technique which

generates synthetic videos to handle imbalanced data. Then, a dynamic sampling

model is proposed which is based on CNNs together with real-time data augmen-

tation to enhance the performance results for both minority and majority classes.

The experimental results show the effectiveness of the proposed models on two im-

balanced datasets and a real-time visual dataset captured by the network cameras.
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CHAPTER 6

DEEP REPRESENTATION LEARNING

The necessity of automatic semantic analysis in multimedia data is apparent in

many real-world applications [12]. Specifically, video event detection is an important

and challenging task in multimedia management systems. Over the last decade,

researchers have been looking for automatic techniques to detect the most interesting

events and concepts from multimedia data [117, 166, 167].

Till now, numerous deep learning architectures have been proposed for a variety

of applications. However, it is almost impossible for a single model to work well

for all scenarios and datasets. It is also difficult to handle imbalanced and big

multimedia data because of overfitting, information loss, and additional bias [168].

This chapter presents several techniques for multimedia deep static representa-

tion learning to support multimedia semantic event detection using advanced deep

learning.

6.1 Ensemble Deep Learning

In this dissertation, we propose an ensemble deep learning model, which not only

overcomes the imbalanced data issue in multimedia big data, but also decreases the

information loss and over-fitting problems caused by single models. Inspired by the

great success of deep learning, it is used for deep feature analysis with the application

to video event detection. Thereafter, an ensemble approach is developed based on

the performance of each weak learner (Support Vector Machine (SVM) classifier)

on each deep feature set to improve the semantic event detection in imbalanced

datasets.
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Figure 6.1: The proposed ensemble deep learning model

The Ensemble Deep Learning (EDL) model consists of a mixture of feature

extractors using deep learning techniques which are integrated with the proposed

ensemble algorithm. The whole model is divided into three main modules, namely

(1) preprocessing, (2) deep feature extraction, and (3) classification (as shown in

Figure 6.1). The classification module also includes the training, validation, and

testing steps.
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6.1.1 Preprocessing

The first step in every data analysis is how to preprocess the unstructured data. This

step is domain specific and each type of data (e.g., audio, image, video, and text)

may require its own preprocessing routines. For video processing in this study, we

utilize an automatic and unsupervised shot boundary detection approach [169] based

on the object tracking and image segmentation techniques. Using this approach,

shot boundaries of each raw video are detected and the first frame of each shot is

chosen as the keyframe. The first frame of each shot can be considered as the most

distinctive one as it is the boundary of two successive shots. After the preprocessing,

the selected keyframes are used for event detection in videos.

6.1.2 Deep Feature Extraction

Before 2010, research studies in computer vision mostly focused on improving the

handcrafted features and generating more discriminative attributes from the data [170].

Some common and powerful handcrafted features include HOG [171], CEDD [172],

and SIFT [173] for visual data and MFCCs [174] for aural data. However, this

progress started to slow down between 2010 and 2012 with the advent of new deep

learning techniques such as CNNs. In recent years, deep learning is growing very

fast and has exceedingly raised the performance results. In this study, we also de-

cide to take advantage of this emerging algorithm and apply it as a feature extractor

to our data. For this purpose, several rich and deep feature extraction models are

integrated in a proper manner. The deep feature extraction module is based on the

CNN algorithm and utilizes the pre-trained models using transfer learning.
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Convolutional Neural Networks

CNNs [103] are an advanced version of MultiLayer Perceptron (MLP) networks.

However, in CNNs, most neurons are locally connected instead of fully connected,

which highly increases the training speed and reduces over-fitting by eliminating a

vast amount of parameters in the network.

Unlike MLP, the inputs of each layer in CNNs are arranged in three dimensions:

width, height, and depth. For example, for a 256×256×3 image input, the width and

height equal 256 and 3 is the depth of this input which refers to the channel number

(e.g., RGB). Each neuron in CNNs is connected to a small region of its previous layer.

In overall, there are three main layers to build a convolutional network architecture:

(1) Convolutional layer, (2) Pooling layer, and (3) Fully connected layer [175]. A

CNN includes a stack of convolutional layers followed by a pooling layer and is

usually ended with a fully connected layer as shown in the deep feature extraction

module in Figure 6.1.

In the convolutional layer, the neurons are connected to local regions in the input,

each generating a dot product between a small region in the input volume and their

corresponding weights. As a result, a number of feature maps are generated, by

convolving (sliding) filters over all spatial locations in the input data. In other

words, the feature maps are obtained by the convolution of the input data with a

linear filter (and bias term addition) followed by a nonlinear activation function as

illustrated in Equation (6.1), where xkij refers to the kth feature map at a given layer,

i and j are the input dimensions, and xk−1ij is the input data from the previous layer.

Filters of the kth layer are determined by W k
ij (weights) and bkj (bias).

xkij = f((W k
ij ∗ xk−1ij ) + bkj ). (6.1)
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Finally, the activation function or nonlinearity is shown with f . One of the

mostly used activation functions for deep learning is Rectified Linear Unit (ReLu)

(f(x) = max(0, x)) which increases the nonlinearity and shows better performance

compared to the conventional ones (e.g., sigmoid, tanh, etc.).

After each convolutional layer, there exists a pooling layer which applies a nonlin-

ear downsampling operation along the width and height (spatial dimensions) of the

image input given in Equation (6.2), where βkij is a multiplicative bias and down(.)

is a subsampling function (e.g., max, average, etc.). Therefore, using the pooling

layer, the size of each activation map is reduced, which makes the representation

more manageable. It also handles over-fitting and provides additional robustness to

the network.

xkij = f(βkijdown(xk−1ij ) + bkj ). (6.2)

Finally, the fully connected layer is used as the last layer of CNNs to compute

more high-level reasoning or the class scores. Similar to traditional neural networks,

all neurons or activation maps from the previous convolutional-subsampling layer

are fully connected to a single neuron in this layer.

Feature Extraction using Transfer Learning

In this work, several advanced and successful deep learning architectures are utilized

for visual feature extraction. For this purpose, instead of training an entire CNN

from scratch, we take the pre-trained reference models and treat the convolutional

networks as feature extractors for new datasets. Theses reference models are pre-

trained on very large-scale datasets. Specifically, we select those models which

have more impacts on the image processing field in recent years. The ImageNet

dataset [155] which contains millions of images with 1000 concept categories is used
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Table 6.1: Pre-trained reference models for feature extraction

Method Challenges # layers # categories dataset

AlexNet ILSVRC 2012 8 1000 ImageNet

R-CNN
ILSVRC 2013

VOC 2012
7 200

ImageNet
PASCAL VOC

GoogleNet ILSVRC 2014 22 1000 ImageNet

ResNet
ILSVRC 2015
COCO 2015

152 1000
ImageNet

COCO

to train all such models. Therefore, we run these pre-trained models on our datasets

and generate the features (also known as CNN codes) for all images. These feature

sets are further used for the classification. Table 6.1 presents a summary of the CNN

models used in this work for feature extraction. As can be seen from the table, a

variety of models with different numbers of layers and architectures are used.

6.1.3 Classification

After extracting features from the aforementioned reference models using an un-

supervised transfer learning, we employ a new ensemble technique to alleviate the

over-fitting problem and to improve the performance. First, the extracted deep fea-

tures are analyzed to find the importance of each feature set extracted from each

deep learning model in a supervised manner. In addition, an enhanced ensemble

method is proposed to optimally integrate the trained models. This method effec-

tively adjusts the weight coefficients for the classification module (please refer to

Figure 1). First, we train k classification models (weak classifiers in the ensemble),

each trained on a feature set. Thereafter, the weight coefficient of each classifier

is adjusted based on its classification performance on the validation dataset. The

classification step includes two parts: deep ensemble learning and testing.
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Deep Ensemble Learning

The training procedure of the proposed deep ensemble learning is illustrated in

Algorithm 5. In the first step, we divide the dataset into three parts: train-

ing T , validation V , and testing T ′. Suppose the training set is defined as T =

{(t1, c1), (t2, c2), ..., (tN , cN)}, where ti is the ith training instance, ci is the instance

class (e.g., for a binary classification task ci ∈ {0, 1}), and N is the size of the

training set. Moreover, we store all the feature sets extracted from all deep learning

models in Fr. This is another input of the training algorithm.

The proposed ensemble learning can be seen as a bootstrap aggregation (bagging)

which involves all the weak learners (classifiers) in the voting. However, in this

algorithm, a weighted voting is generated rather than assigning an equal weight to

each learner. In addition, the weights are assigned based on a metric for imbalanced

data. Therefore, the results are improved toward the minority class, while the

performance of the majority class is maintained as high as possible. The weak

learners or models are defined as M = {Mj, j = 1, 2, · · · , k}, each trained using a

linear SVM as shown in Lines 1-3 of Algorithm 5, where k is the number of total

weak learners. SVM is used as the main classifier as it has shown promising results

when it integrates with deep learning [176]. After weak learners Mj (j = 1, 2, · · · , k)

are trained using the training instances, each model is evaluated using the validation

set V as shown in Lines 4-7 of Algorithm 5. For the evaluation and adjusting the

weight coefficients, the F1 measure is used.

Thereafter, the weight of each trained model Mj is calculated using the ratio of

the corresponding F1 score (F1j) to the sum of the scores for all models as shown

in Equation (6.3).

Wj =
F1j∑k
j=1 F1j

. (6.3)
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The weight coefficient assignees higher values (probability) to the models that

are more confident about their prediction. Finally, the algorithm returns each model

and its corresponding weight Wj to be further used in the testing module.

Algorithm 3 Training of Ensemble Deep Learning

Input: Training instances T{(ti, ci), i = 1, 2, · · · , N}, Validation instances
V {(vi, ci), i = 1, 2, · · · , N2}, Feature set Fr = {Fj, j = 1, 2, · · · , k}.
Output: Weight matrix Wj, Trained models Mj.

1: for all Fj ∈ Fr(j = 1, · · · , k) do
2: Mj ← SVM(T, Fj);

3: end for
4: for all Fj ∈ Fr(j = 1, · · · , k) do
5: F1j ← Validate(V, Fj);

6: Wj =
F1j∑k
j=1 F1j

;

7: end for
8: return Wj,Mj

Testing

Algorithm 4 illustrates the testing procedure. The first input of this algorithm

includes the testing set T ′{(t′i), i = 1, 2, · · · , N3}, where t′i is the ith testing instance

and N3 is the total number of testing instances. In addition to the instances, for

each training model Mj, its feature set Fj and weight matrix Wj are given as the

input of this algorithm to predict the labels of the testing instances. In order to

achieve this, we calculate a weighted sum of the k models (or weighted voting). As

can be seen in Line 2-4 of Algorithm 4, the labels Lj (j = 1, · · · , k) generated by

the jth weak learner is calculated for each testing instance. Afterwards, the final

label PLi is calculated as shown in Line 5 of Algorithm 4. Thus, if the generated

weighted sum is greater than half, the label is predicted as positive. Accordingly,

the weak learners with higher validation performance have higher impacts on the

testing prediction in the proposed ensemble algorithm.
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Algorithm 4 Testing of Ensemble Deep Learning

Input: Testing instances T ′{(t′i), i = 1, 2, · · · , N3}, Feature set Fr = {Fj, j =
1, 2, · · · , k}, trained models Mjs and the weight matrices Wjs.
Output: Predicted labels PLi.

1: for all t′i ∈ T ′(i = 1, · · · , N3) do
2: for all Fj ∈ Fr(j = 1, · · · , k) do
3: Lj ← Mj(t

′
i, Fj);

4: end for

5: PLi =

{
1 if

∑k
j=1 Lj ∗Wj ≥ 1

2
;

0 otherwise

6: end for
7: return PLi

6.1.4 Experimental Analysis

The proposed Ensemble Deep Learning (EDL) model can be generally applied to a

variety of real-world problems such as image, audio, and text classification. In this

work, we specifically evaluated our model on two video datasets in order to detect

semantic events. The first dataset includes videos containing natural disasters, while

the second one is a public large-scale video dataset called TRECVID.

Since both datasets are highly imbalanced, usual metrics such as accuracy and

mean-square error may not be effective and reliable. The reason is that the conven-

tional classifiers, which are mostly biased to the majority class, may show very high

accuracy on this class while we are more interested in the minority class. Therefore,

the proposed model is evaluated using the common measurement metrics for imbal-

anced data. Specifically, the confusion matrix parameters including True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative (FN), as well as

Precision, Recall, and F1 measure are employed to evaluate the EDL performance.

The deep learning model utilized in the following experiments is called Caffe [177].

It includes the advanced deep learning techniques and the state-of-art architectures.

The main advantage of Caffe is its rich and updated pre-trained reference mod-
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els, which can be easily used for fine-tuning and transfer learning. Among all the

reference models, we utilize the most successful ones in the literature including

R-CNN, CaffeNet, GoogleNet, AlexNet, and ResNet to leverage in the proposed

ensemble deep learning model. To do so, we extract a variety of feature sets from

video keyframes using the aforementioned Caffe reference models as explained in

Section 6.1.2. All features are extracted from the last fully-connected layer (Inner-

Product type) of each model. For instance, layer “fc-rcnn” of R-CNN, layer “fc8”

of CaffeNet and AlexNet, “loss3/classifier” of GoogleNet, and “fc1000” of ResNet

are used. All models are originally trained on the ImageNet dataset, a very large-

scale image database including 1000 classes. The last layer of each selected model

generates a 1000-dimension feature vector except the R-CNN, which generates 200

features in its fully connected layer.

Evaluation of EDL on Disaster Dataset

The disaster dataset is collected from the YouTube videos including seven natural

disasters such as flood, damage, fire, mud-rock, tornado, and lightning. In overall,

this dataset includes about 80 videos. After applying the video shot boundary

detection and keyframe selection techniques, 6884 shots are extracted from this

dataset [178]. The average positive/negative (P/N) ratio of the disaster dataset is

0.051. This ratio shows the imbalanced distribution of the data. Figure 6.2 shows

some example keyframes from the disaster dataset.

For the disaster dataset, the proposed EDL model is compared with two sets of

algorithms: the handcrafted features (or engineering features) and the deep learning

features. For the first group, several low-level and mid-level features such as HOG,

CEDD, color histogram, texture, and wavelet are extracted. The overall feature set

for each keyframe includes 707 visual attributes. While, in the second group, the
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(a) Flood (b) Damage (c) Fire

(d) Mud-Rock (e) Tornado (f) Lighting

(g) snow (h) Flood (i) Tornado

Figure 6.2: Sample keyframes for each concept in the disaster dataset
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features are generated by applying the deep learning reference models directly on

each keyframe. After feature extraction, we apply several well-known classifiers in-

cluding Decision Tree (DT), Multiple Correspondence Analysis (MCA) [179], SVM,

and a boosting algorithm on the handcrafted features. The last one is an ensemble

algorithm which can be considered as a credible benchmark to be compared with

our ensemble model. The SVM classifier is also utilized for the second group (deep

features) as it has been proven to be a successful classifier when it is integrated with

deep learning techniques. To have a fair comparison, all the classifiers are tuned

to reach to their highest results on this dataset and they are evaluated through a

3-fold cross validation.

Table 6.2 shows the average precision, recall, and F1 score for both handcrafted

and deep feature groups integrated with different classification algorithms. The

last row also shows the performance of the proposed EDL algorithm. As can be

conclude from the table, the proposed model improves the performance results in

comparison with all the techniques in both groups. In other words, it not only

outperforms all the conventional classifiers integrated with the engineering features,

but also beats the recent well-known deep neural networks such as GoogleNet and

AlexNet. By looking deeper on the results, one can infer that SVM and ensemble

(boosting) techniques acquire the highest performance in terms of F1-score in the

handcrafted features group. Specifically, SVM has the highest precision compared

to all other algorithms including our proposed EDL. However, its low recall value

decreases its overall F1 score. It is worth mentioning that a higher recall value,

or in other words lower false negative, is more preferable in an imbalanced data

where the correct detection of minority class is vital (e.g., in a cancer detection

application). Therefore, integrating the deep features with the SVM classifier in

a reasonable manner can increase the recall value and F1 measure significantly as
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Table 6.2: Average performance of various feature sets and classifiers on the disaster
dataset

Features Classifier precision recall F1-score
handcrafted DT 0.816 0.823 0.819
handcrafted MCA 0.894 0.720 0.782
handcrafted Boosting 0.910 0.841 0.867
handcrafted SVM 0.957 0.802 0.868
R-CNN SVM 0.930 0.722 0.794
GoogleNet SVM 0.918 0.840 0.875
CaffeNet SVM 0.919 0.840 0.876
AlexNet SVM 0.924 0.859 0.888
deep features EDL 0.949 0.883 0.913

shown in the second group of the results (deep learning features) in Table 6.2. In

this group, AlexNet reaches to the highest F1 score compared to other deep learning

techniques. This interesting fact shows that very deep and complex architectures

(e.g., GoogleNet) cannot be always useful for different types of datasets. Sometimes

a lighter version of deep neural networks not only is more efficient than the complex

ones, but also can be generalized for different similar tasks. For example, in this

experiment, although the nature of ImageNet is very different with our disaster

dataset, but it can be seen that most of the pre-trained models (e.g., AlexNet)

on ImageNet can classify disaster events in videos with a reasonable performance.

Finally, the proposed model utilizes the power of deep learning features integrated

with a new ensemble technique to improve the overall performance in terms of recall

and F1 score. The overall F1 score is calculated as 0.913 which is 4.5% higher than

the best classifier in the first group and 2.5% higher than the best result in the

second group.

Figure 6.3 visualizes the performance results of each deep learning algorithm in

which the y-axis refers to the F1 score and the x-axis shows different disaster events.

It can be seen from this figure that the proposed EDL model improves the F1 score
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Figure 6.3: Performance evaluation for different concepts on the disaster dataset

for all disaster events compared to other techniques. In this figure, in most cases,

R-CNN has the lowest performance which can be due to two main reasons. First,

its architecture is mainly designed for region-based object detection and semantic

segmentation, so that its architecture does not properly match a frame-based video

event detection task. In addition, it generates 200 features which include less infor-

mation than other selected deep learning architectures which generate 1000 features

in their last layer. CaffeNet and GoogleNet have achieved very close average perfor-

mance despite of their different architectures. More specifically, CaffeNet reaches a

higher performance for tornado and damage concepts, while GoogleNet beats Caf-

feNet in fire and snow. AlexNet outperforms all other deep learning techniques in

terms of F1 score for almost all concepts except lighting and snow. Finally, our pro-

posed technique could successfully improve the results on all semantic events and

outperforms the stat-of-the-art deep learning algorithms.
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Evaluation of EDL on TRECVID Dataset

More experiments are conducted to further demonstrate the effectiveness of the pro-

posed EDL model. For this purpose, the TRECVID 2011 [180] IACC.1.B dataset

including the Internet Archive videos under the Creative Commons licenses is se-

lected as the evaluation benchmark. In the TRECVID Semantic Indexing (SIN)

task [181], similar to the disaster dataset, the goal is to detect the semantic con-

cepts contained in the video shots. The automatic assignment of semantic labels or

tags is a fundamental step for further video browsing, search, and filtering, to name

a few. In overall, the IACC.1.B dataset includes hundred thousands of training and

testing video keyframes and 346 concepts. In this work, 20,000 keyframes (the first

10,000 instances from the training and the first 10,000 ones from the testing data) are

selected to evaluate our EDL model. In this dataset, a concept refers to a high-level

semantic content or object such as person, vehicle, and sky. Figure 6.4 demonstrates

several sample keyframes in this dataset. The main challenge of this dataset is its

highly imbalanced or skewed distribution. Table 6.3 presents the statistics of the

selected concepts in the training and testing sets. These concepts are selected due to

their popularity and also the variety of the P/N ratios they have. Therefore, we can

evaluate the behavior and functionality of the proposed model in various situations.

For example, the concepts “Person”, “Outdoor”, and “Road” include more positive

instances (P/N ratio is above 15%) in the training set compared to other concepts.

The average P/N ratios for the training set and testing set are 0.087 and 0.039,

respectively.

In this experiment, the results from our model are compared with the ones from

Tokyo Institute of Technology (TiTech [182, 183]) which was selected as the best

performance in the TRECVID 2011 semantic indexing task. The TiTech group

extracted several low-level features such as SIFT and MFCCs from each video shot.
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(a) Person (b) Outdoor (c) Indoor

(d) Face (e) Male (f) Vehicle

(g) Sky (h) Sky (i) Vegetation

(j) Text (k) Entertainment (l) Road

Figure 6.4: Sample keyframes for each concept in TRECVID dataset
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Table 6.3: Statistic summary of selected concepts in TRECVID

Concept Training P/N Ratio Testing P/N Ratio
Person 0.3714 0.1511
Outdoor 0.1801 0.1490
Indoor 0.0589 0.0218
Face 0.0993 0.0035
Male 0.0418 0.0179
Vehicle 0.0253 0.0560
Sky 0.0275 0.0119
Vegetation 0.0675 0.0233
Text 0.0804 0.0188
Entertainment 0.0413 0.0006
Road 0.165 0.0165

Therefore, they utilized the handcrafted features including both visual and audio

features. Thereafter, an advanced tree-structured Gaussian Mixture Model (GMM)

is proposed to model the distribution of low-level features using the maximum a

posteriori (MAP) adaptation. In addition, similar to the disaster dataset, the EDL

model is compared with several deep features integrated with the SVM classifier. For

this experiment, we replaced the R-CNN with the ResNet due to the low performance

of R-CNN in the previous experiment. In addition, the CaffeNet is removed as it

has a very similar architecture to the AlexNet. Accordingly, this time we only have

three weak learners in our EDL model.

Table 6.4 shows the precision and recall values of all deep learning algorithms as

well as the ones from the proposed EDL for each concept in this dataset (since the

precision and recall values of TiTech model are not available, they are not listed in

this table). As mentioned earlier, the recall metric is more important than the pre-

cision in an imbalanced dataset. Thus, the proposed method can achieve the highest

recall value (0.436) while maintaining the precision as high as possible as shown in

Table 6.4. Based on this table, the proposed EDL model beats all other methods

in terms of the recall value in most concepts. Although there are a few concepts
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Table 6.4: Performance evaluation for different concepts on the TRECVID dataset

AlexNet GoogleNet ResNet EDL
concept pre rec pre rec pre rec pre rec
person 0.321 0.424 0.334 0.487 0.337 0.5 0.332 0.538
outdoor 0.488 0.641 0.502 0.672 0.504 0.681 0.483 0.730
indoor 0.500 0.019 0.333 0.005 0.175 0.052 0.2 0.066
face 0.075 0.514 0.085 0.571 0.085 0.714 0.092 0.571
male 0.529 0.051 0.531 0.097 0.392 0.114 0.393 0.125

vehicle 0.481 0.094 0.494 0.145 0.393 0.158 0.407 0.177
sky 0.294 0.339 0.220 0.373 0.201 0.398 0.208 0.441

vegetation 0.269 0.553 0.303 0.662 0.292 0.754 0.328 0.675
text 0.177 0.595 0.178 0.665 0.178 0.616 0.200 0.643

entertainment 0.083 0.667 0.071 0.167 0.022 0.167 0.083 0.667
road 0.167 0.025 0.397 0.167 0.213 0.16 0.397 0.167

Average 0.308 0.357 0.313 0.365 0.254 0.392 0.284 0.436

such as “text” and “’vegetation” having higher recall values in other methods than

the EDL, their low precision decreases the overall F1 score significantly. Thus, our

proposed method tries to keep the balance between these two metrics and provides

higher F1 scores in such concepts. This phenomenon can be also seen in Figure 6.5,

which visualizes the F1 scores for all the benchmark algorithms including the TiTech

and all other deep learning models. As can be inferred from the figure, the proposed

EDL outperforms all other methods in all concepts except sky. In this concept,

although the proposed EDL detects the most positive instances, AlexNet achieves

the highest F1 value because of its low false positive or its high precision. Another

important fact can be concluded from Figure 6.5 is the low F1 scores achieved by

the TiTech (the best results in the SIN task in TRECVID 2011) compared to deep

learning techniques. In other words, similar to the results acquired using the disaster

dataset, deep learning features (even those extracted from shallow and simple archi-

tectures) contain more information to discriminate the objects than the handcrafted

features in many applications.
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Figure 6.5: Performance evaluation on the TRECVID dataset

Figure 6.6: A comparison of True Positive value on the TRECVID dataset
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Finally, Figure 6.6 depicts the number of positive instances predicted correctly

(True Positive) by each deep learning technique. It can be seen that the proposed

EDL detects much more positive instances in many concepts such as “person”, “out-

door”, and “indoor”. It also maintains TP as high as possible for highly imbalanced

concepts. For instance, the “Entertainment” concept has the lowest TP in the test-

ing set (please refer to Table 6.3), which means that about only six instances are

positive among 10,000 instances in this concept. The EDL and AlexNet can detect

four out of six positive instances, while the GoogleNet and ResNet can only detect

one positive instance and other five ones are classified as negative.

In summary, based on the experiments on two different datasets with skewed

distributions, the proposed EDL achieves promising performance compared to other

well-known techniques in this area.

6.2 Efficient Deep Residual-Inception Network

The recent advancement in image recognition was obtained with deeper and wider

networks [1, 2]. One example is the residual architecture [1] which reaches to 152

layers, almost 8 times deeper than GoogLeNet [2] and VGG nets [105]. As the

network grows in depth (or sometimes in width [2]), the features can be enriched

and more high-level features can be extracted compared to those from early layers.

Now the question is whether deeper networks always generate better perfor-

mance. In other words, does stacking more layers lead to better learning? In

addition, are extremely deep networks computationally reasonable for and appli-

cable to different applications? Based on several experiments reported in [1, 184],

network improvements and better learning are not as easy as stacking more layers

and a careful design is indispensable. The first problem driven by the depth increase
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is called “vanishing” gradients [106, 184], in which the network cannot be trained

with regards to the gradient based algorithms like back propagations and the con-

vergence is prevented from the early layers. There have been several solutions in

the literature to address this problem by using rectified linear activation instead of

common activation functions (e.g., sigmoid or tanh) [185] and normalization lay-

ers [186]. Another issue is when the training accuracy is saturated and suddenly

starts to degrade, which is not due to over-fitting. One solution to this problem is

addressed in [1] using Residual Learning.

To address the aforementioned problems, in this work, we propose a new deep

learning architecture based on the traditional Convolutional Neural Networks (CNNs)

integrated into two levels of Residual-Inception combination. This architecture is

successfully tested on two different multimedia datasets. Specifically, it is applied

on a video event detection task containing natural disaster events. The overall Deep

Residual-Inception network improves the losses compared to the most recent deep

learning architectures and also significantly decreases the computational costs.

The proposed network contains three main modules, including traditional convo-

lutional neural networks, residual connections for training deep architectures, along

with inception modules for retaining computational efficiency.

6.2.1 Residual Module

The residuals are essential for very deep network to avoid the degradation problem.

Suppose H(x) is an underlying mapping to be fit by few neighbor layers, where x is

the first input. Based on the report in [187], several nonlinear layers are capable of

asymptotically approximating complicated functions. Therefore, instead of approx-

imating H(x) using the neighbor layers, a residual function F (x) := H(x) − x will
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Figure 6.7: A residual building block [1]

be approximated by these layers. Hence, a residual block (as shown in Figure 6.7)

is defined as follows.

yk = F (xk,W k) + xk, (6.4)

where xk and yk are the input and output vectors and F represents the residual

mapping and the connection (F + x) is performed by an element-wise addition.

In our view, utilizing residual networks helps the network to learn both weights

and depths at the same time. In addition, we ensure the new layer (N + 1) is

learning something new by providing the output of the previous layer (N) without

any modification to the output of the current layer (N + 1). This technique handles

both vanishing gradient and degradation problems in very deep networks.

6.2.2 Inception Module

The inception module significantly improves the computational efficiency while scal-

ing up the network. This module heavily utilizes NIN [4] in its internal architecture

for two reasons: (1) to reduce the input dimension and eliminate the computational

bottlenecks and (2) to increase not only the network depth, but also its width to

improve the overall performance. In other words, since a bigger size means a larger
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Figure 6.8: An Inception building block [2]

number of parameters, which causes overfitting in deep networks, leveraging spar-

sity even inside the convolutions leads to better results. Therefore, the filter-level

sparsity blocks are introduced in the inception module. The filter sizes are 1 × 1,

3 × 3, and 5 × 5. All layers along with their output filter banks are combined and

concatenated into one output vector. In addition, pooling is added in each incep-

tion since it is essential for convolutional networks. To further compress the network

and reduce the dimension, 1× 1 convolutional layers are added before each expen-

sive convolutions. One sample of this module is used in our network as shown in

Figure 6.8.

6.2.3 Network Architecture

To handle the issue of overfitting, vanishing gradient, and network saturation prob-

lems, we study the combination of residual and inception modules. As the first layers

generate low-level abstraction while the higher layers provide more high-level fea-

tures from the data, the proposed network starts with a light version of each module

and the ratio of convolutions and Residual-Inception blocks are gradually increased.

The proposed network utilizes a few numbers of Residual-Inception stacks rather

than very deep stacks of each single module. It starts with the traditional CNNs
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Table 6.5: Deep Residual-Inception architecture

# layer output size # layer output size

1 C 7× 7, 32/2 8 inca 28× 28× 256
2 M 3× 3/2 9 incb 28× 28× 480
3 C 7× 7, 64/2 10 M 3× 3/2

4 M 3× 3/2 11 res

1× 1, 128
3× 3, 128
1× 1, 512

∗4
5 C 3× 3, 120/2 12 inca 7× 7× 832
6 M 3× 3/2 13 incb 7× 7× 1024

7 res

 1× 1, 64
3× 3, 64
1× 1, 256

∗3
14 A 7× 7, avg pool 16 F 1× 1× 10 (8)
15 D 1× 1× 1024 17 S 1× 1× 10 (8)

along with a lighter version of residual in conjunction with an inception module.

Then, an increased dimension of Residual-Inception is added on top of the previous

layer. At the end of the last residual block, an average pooling, a dropout, a fully

connected layer, and softmax are added to generate the final classification results.

This block is also added to the end of the last inception block groups. In this case,

we can evaluate which module generates smaller losses in each training step. Fig-

ure 6.9 depicts a schematic view of the proposed architecture. Table 6.5 also shows

the detailed architecture. In residual blocks, downsampling is performed directly

by the convolutional layers using the stride of 2. ReLu is used as an activation

function in all convolutions including those inside residual and inception modules.

However, it is removed after each element-wise addition operation [188]. We use

dropout [189] after average pooling to avoid overfitting. The total number of layers

is 33 including 3 CNNs, 21 residual layers, 8 inception layers, and 1 fully connected

layer. This network is designed efficiently, which can be run even on devices with

limited resources.
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Figure 6.9: The proposed deep Residual-Inception network
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6.2.4 Experimental Analysis

Datasets. Two datasets are selected to evaluate the proposed network. First,

the disaster dataset proposed in the previous section. Second, we conducted more

experiments on CIFAR-10 [3], a large public dataset consisting of 60,000 32 × 32

color images in 10 classes (shown in Figure 6.10). It is divided into 50k training

and 10k testing images. The main focus is to show the functionality of the proposed

network on a large dataset compared to well-known deep learning algorithms in

different training iterations and times. However, we do not intend to push the

state-of-the-art results which also utilized other techniques such as augmentation,

ensemble, randomized input order, and sampling methodologies [2]. Therefore, a

simple architecture of the proposed network, as well as the ones of the comparison

benchmarks are used in these experiments.

Figure 6.10: CIFAR-10 image dataset [3]

Experiment Setups and Results. For the disaster dataset, the network input is
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224×224 images and channel-wise (pixel) mean is used instead of mean image [105].

The learning rate is set to 0.0001 to train the network slowly and avoid overfitting.

The input of the network for the CIFAR-10 is 32× 32 images with subtracting the

mean pixel. We start with a base learning rate of 0.01 and divide it by 10 every 20k

iterations. For both datasets, SGD with a momentum of 0.9 and weight decay of

0.0001 is selected to train the model.

Caffe [177] is used as the deep learning framework. Our proposed network is

compared with two successful deep learning networks: GoogLeNet (Inception) [2]

with 22 layers and Deep Residual with 50 layers (proposed by Microsoft [1]). For this

experiment, we used the CPU-based implementation on 6 servers with 64 processors.

Figure 6.11 depicts the patterns of the learning in the proposed deep Residual-

Inception network compared to two selected benchmarks (Inception and Residual

network). Specifically, in Figure 6.11(a), although the proposed network starts with

higher losses, it starts to converge after less than 10,000 iterations. The inception

network has very low losses at first but it does not show any improvement from

early stages, which can be due to over-fitting of this wide and deep network. The

residual network shows a similar behavior as our network, but it still has higher

losses than the proposed Residual-Inception network in all iterations, due to its very

deep architecture. Similar patterns have been shown in Figure 6.11(b) on CIFAR-10

which includes more data and classes than the disaster dataset. In this figure, the

inception network has higher training losses in all iterations; while the Residual-

Inception network and the deep residual network have lower losses, respectively.

Therefore, based on this experiment, one can conclude that a compact combination

of these two benchmarks can converge earlier and produce lower losses.

Finally, since interesting video event detection is the main purpose of this work,

we have utilized the proposed Deep Residual-Inception network to analyze its be-
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(a) Disaster (b) CIFAR10

Figure 6.11: Performance comparison on the disaster and CIFAR-10 datasets

havior on each disaster class. For this purpose, a binary classification is conducted

based on the 3-fold cross validation. As this dataset is highly imbalanced, the pre-

cision, recall, and F1 values are used as the evaluation metrics instead of accuracy.

Table 6.6 shows the detailed results for each disaster concept. As can be seen from

the table, the proposed deep network achieves very promising F1 scores in almost

all classes. For example, lightening has the highest F1 score compared to the other

classes, which can be due to its discriminative features (e.g., lights) in the corre-

sponding images. Damage and snow classes have the lowest recall and F1 results

respectively, because of their complex image texture and color. All in all, the aver-

age F1 score of binary classification on the disaster dataset is 0.914, which is higher

than the previous work on this dataset.

6.3 Conclusion

In this chapter, we target multimedia data representation learning with the goal

of handling large and imbalanced datasets. We study the advantages of utilizing
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Table 6.6: Performance evaluation for different concepts on the disaster dataset

Event Precision Recall F1
Flood 0.920 0.943 0.932

Damage 0.879 0.785 0.829
Fire 0.965 0.940 0.952

Mud-rock 0.971 0.923 0.947
Tornado 0.940 0.897 0.918

Lightening 0.979 0.968 0.973
Snow 0.914 0.798 0.849

Average 0.938 0.893 0.914

deep learning and transfer learning techniques for feature analysis. First, multiple

feature sets are extracted from the well-known deep learning algorithms. There-

after, a novel ensemble deep classifier is developed to fuse different deep feature

sets, as well as the results from each weak learner. This model alleviates the issue

of imbalanced data, a very prevalent and unavoidable problem in real-world appli-

cations. The proposed model is extensively evaluated using two large-scale video

datasets, namely a natural disaster dataset and the popular TRECVID dataset.

The experimental analysis has been conducted to compare the performance of the

proposed EDL model with the ones in other state-of-the-art machine learning algo-

rithms. Specifically, its performance is compared with both handcrafted and deep

features groups, integrated with several well-known classifiers. Based on the exper-

imental results, the proposed model outperforms both groups of algorithms in two

datasets with different concepts, which demonstrate its advantage effectiveness for

video event detection.

In addition, this chapter presents a new deep learning technique called Deep

Residual-inception network, which not only improves the performance but also sig-

nificantly speeds up the training and convergence processes. In summary, based on

the experiments on two different multimedia datasets, the proposed Deep Residual-
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inception network has shown its superiority and effectiveness while maintaining low

computational costs.
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CHAPTER 7

AUTOMATIC HYPER-PARAMETER LEARNING

As deep learning has been widespread in a wide range of applications, its training

speed and convergence have become crucial. This chapter presents a new algorithm

for hyper-parameter adaption in deep neural networks to enhance the training pro-

cess. Specifically, an automatic drop-based learning rate scheduling is proposed to

improve the SGD algorithm in deep learning. This work alleviates the task of select-

ing an appropriate learning rate by analyzing the statistical trends of the training

process in an online manner. It automatically decides when to drop the learning

rate based on the losses in the previous training iterations. The trivial compu-

tational costs of the trend analysis is ignorable compared to the gradient descent

computation.

7.1 Trend-based Learning Rate Annealing

The proposed Trend-based Learning Rate Annealing (T-LRA) algorithm is applied

to the CNNs on a classification task to evaluate its effectiveness. To our best knowl-

edge, this is the first work that schedules the learning rate using statistical trend

analysis. The advantages of this approach are: 1) automatic setting of a learning

rate based on the previous training trends; 2) negligible computation over gradient

descent; and 3) applicable to the deep neural networks and large datasets.

In this work, SGD is utilized for the training of deep learning networks and two

well-known trend analysis techniques (i.e., the Mann-Kendall and Cox-Stuart tests)

are leveraged for automatic learning rate adaptation as described in the following

sections.
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7.1.1 Stochastic Gradient Descent

Supervised learning is the most popular machine learning technique for either deep

or shallow networks. In a supervised learning, an objective function measuring the

error or distance between the actual and desired outputs is computed. The learning

process includes adapting its internal parameters in order to minimize this error.

Such adjustable parameters are also called “weights”. Deep neural networks may

contain millions of weights which need to be updated during the training process. In

order to update the weights properly, in each iteration, a gradient vector is computed

which measures the error when the weight is increased by a very small factor. Then,

using the opposite direction of the gradient vector, the weights are updated. If the

gradient vector is negative, the direction of the steepest descent takes the objective

function to the average low output error or its minimal point [47].

SGD is one of the most common procedures used to minimize the objective

function, especially for neural networks and deep learning. In overall, it consists of

computing the outputs, errors, and the average gradient for a few input examples.

Accordingly, the weights are updated based on such information. After repeating

this process for many small training sets, it stops when the error or loss stops

decreasing. This process is surprisingly fast compared to its batch version which

employs all training examples in each iteration [131].

A neural network consists of an input layer X = {x1, ..., xi, ..., xN} including N

input examples, the hidden layers containing K neurons H = {h1, ..., hk, ..., hK},

and an output layer including M outputs Y = {y1, ..., yj, ..., yM}. The neurons are

connected to each other with wik or w′kj which indicates the weights between the ith

input and the kth hidden neuron or the kth hidden neuron and the jth output neuron.

To simplify, the whole weights can be considered as the entries of a general weight

matrix W . A simple version of this network is shown in Figure 7.1. An output of
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a neuron yj is calculated using Equation (7.1) and the optimization function L is

defined in Equation (7.2) [190].

yj = f(
∑

w′kj ∗ hk); (7.1)

L(W ) =
1

N

N∑
i=1

E(xi) + λr(W ); (7.2)

where f is the activation function (e.g., sigmoid, tanh, or ReLU) which produces

the non-linearity in a neural network. E is the loss on data instance xi (e.g., E =

1/2
∑M

j=1(yj − tj)2, where tj is the actual output and yj is the predicted one). The

regularization term is r(W ) with the weight λ. Since the input size |D| may be

very large in practice, a stochastic approximation of the optimization function is

used (N � |D|) as shown in Equation (7.2). The loss function E is computed in

the forward pass of the backpropagation neural network, while its gradient ∆Ew

is calculated in the backward pass. In particular, SGD updates the weights using

a linear combination of the previous weight update Vt and the negative gradient

∆L(Wt) (given in Equation (7.4)), where Wt and Wt+1 are the previous and updated

weight matrices, respectively.

Vt+1 = µVt − α∆L(Wt); (7.3)

Wt+1 = Wt + (Vt+1). (7.4)

There are two important hyperparameters in the weight update formula that need

to be assigned carefully: (1) the learning rate α or the negative gradient weight,

and (2) the momentum µ or the weight of the previous update. Regarding the

learning rate which heavily affects the network performance in practice, it has been

shown that the drop-based techniques are slightly preferable and efficient for deep

neural networks [1, 127]. Therefore, an automatic and fast learning rate schedule

is proposed in this work, so that there is no need to manually select the number of

training iterations in which the learning rate should be decreased.
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Figure 7.1: Neural network layers

7.1.2 Non-Parametric Trend Analysis

In a non-parametric trend test, no assumption of normality is required and a null

hypothesis, H0, is that the data population is identically distributed and comes from

an independent population [191]. Since the errors in a deep neural network may not

be normally distributed, two well-known non-parametric trend tests are utilized in

this work, which are described in the following sections. In a hypothesis test, the

p-value determines the statistical significance and plays a key role in interpreting

the data statistics. To find a specific difference in an experiment, it is assumed that

the null hypothesis H0 is true. If the p-value is small (less than a significant value

ϕ), then the null hypothesis is rejected which shows a significant change in the data

observations; while a large p-value (greater than ϕ) indicates the acceptance of the

H0.

Mann-Kendall Trend Test

The Mann-Kendall is a popular non-parametric trend test commonly used to detect

monotonic trends in series, especially for climate or environmental data [192, 193].

Suppose a set of observations are denoted as {x1, x2, ..., xN} ordered in time. The
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Mann-Kendall statistic is given as Equation (7.5) [191, 194]:

S =
N−1∑
k=1

N∑
j=k+1

sgn(xj − xk) (7.5)

where

sgn(xj − xk) =


1, if xj − xk > 0

0, if xj − xk = 0

−1, if xj − xk < 0

(7.6)

The mean of the Mann-Kendall statistic is E[S] = 0 and its variance σ2 is calculated

as:

σ2 =
N(N − 1)(2N + 5)−

∑q
j=1 tj(tj − 1)(2tj + 5)

18
(7.7)

where the number of data points is denoted as N , the number of the tied groups in

the data set is q, and the number of data points in the jth tied group is tj.

Finally, the test statistic Z is calculated using S and σ2 (given in Equation (7.8)):

Z =


S−1
σ
, if S > 0

0, if S = 0

S+1
σ
, if S < 0

(7.8)

Similar to other two-sided tests, the p-value in the Mann-Kendall represents the

probability of the error regarding the null hypothesis H0. This probability shows

whether there is no trend or a significant change in the time series. If Z is negative

(positive) and the probability is greater than the level of significance, there is a

decreasing (increasing) trend in the data series, otherwise there is no significant

trend.

Cox-Stuart Trend Test

Another trend analysis utilized in this work is a sign test proposed by Cox and

Stuart [195]. This is a simple test for a monotonic (increasing or decreasing) trend
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analysis. Using the notions of the previous section, the data observations are paired

as:

{x1, xc+1} , {x2, xc+2} , ..., {xN−c, xN} . (7.9)

where c = N
2

if N is even and c = N+1
2

if N is odd. Then, a sign test is applied as

follows. First, the differences between each pair is taken. In an increasing trend, it

is expected most of the differences to be positive. On the contrary, a predominance

of negative differences demonstrates a decreasing trend. Specifically, the Cox-Stuart

test for N > 30 is calculated as [191]:

Z =

∣∣Sg − N
6

∣∣√
N
12

(7.10)

where the maximum number of the signs is denoted as Sg. Again, p-value represents

the probability of the error regrading the selected significance level.

7.1.3 Online Learning Rate Schedule

In a training process, the loss function could be subjected to gradual changes or

decay. In the drop-based techniques, it is desirable to drop the learning rate after

several iterations. To automatically determine the number of iterations, an online

learning rate schedule is proposed using the non-parametric trend analysis tech-

niques. Algorithm 5 presents the overall training algorithm. The input of this

algorithm contains the training input X and initial weight matrix W which will be

iteratively updated using the SGD algorithm as shown in line 5. There are three

hyperparameters: the learning rate α, the decay factor θ, and a new hyperparam-

eter ϕ which will be initialized in this algorithm. Decay is the factor to be used

for learning rate annealing. Similar to other learning parameters, the initialization

values (α0 and θ0) may be altered for different datasets. The ϕ is defined as the

level of significance for the trend analysis.
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Algorithm 5 Training deep neural network algorithm

1: procedure DPLearning(X,W ) . Training the network
2: α = α0, θ = θ0, ϕ = ϕ0;

3: for all iterations i ∈ (1, · · · , I ′) do
4: for j = 1 to I/I ′ do
5: W = SGD(X,W,α); . Update the weight
6: L[j] = ExtractLoss(W );

7: LRScheduler(L, α, θ, ϕ);

After initialization, the training is started and the network weight is updated

in each iteration. Suppose the network is going to be trained for I iteration (e.g.,

100,000). Thus, the whole learning process is divided into I ′ steps (e.g., 20 steps

with each 5,000 iterations). In each iteration, SGD is employed on the data using

the current weight matrix W and the learning rate value. Then the corresponding

loss (error) is extracted (line 6 in Algorithm 5) as explained in Section 7.1.1. This

process will be executed for I
I′

iterations.

After that, a scheduler is employed to update the hyperparameters (α, θ, and

ϕ) as shown in Algorithm 6. This algorithm illustrates the whole procedure of

the proposed online learning rate annealing. First, a time-series object TS of the

losses is created as shown in line 3 in Algorithm 6. This object is used as the

input of the trend analysis function (e.g., Mann-Kendall or Cox-Stuart) in order to

detect the trends in the losses curves. The learning rate is updated if there is no

significant change in the losses or if the trend is positive, which means the losses

are increasing. The significant level is defined by ϕ and is updated whenever the

learning rate is decreased. If the loss plateaus, the learning rate is divided by θ. In

addition, the decay factor θ is divided by 2 to reduce the learning rate decay over

time. Similarly, the significance level ϕ is multiplied by 2 as the loss changes are

reduced exponentially over time. In other words, the losses are reduced very fast

in the early iterations so the p-value should be very small (e.g., less than 0.05),
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while in the last iterations where the loss curve is going to be flatten, the p-value

threshold should be increased (e.g., 0.1).

Algorithm 6 The proposed online learning rate annealing algorithm

1: procedure LRScheduler(L, α, θ, ϕ) . Schedule the learning rate
2: SampleSet = L;
3: TS = TimeSeries(SampleSet);
4: Tr = MannKendall(TS); . Tr=CoxStuart(TS)
5: if sign > 0 or Tr.p− value > ϕ then
6: α = α

θ
;

7: θ = θ
2
;

8: ϕ = ϕ ∗ 2;

7.2 Experimental Analysis

In this work, the main focus is to show the functionality and effectiveness of the

proposed T-LRA on the stat-of-the-art algorithms and large public datasets. For

this purpose, CNN is used as the learning model and the experiments are conducted

on a challenging multimedia task, namely concept and image classification. SGD

algorithm is highly used in CNNs to optimize the network and improve the losses.

Therefore, the proposed T-LRA can automatically schedule the learning rate in

CNNs.

The proposed T-LRA is a general learning rate scheduler that can be used for

different classifiers and applications. Specifically, in this work, it is applied on a

successful CNN architecture called Network In Network (NIN) [4]. This architecture

is selected as it has shown very promising performance on image recognition and

classification, while it has a very simple and straightforward architecture. The

difference between NIN and the conventional CNNs is the utilization of advanced

micro neural networks to abstract the data within the receptive field. In overall,

The Deep NIN consists of the following layers (also shown in Figure 7.2). First, a
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Figure 7.2: The Network In Network structure [4]

stack of mlpconv layers is used which replaces the Generalized Linear Model (GLM)

in traditional CNNs with MultiLayer Perceptron (MLP) to convolve over the input.

Then, oversampling layers are used after each mlpconv and followed by a dropout

layer. The dropout layer can somehow prevent from overfitting in fully connected

layers [55, 189]. Finally, the global average pooling and cost layers are added in the

last layer. It is worth mentioning that a simple architecture of the NIN network

is used to only focus on the functionality of the proposed learning rate scheduler.

Therefore, other techniques such as augmentation, ensemble, and sampling have not

been conducted in these experiments.

As mentioned earlier, the T-LRA algorithm can be run in parallel with the NIN

algorithm. Every 5K iterations of the NIN training, T-LRA is called and calculates

the trend in the current training curve. If a significant trend is observed in the

curve, the learning rate remains constant, otherwise it is updated as explained in

Algorithm 6. The 5K-iteration criterion is selected because enough data (losses in

this work) is needed for a statistical test. In addition, based on the experiments,

it is an adequate and reasonable range to find significant changes in the training

curve.

The proposed T-LRA is evaluated on CIFAR-10 [3]. As mentioned earlier, this

dataset includes 60,000 images (50,000 for training and 10,000 for testing) with labels

and is used for image classification and object recognition. It is also composed of

10 classes as shown in Figure 6.10. The main challenge in this dataset is that it
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includes tiny color images with 32 × 32 resolution, taken from the dataset of 80

million tiny images [196]. Therefore, it may be thought it does not include enough

information to detect objects effectively. However, this public dataset is used for

many multimedia and computer vision competitions every year and even a small

improvement in accuracy (e.g., 1%) can distinguish the proposed model.

Several experiments have been conducted to demonstrate the effectiveness of the

proposed T-LRA. Both Cox-Stuart and Mann-Kendall trend analysis techniques are

used to schedule the learning rate. The results are also compared to the benchmark

technique with the original SGD. Although there are other learning rate scheduling

techniques (e.g., drop-based or time-based schedules), they are not used as the

comparison benchmarks because this is a subjective problem and there is no specific

rule when the learning rate should be dropped. Different studies use different epochs

to reduce or increase the rate which is completely based on trial and error. This

is another reason why an automatic scheduler is needed to handle this issue in a

general manner. The evaluation criteria include common metrics such as accuracy

and losses (as explained in Section 7.1.1 Equation (7.2)).

Caffe is used to train the NIN network on the CIFAR-10 dataset. The NIN

network is trained on CPU mode using 6 servers with 64 processor.

The network input for this dataset is 32× 32 with mean subtraction. The solver

parameters include the base learning rate α0 of 0.01 and SGD with momentum 0.9.

In total, the network is trained for more than 100,000 iterations. The initial decay

factor θ is selected as 10, which means the learning rate is divided by 10 in the first

steps, while this factor is reduced gradually (i.e., divided by 2 each time when α

changes) to lessen the effects of the learning rate changes in the final stages. Another

important parameter is the significance level ϕ which controls the range of p-value

in the trend analysis algorithms. It is initialized to 0.05 and increased gradually due
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to the significant loss changes in early iterations and small loss changes in the final

iterations.

Figure 7.3 shows the behavior of the training and testing in three methods.

The first model is the original SGD without the learning rate scheduling algorithm.

The second and third models are the proposed learning rate annealing based on the

Cox-Stuart and Mann-Kendall trend analysis techniques, respectively. The first plot

(Figure 7.3 (a)) shows the training losses of these three models for more than 70,000

iterations. As can be inferred from this plot, both Mann-Kendall and Cox-Stuart

have lower training losses compared to the original SGD algorithm. Specifically,

Cox-Stuart losses are decreased around 30K iterations compared to both original

and Mann-Kendall approaches, while Mann-Kendall training losses are suddenly

decreased around 40K iterations and stays as low as possible compared to Cox-

Stuart and the original one. On the other hand, the test losses plot (Figure 7.3

(b)), shows the supremacy of the Cox-Stuart than Mann-Kendall as it has lower

losses, especially after 30K iterations. In this plot, though, the average losses for

Mann-Kendall are much smaller than the original algorithm. Finally, the last plot

(Figure 7.3 (c)) shows the comparison between the test accuracy of each algorithm

in different iterations. As can be seen from this plot, all these three algorithms have

the same accuracy in the first steps. At 30K iterations, the Cox-Stuart p-value is

no longer smaller than the selected significance level (e.g., 0.05) which causes a drop

in the learning rate value. This drop improves the accuracy from 0.844 to 0.860 as

shown in the second row of Table 7.1. Around 40K iterations, a similar case happens

for Mann-kendall where the accuracy increases significantly from 0.834 to 0.863 as

depicted in both Figure 7.3 (c) and the third row of Table 7.1. It can be seen that

the original SGD does not have this improvement even after many iterations because

it may be trapped in a local minimum. The final results during the 70K iterations
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Figure 7.3: Performance comparison of original SGD and T-LRA using Cox-Stuart
and Mann-Kendall
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Table 7.1: Accuracy comparison on CIFAR-10 for different iterations and two dif-
ferent values for the significance factor (ϕ0)

Iterations
Algorithm 30K 40K 50K 60K 70K
Original 0.844 0.834 0.845 0.846 0.845
Cox-Stuart
(ϕ0 = 0.05)

0.844 0.860 0.861 0.862 0.862

Mann-Kendall
(ϕ0 = 0.05)

0.844 0.834 0.863 0.867 0.867

Mann-Kendall
(ϕ0 = 0.1)

0.844 0.834 0.845 0.867 0.870

are shown in Table 7.1. The accuracy of the proposed learning rate annealing could

reach to 0.862 and 0.867 using the Cox-Stuart and the Mann-Kendall trend analysis

techniques, respectively.

One improvement is to increase the initial value of the significance factor ϕ0

from 0.05 to 0.1 since the loss trend usually changes very slowly compared to the

other trend analysis applications (e.g., environmental changes). However, this im-

provement causes more computational cost because it needs more iterations to reach

its maximum performance. To show the effects of the significance factor, another

experiment is conducted using the NIN network and the Mann-Kendall trend anal-

ysis (because it shows a higher accuracy than the Cox-Stuart one in the previous

results). For this purpose, ϕ0 is initialized to 0.1 and multiplied by 2 every time

the learning rate is decreased. The results are shown in the last row of Table 7.1.

As can be seen from this table, the proposed algorithm has similar results as the

original SGD until iteration 50K. Then, it shows a significant increase around 60K

and finally reaches to 0.87 at 70K, which is higher than all the other methods in this

iteration. The learning rate annealing is executed every 5K iterations during the

training of the deep network. Finally, the maximum accuracy of 0.879 is obtained,

which is 3.3% higher than the one in the SGD algorithm.
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The aforementioned results show the effectiveness of the proposed learning rate

annealing compared to the algorithms that do not leverage any scheduling method.

In addition, it automates the process of learning rate modifications, which means it

can reach to the highest accuracy without manually changing the hyper-parameters.

Moreover, due to the very light processing of the proposed algorithm, its compu-

tational time can be completely disregarded compared to the heavy SGD costs.

Therefore, it can be easily integrated with online algorithms and applications. Re-

garding the efficiency of the proposed method, as explained in Table 7.1, the pro-

posed method can achieve a higher performance in fewer iterations. For example in

50k iterations, the accuracy of 0.863 is obtained using the Mann-Kendall trend anal-

ysis with ϕ0 = 0.05; while the original SGD achieves the accuracy of 0.845 and can

only increase it by 0.1% after 10k iterations. Moreover, for the proposed method,

the accuracy is increased by 0.3% after 10k iterations, which shows the effectiveness

and efficiency of the proposed method.

7.3 Conclusion

This chapter presents a novel learning rate annealing (scheduling) using two light

and efficient trend analysis approaches (namely, Cox-Stuart and Mann-Kendall).

This automatic and online drop-based technique reduces the learning rate value

gradually to avoid trapping in a local minimum in a training loss curve, where

there may exist a global minimum. Specifically, it is applied on a popular deep

learning architecture called Network In Network and evaluated using a public large-

scale image dataset called CIFAR-10. The proposed algorithm improves the results

of the original stochastic gradient descent, used in many learning algorithms such

as backpropagation. In overall, the classification accuracy on the testing data is
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increased by 3.3% compared to the SGD algorithm. In addition, the proposed

algorithm reaches the highest accuracy in a smaller number of iterations and reduces

the computational costs of training.
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CHAPTER 8

DEEP SPATIO-TEMPORAL LEARNING

This chapter presents new solutions for analyzing spatio-temporal multimedia data.

Specifically, a new spatio-temporal model for large-scale and imbalanced video clas-

sification using deep learning is proposed [141]. This work introduces a new spatio-

temporal model for video analysis. First, spatial information is extracted from the

video sequences using the pre-trained CNNs. Thereafter, these sequences are fed to

the proposed two-layer residual bidirectional LSTM, and finally the video classes are

predicted in the final fully connected layer. The experimental results demonstrate

the ability of the proposed model with respect to the prediction performance and

efficiency.

The main challenges in video classification are threefold: (1) There are large

variations between the frames throughout the whole video (for example, the exis-

tence of various objects and scenes in one video such as tree, building, human, and

water in a disaster event), (2) There are a large number of frames needed to be

processed for each video, (3) The video data is multimodal and spatio-temporal in

nature. Due to all these challenges, video content analysis and classification is a

complex and big data problem requiring accurate and efficient learning models.

With the advent of deep learning, new methodologies have been proposed to

address the problem of large-scale video classification [109]. Specifically, Convolu-

tional Neural Networks (CNNs) [55] and Recurrent Neural Networks (RNNs) [197]

are employed for modeling static and temporal information. Despite the great suc-

cess of deep neural networks in visual data classification, there remain challenges

and rooms for improvement. To address these challenges, this chapter presents a

new deep learning model that extracts static and temporal information from videos

and reduces the overall training process using transfer learning.
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8.1 Spatio-Temporal Representation Learning

8.1.1 Transfer Learning with Deep CNNs

As described in chapter 6, several deep learning architectures like Inception-v3 [198]

and ResNet [1] have been widely used as pre-trained CNNs for image processing

applications. These networks were originally trained on a very large-scale dataset

“ImageNet” for several weeks and are widely used to extract generic appearance

features in different applications. We have shown the effectiveness of deep features

compared to the traditional handcrafted features [143]. In addition, utilizing pre-

trained models can significantly expedite the whole training process on the new

dataset. Depending on the target dataset and its similarity to the source dataset,

the pre-trained CNNs can be truncated in various layers.

8.1.2 LSTM

LSTM networks have internal memory cells which are able to learn the long-term

dependencies of sequential frames. In addition, they overcome exploding gradients

in the temporal domain (vanishing problem) by providing temporal shortcut paths.

Due to the simple input concatenation and activation applied in RNNs, it can re-

member information for a short time. Different from RNNs, LSTMs have a more

complex structure assisting them to remember information for a longer period of

time. As shown in Figure 8.1 (a), when a new information arrives, the input gate

it, forget gate ft, output gate ot, and memory cell ct in the LSTM cell handle the

information overwriting by comparing it with the inner memory. LSTM gates are

designed to control the forgetting, updating, and remembering processes and enable
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gradients to smoothly flow through time. As a result, only the information that is

needed are selectively passed.

Let σ be the sigmoid non-linearity which squashes the inputs to a range between

[0, 1], and tanh(x) be the hyperbolic tangent non-linearity which squashes its input

x to a range between [−1, 1]. The LSTM parameter updates at time step t given

inputs xt, ht, and ct are defined as follows [136]:

it = σ(Wi[ht−1, xt] + bi); (8.1)

ft = σ(Wf [ht−1, xt] + bf ); (8.2)

ct = ft.ct−1 + it.tanh(Wc[ht−1, xt] + bc); (8.3)

ot = σ(Wo[ht−1, xt] + bo); (8.4)

ht = ot.tanh(ct). (8.5)

where Wk and bk refer to the weight and bias of k = {i, f, c, o}, respectively. In

order to gradually learn the connections of input it, forget ft, and output ot gates,

they are component-wise multiplied by the input, hidden output, and memory cell.

8.1.3 Bidirectional LSTM

The original LSTMs have one direction and predict the output based only on previ-

ous information. Hence, some information may be lost in a one-directional network.

Similar to human trajectories, Bidirectional LSTMs (BiLSTMs) are continuous and

consider both former and subsequent information. As a result, it can capture bidi-

rectional global temporal information in video sequences. Figure 8.1 (b) illustrates a

BiLSTM in which the input set is defined as x = {x0, x1, ..., xt, xt+1} and the output

set as y = {y0, y1, ..., yt, yt+1} and the hidden layer as h = {h0, h1, ..., ht, ht+1}. In

the hidden layers, there are forward sequences → and backward sequences ←. The
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(a) (b)

Figure 8.1: The architectures of (a) the LSTM cell and (b) unfold Bidirectional
LSTM.

parameters of BiLSTM at time t can be defined as follows [199]:

h→ = g(Uh→xt +Wh→ + bh→); (8.6)

h← = g(Uh←xt +Wh← + bh←); (8.7)

yt = g(Vh→h
→ + Vh←h

← + by). (8.8)

where g is an activation function such as ReLu (g(a) = Max(0, a)), U refers to the

weight matrix from the input to the hidden layers, W is the weight from the hidden

to the hidden layers, V denotes the weight from the hidden to the output layers,

and bs denotes the bias of s = {h←, h←, y}.

8.1.4 CNN-Residual Bidirectional LSTM

The proposed deep learning model includes spatial, temporal, and prediction com-

ponents. The video input flows in the spatial dimension (vertical direction) and

temporal dimension (horizontal direction) and the corresponding classes are de-

tected in the last prediction layer. In the spatial component, deep CNN features are

extracted for every frame from every video using transfer learning and converted

into the sequences of extracted features. As described in chapter 6, several deep
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learning architectures like Inception-v3 [198] and ResNet [1] have been widely used

as pre-trained CNNs for image processing applications. These networks were orig-

inally trained on a very large-scale dataset “ImageNet” for several weeks and are

widely used to extract generic appearance features in different applications. We have

shown the effectiveness of deep features compared to the traditional handcrafted fea-

tures [143]. In addition, utilizing pre-trained models can significantly expedite the

whole training process on the new dataset. Depending on the target dataset and its

similarity to the source dataset, the pre-trained CNNs can be truncated in various

layers.

In the temporal component, the CNN feature sequences are fed into the proposed

residual bidirectional LSTM as the time series to preserve the continuous temporal

information. Residual connections can overcome the gradient transmission by for-

warding the information from the upper layers directly through the network using

an “addition” operator [1]. This simple connection can significantly improve the

training process since the lower information can transmit to the upper layer directly

through a highway. The residual connection provides not only the temporal short-

cut paths but also an additional spatial shortcut path for efficient training of deep

LSTM networks. Therefore, it gives a flexibility to the LSTM cells to deal with

the vanishing or exploding gradients. Different from original LSTM, residual LSTM

adds a shortcut path to the output layer ht instead of accumulating a highway path

on an internal memory cell ct. The shortcut can be the output of any lower layers,

though the exact previous output of Bidirectional LSTM is used in this research.
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Then the network parameters are updated as follows:

h0 = σ(W0x+ b0); (8.9)

hl = σ(Wlhl−1 + bl) + hl−1; (8.10)

y = σ(WyhL−1 + by) + hL−1. (8.11)

where l = {1, 2, ..., L− 1} and L is the total number of residual layers. In this work,

we use two residual layers (i.e., L = 2).

The proposed model can access and discover more information in advance due

to its backward passes and also can avoid overfitting and vanishing gradients due

to its residual connection. In this study, a two-layer residual bidirectional LSTM is

designed (L = 2), followed by a batch normalization which is connected to the last

element from its previous layer. In the final temporal layer, only the last element

of the output is selected and batch normalization is applied because it normalizes

the input across a mini-batch and generates simpler feature representations in the

hidden layers. Therefore, it overcomes gradient vanishing and prevents outliers at

the test time. In addition, L2 regularization is utilized to generalize the model and

to reduce overfitting to the training data. More specifically, each parameter of the

objective function is penalized by its squared magnitude as follows:

E(W ) =
1

2

N−1∑
n=0

(tn − y(xn,W ))2 +
λ

2
‖W‖2 (8.12)

where E(W ) is the objective function, tn is the actual class value of the nth instance

in the training batch, N is the total number of instances, and y is the output based

on input xn and weight W . The last term is the L2 regularization term including a

penalty weight of λ.

Dropout is also directly added to each bidirectional LSTM layer. Dropout is a

regularization technique which randomly ignores some neurons during the training,
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and so their contribution to the activation is temporarily deactivated. As a result, we

can significantly prevent overfitting. Finally, the prediction component includes two

fully connected layers and a dropout in between, which generates the final classes.

8.1.5 Experimental Analysis

In this work, the proposed model is applied to a large-scale video dataset to evaluate

its performance. Specifically, the public UCF101 action recognition dataset [49] is

used that contains 13,320 videos with 101 action categories. UCF101 is one of the

most challenging datasets due to its diversity in terms of actions, views, background,

camera motion, etc. It is also selected because of its popularity in the literature and

many available benchmarks that can be used to evaluate our model. The first

train/test split of this dataset suggested by the reference website is used in this

experiment.

In the preprocessing step, we first extract all the frames form each video. There-

after, we extract the features of every video frame through the last pooling layer

of Inception-v3, resulting in a feature set with 2048 dimensions. These extracted

features are later grouped into sequences. For the sake of simplicity and similar to

the experiments in [161], alpha is selected as 40. In other words, we turn each video

into a 40-frame sequence. For temporal analysis, a two-layer Residual Bidirectional

LSTM with 1024-wide followed by a 1024 fully connected layer and 50% dropout is

used. This relatively shallow network outperforms other deep stacked Residual Bidi-

rectional LSTM models. We use Adam stochastic optimization with an aggressively

small learning rate 0.000001 and L2 regularization with λ = 0.0003.

As mentioned earlier, we do not extract any extra engineering features such as

motion and dense trajectories to reduce the complexity and enhance the efficiency
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of the model. Thus, the proposed model is compared with the existing work without

the optical flow and iDT features. Since UCF101 has relatively a great balance of

training data in all classes, accuracy and top-5 accuracy are used as the evaluation

metrics.

Table 8.1 summarizes the experimental evaluation with the comparison against

the state-of-the-art models on UCF-101. The comparison models include: (1) a sim-

ple CNN-MLP model [161] in which the features are extracted from each frame with

Inception-v3 and then the sequences are passed to a Multi-layer Perceptron (MLP),

(2) a 10-dimension 3D convolutional network [111], (3) a single frame CNN using

the pre-trained CaffeNet and applying a linear Support Vector Machine (SVM) for

classification [111], (4) a slow fusion CNN model that slowly integrates temporal in-

formation with the spatial one through the network [109], (5) a deep spatio-temporal

model called Long-term Recurrent Convolutional Networks (LRCN) based on CNN

and LSTM [115], and (6) a single frame CNN and LSTM [52]. All these methods

are based on RGB frames only and no optical flow or iDT features are used. As

can be inferred from this table, our proposed model (CNN-ResBiLSTM) improves

the classification performance (accuracy) compared to all other models. It is worth

mentioning that, although the existing work did not usually mention the speed of

training their models, it is obvious that the models utilizing transfer learning for

feature analysis perform much faster than those trained from scratch on the raw

data.

To further demonstrate the effectiveness of the proposed residual bidirectional

LSTM, we conduct several experiments on the UCF101 dataset as shown in Ta-

ble 8.2. These results show the importance of bidirectional and residual connections

combined with LSTM in spatio-temporal video analysis. The comparison models in-

clude: (1) a frame-based CNN and softmax for generating final classes. This model
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Table 8.1: Classification results on UCF101. The proposed CNN-ResBiLSTM com-
pared with baselines and state-of-the-art models.

Model Accuracy (%)
TimeDistributed
CNN+RNN (end to end) [161]

20.0

CNN-MLP [161] 70.0
C3D [111] 52.8
Frame-based CNN
+linear SVM [111]

68.8

Slow Fusion CNN [109] 65.4
LRCN [115] 71.1
Frame-based CNN+LSTM [52] 73.3
CNN-ResBiLSTM 77.6

only considers static features in single frames and ignores the temporal information

between the frame sequences. We fine-tune Inception-v3 by freezing the top layers

of the network and updating the weights in only the final layers. This simple model

surprisingly generates a promising performance compared to the complex models

such as C3D. (2) a model based on the CNN features and a simple LSTM. Although

this model utilizes the temporal information using LSTM cells, it cannot improve

the results of the frame-based model. (3) adding residual connections to the pre-

vious model. This model cannot increase the performance notably. (4) a model

with bidirectional connections. This model can enhance the accuracy by 2%. (5)

fusing the CNN Bidirectional LSTM and a simple CNN MLP to further boost the

performance. However, as can be seen from the table, the fusion cannot help in this

case. Finally, our proposed model (CNN-ResBiLSTM) can increase both accuracy

and Top-5 accuracy compared to the best comparison result (CNN-BiLSTM) by

almost 3.4% and 2.7%, respectively, which is promising for this dataset.

Figure 8.2 (a-b) visualizes the loss and accuracy comparison of each model during

the training process. It can be inferred from these plots that the proposed method

(ResBiLSTM) can converge faster than the other benchmarks and generate lower
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Table 8.2: Performance evaluation results on UCF101 using different techniques
based on our experimental setup.

Approach Acc (%)
Top-5
Acc (%)

Frame-based CNN (IncV3)
+Softmax

73.4 91.6

CNN-LSTM 72.2 92.2
CNN-ResLSTM 72.5 91.6
CNN-BiLSTM 74.2 91.4
CNN BiLSTM+
MLP Fusion

73.6 91.4

CNN-ResBiLSTM 77.6 94.1

losses and higher accuracies in almost all the iterations. The LSTM model has the

slowest convergence while BiLSTM and ResLSTM can lessen this problem of LSTM.

Finally, the proposed model can learn forward and backward connections in each

video sequence and leverage the temporal shortcut paths to expedite the training

convergence and reach to the higher performance faster.

8.2 An Integrated Spatio-Temporal Sampling and Deep Learn-

ing Model

In chapter 5, a spatio-temporal video sampling model is proposed for imbalanced

data classification. We combine the idea of our sampling model with the proposed

spatio-temporal deep learning model to consider both spatial and temporal informa-

tion in multimedia data while handling imbalanced data problem. Although initial

work has been done in these two directions, more efforts need to be dedicated to

integrate the existing solutions. Therefore, we propose to integrate these two models

as shown in Figure 8.3. The model will include spatio-temporal synthetic oversam-

pling, spatial, temporal, and prediction components. First, the video oversampling
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(a)

(b)

Figure 8.2: Comparison of validation (a) loss and (b) accuracy on UCF101.

will be employed to overcome the imbalanced data problem, and then both static

and temporal features will be extracted from multimedia data using pre-trained

CNNs and ResBiLSTM. Specifically, the proposed oversampling algorithm will be

extended as shown in Algorithm 7.

In addition to the new oversampled videos V̂ = {v̂i,j,fr|i = 1, · · · , N ; j =

1, · · · ,M ; fr = 1, · · · , freqj}, generated by the previous algorithm in chapter 5,

this time the sequences of spatial features Sequences = {Seqi,j,fr|i = 1, · · · , N ; j =

1, · · · ,M ; fr = 1, · · · , freqj} are generated where Seqi,j,fr is the feature sequence

related to the oversampled video v̂i,j,fr. The static features are generated for the
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corresponding image using the pre-trained models as explained in chapter 6, These

frames generated for each video are stitched together as a sequence Seqi,j,fr to be

easily used in the next layers for video temporal analysis. Using this technique,

the deep features are extracted once for each frame and may be used several times

through the training process. Therefore, there is no need to continuously pass the

original images through the CNN every time the same frame is read. The spatio-

temporal synthetic oversampling algorithm returns these sequences to be used as

the input of the temporal deep learning model.

8.2.1 Experimental Analaysis

In order to demonstrate the effectiveness of the proposed integrated model, we con-

duct some preliminary experiments similar to the one shown in chapter 5 for disaster

video dataset and imbalanced UCF101. Tables 8.3 and 8.4 summarize the experi-

mental results. The last two rows show the results of the proposed integrated model

without and with class weighting, respectively. It can be seen from the tables, the

proposed CNN-ResBiLSTM together with the proposed video oversampling further

improves the results and reaches to 70% accuracy for disaster dataset and 72% for

UCF101 dataset. Specifically for the disaster dataset, compared to the original

CNN-LSTM, the proposed techniques can enhance the accuracy and F1 measure by

more than 11% and 0.17, respectively. Similarly, the accuracy and F1 measure are

improved about 4% for UCF101.

8.3 Conclusion

This chapter presents a new spatio-temporal model for large-scale video classifica-

tion using deep learning. The model introduces a new spatio-temporal deep learning
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Algorithm 7 The proposed spatio-temporal synthetic oversampling algorithm for
an imbalanced video dataset
Input: Original training video dataset V = {vi,j|i = 1, · · · , N ; j = 1, · · · ,M},
Class list CL = {clj|j = 1, · · · ,M}, Maximum number of video samples δ, and
sequence size α.
Output: Oversampled video dataset V̂ = {v̂i,j,fr|i = 1, · · · , N ; j = 1, · · · ,M ; fr =
1, · · · , freqj}. and Sequences of spatial features Sequences = {Seqi,j,fr|i =
1, · · · , N ; j = 1, · · · ,M ; fr = 1, · · · , freqj}.
1: V̂ ← {}, Sequences← {};
2: for all class clj ∈ CL do

3: freqj ←−
⌈

δ
nvj

⌉
;

4: for all video vi,j ∈ V do
5: frmi,j ← GetFrames(vi,j);
6: for fr = 1, · · · , freqj do
7: if SizeOf(framesi,j) > α then
8: frmi,j ← RandDown(frmi,j);
9: else
10: frmi,j ← UpSample(frmi,j);

11: Seqi,j,fr ← {} ;
12: v̂i,j,fr ← {} ;
13: for all Img ∈ frmi,j do

14: ˆImg ← RandAug(Img);
15: v̂i,j,fr ← v̂i,j,fr + ˆImg;

16: features← SpatialFeatures( ˆImg);
17: Seqi,j,fr ← Seqi,j,fr + features;

18: end for
19: V̂ ← V̂ + v̂i,j,fr;
20: Sequences← Sequences+ Seqi,j,fr;

21: end for
22: end for
23: end for
24: return V̂ , Sequences
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Table 8.3: Performance evaluation results on Disaster dataset.

Approach Acc F1
Weighted
F1

No video oversampling
CNN-LSTM 0.589 0.339 0.526
CNN-LSTM+
class weighting

0.663 0.428 0.654

With video oversampling
CNN-LSTM 0.671 0.456 0.662
CNN-LSTM+
class weighting

0.678 0.477 0.688

Proposed model
CNN-ResBiLSTM 0.681 0.493 0.678
CNN-ResBiLSTM+
class weighting

0.700 0.513 0.706

Table 8.4: Performance evaluation results on imbalanced UCF101.

Approach Acc F1
Weighted
F1

No video oversampling
CNN-LSTM 0.685 0.655 0.670
CNN-LSTM+
class weighting

0.680 0.660 0.670

With spatio-temporal video oversampling
CNN-LSTM 0.706 0.684 0.696
CNN-LSTM+
class weighting

0.690 0.669 0.679

Proposed model
CNN-ResBiLSTM 0.723 0.702 0.717
CNN-ResBiLSTM+
class weighting

0.705 0.686 0.696

130



method using CNN and LSTM models. First, the spatial information is extracted

from the video sequences using the pre-trained CNNs. Thereafter, these sequences

are fed to the proposed two-layer residual bidirectional LSTM, and finally the video

classes are predicted in the final fully connected layer. In addition, this model is

integrated with the proposed dynamic sampling to enhance the classification perfor-

mance especially for minor or complicated classes. The experimental results demon-

strate the ability of the proposed model with respect to the prediction performance

and efficiency.
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CHAPTER 9

MULTIMODAL DEEP REPRESENTATION LEARNING

In the previous chapters, we mainly focus on visual (image/video) data. However,

other data modalities may contain valuable information which can be utilized in the

framework. Despite the great success of deep learning in the processing of single

data modalities, there are still a few research studies focusing on multimodal deep

learning frameworks [149, 200]. This problem is mainly due to the limited available

datasets that contain multiple data modalities including text, audio, video, etc.

In addition, many real-world data samples can be represented with multiple

labels. For example, an image may contain multiple objects or a video may contain

various events. In such cases, the data samples cannot be easily categorized by a

single class. Therefore, Multi-Label Classification (MLC) is a necessity to solve these

problems. In MLC, different from single-label classification, each instance is assigned

to multiple labels simultaneously. Due to the high dimensionality of the data, the

enormous number of label combinations, and the complex correlation between the

labels, MLC is more challenging than a single-label classification problem. Besides,

for a multimedia dataset containing multiple data types, it is essential to discover

the correlation between both labels and data modalities.

Considering all these challenges, in this chapter, we present a new model for

multi-label multimodal data classification using advanced deep neural networks. In

addition, we consider the imbalanced data problem to further enhance the detection

performance for both minority and majority classes. This model is specifically eval-

uated on a multimodal dataset designed for natural disaster information retrieval

and management. However, it can be easily extended for other multimodal multi-

label datasets. The contributions of this work include: (1) deep feature extraction

using spatio-temporal deep learning models for each modality (text, audio, and im-
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age); (2) a new fusion technique which considers the relation between both labels

and data modalities while considering the imbalanced data problem; (3) a modi-

fied disaster-based video dataset which is designed for multi-label multimodal video

classification.

The proposed multi-label multimodal deep learning model is shown in Figure 9.1.

The input of our model includes disaster videos which contain visual and audio clips

as well as text descriptions. For each data modality, we extract static features using

the state-of-the-art pre-trained deep learning models. In the next step, temporal fea-

tures are extracted using the advanced Recurrent Neural Networks (RNNs). Then,

in the fusion module, we concatenate the features from each modality and apply a

Random Forest feature selection to remove the irrelevant features. Finally, the se-

lected features are used as the input of the multi-label multimodal weighted Support

Vector Machine (SVM) to generate the final classification results.

9.1 Static Feature Extraction Module

Static feature sets include visual, audio, and text features as explained below.

9.1.1 Visual Feature Extraction

In a video classification, visual data play an important role in detecting various

concepts. In this research, we used a pre-trained deep learning model to extract the

visual features from video clips. First, each video clip is subsampled to α frames.

To do so, video clips with more than α frames are essentially down-sampled, while

those with less than α frames are upsampled. For example, both videos with α+ 1

and α+ 500 frames will be reduced to α. Similar to our previous work [141], down-

sampling and up-sampling are done in a random manner. First, a number skip/rep
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Figure 9.1: The proposed multi-label multimodal deep learning model.
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is generated (skip/rep = frame−length
α

). For down-sampling, a rescaled list of video

frames is returned by generating a random number for each skip range and selecting

the corresponding frame for that range. On the other hand, for up-sampling, when

the number of frames in a video is less than α, each frame is repeated rep times to

generate the rescaled α frame list. This step is necessary to have a fixed-size input

for the temporal model.

In the next step, spatial features are automatically extracted using a popular pre-

trained model called Inception-v3 [198]. This CNN-based model is an advanced and

efficient version of the original Inception architecture proposed by Google in 2014. In

particular, it factorizes convolutions into smaller convolutions (e.g., traditional 7×7

convolutions are factorized into 3×3 convolutions) and also adds batch normalization

to the fully connected layer of the auxiliary classifier. Inception-v3 is originally

trained on ImageNet [55]. The features generated by transfer learning based on the

pre-trained models can be used for smaller but similar datasets. Transfer learning

can significantly speed-up the training process in deep learning compared to when

the model is completely trained from scratch using the new dataset. In addition,

it alleviates the necessity of having a very large-scale labeled dataset for training

the deep learning models. Depending on the similarity between the source dataset

(e.g., ImageNet) and target dataset (e.g., disaster dataset), different layers of the

pre-trained model can be used for feature extraction. In this work, Inception-v3 is

truncated in the last average pooling layer to generate the features for each frame.

Thereafter, each video clip is turned into an α-frames sequence of deep features.

The spatial feature extraction is only done once in an offline manner, and its results

can be used many times in the training process. Thus, it is not necessary to pass

the original raw images through the network every time they are read. We used the

last average pooling layer of Inception-V3 for feature extraction.
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9.1.2 Audio Feature Extraction

Audio features are extracted through SoundNet [201], a pre-trained model of natural

sound representations. It utilizes a student-teacher training procedure and learns the

acoustic representations from the unlabeled videos by leveraging the discriminative

cross-modalities knowledge between the visual and audio data. The audio features

are learned from the image features extracted from ImageNet [55] and Places [202].

It consists of several convolutional layers and pooling layers. In our proposed frame-

work, the eight-layer model is used as the feature extractor, and the features are

extracted from the conv7 layer, which is the convolutional layer before the last layer,

that predicts the probabilities of classes in the ImageNet and Places datasets. The

output matrix of the audio features is determined by the size of TIME × DIM ,

where TIME is the length of the sequences affected by the length of the audio clip,

and the feature dimension is fixed as DIM for a certain sample rate. In our model,

1024 audio features are generated for each short time series.

9.1.3 Textual Feature Extraction

In comparison to visual and audio data, text data is capable of providing rich in-

formation which precisely describes various situations. By adding the knowledge

learned by the textual model, the multimodal model could capture important se-

mantic information [203]. The text data is extracted from the video description

from all the videos. Preprocessing is performed to clean and format the textual

data, which includes stop words and punctuation removal and tokenization. Then,

the textual data is transformed into the vector space by using a pre-trained word

embedding model called GloVe [204]. GloVe first learns a word co-occurrence counts

matrix and generates the vector space representation based on the co-occurrence of
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each pair of words with a soft constraint:

γTi γj + bi + bj = log(Xij) (9.1)

where Xij is the word pair i and j, γi and γj are the word vectors for words i and

j, bi and bj are the biases term for words i and j. Then, the co-occurrence matrix

is reduced to generate the final word vector. The objective of the cost function J is

to penalize rare word pairs which carry less information:

f(Xij) =

(
Xij

Xmax
)α if Xij < Xmax

1 otherwise
(9.2)

J =
V∑
i=1

V∑
j=1

f(Xij)(γ
T
i γj + bi + bj − logXij)

2 (9.3)

where V is the total number of words, f(x) is the weighting function, Xmax is

the cutoff threshold, and α is the tunable parameter.

9.2 Temporal Feature Extraction Module

Video data includes a series of frames and there is valuable temporal information

between the frames’ sequences. This temporal information can be seen among the

visual and audio frames as well as the video textual data. After we extract the static

features, we extract the temporal features from each modality using deep RNNs.

Specifically, we extend our previously proposed model called Residual-Bidirectional

Long short-term memory (ResBiLSTM) [141] to extract the temporal features from

not only the visual data but also audio and text data.
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9.3 Fusion Module

The output from the ResBiLSTM network consists of segments of temporal features

that contain the relevant information for various concepts. By incorporating the

early outputs from the temporal networks, the semantic correlation from different

modalities could be preserved and utilized. The overall fusion model is illustrated

in Algorithm 8. The unimodal vector representation −→vi , −→ai
−→
ti from visual, audio,

and text models are concatenated to form a single vector representation
−→
fi . Then,

all the vectors
−→
fi are grouped and formed the new dataset F based on the origi-

nal ordering of the instances. The new vector has 384 dimensions that may cause

various problems such as overfitting and slower training time. Therefore, dimen-

sional reduction and feature selection techniques are applied. Random Forest (RF)

is a tree-based ensemble learning algorithm that constructs multiple decision trees

through the training phase and produces the final prediction score based on the

majority vote of each classifier [205]. We use F as the input of RF classifier and

calculate the mean decrease of Gini Impurity (GI) of each feature. The GI is defined

as:

GI =

|C|∑
j=1

P (j) ∗ (1− P (j)) (9.4)

where |C| is the size of the concepts, P (j) is the probability of an input be

classified as class j. While training, the total decrease of Gini impurity for each

feature is computed on the decision tree level. Then, the impurity decrease from

each feature is averaged on the whole forest. Based on the mean decrease of Gini

impurity, feature ranking R is generated. In real-world data, the distribution of the

number of instances for different concepts may be heavily skewed. This imbalanced

class problem could negatively impact the performance of the classifier since most
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of the machine learning models assume the classes’ distribution are uniform. Thus,

the cost function of SVM is modified to penalize the misclassification of instances

that belong to the minority classes. The new cost function is defined as:

J =
1∑|C|
j δj

N∑
i

δj ·max(0, 1− yi(wTi · xi + bi)) (9.5)

where δj is the inverse frequency of the number of instances containing class cj, |C|

is the size of the concepts, N is the total number of instances, yi is the label of ith

instance, xi is the input instance, wi and bi are the learned weight and bias terms.

The original multi-label ground truth L is transformed into the single-label form

L̂ using the label powerset algorithm. The weighted SVM is trained with the new

ground truth label setup using the recursive feature elimination approach. This

approach recursively drops the lowest ranked feature rk in all the instances from

input F based on the feature ranking R. During each iteration, the prediction result

will be recorded and compared with the previous score. If the latest score is not

improved then the previous best result (S) will be returned.

9.4 Experimental Analysis

Dataset. The data used in this work is based on the dataset collected and used in

our previous work [148]. The original dataset contains 1,540 video and audio clips

that are extracted from 419 Youtube videos related to 2017 hurricane Harvey and

Irma. We extend the original dataset by 1) adding text (extracted from the video

descriptions) as a new modality, and 2) transforming the original single label problem

into a multi-label problem. The statistics information of the disaster dataset is

shown in Table 9.1.
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Algorithm 8 The proposed fusion algorithm

Input: Audio feature A, Video feature V, text feature T and ground truth label L
Output: Final prediction score S

1: F ← {}
2: for −→ai ∈ A,−→vi ∈ V,

−→
ti ∈ T do

3:
−→
fi ← concatenate(−→a i,

−→v i,
−→
t i)

4: F ← F ∪
−→
fi

5: end for
6: R← RandomForest(F )
7: IF ← {}
8: L̂← LabelPowerSet(L)
9: for cj ∈ C, j = 1, 2, ..., |C| do
10: δj ← 1

|F∈cj |
11: IF ← IF ∪ δj
12: end for
13: for rk ∈ R, k = |R− 1|, |R− 2|, ..., 1 do
14: F ← F − rk
15: sk ← WeightedSVM(IF, F, L̂)
16: if sk < sk−1 then
17: S ← sk
18: return S
19: end if
20: S ← sk
21: end for
22: return S

Table 9.1: The statistical information of the disaster dataset

No. Concepts # of Instances P/N Ratio
1 Demo 150 0.047
2 Emergency Response 338 0.105
3 Flood/Storm 971 0.301
4 Human Relief 273 0.085
5 Damage 371 0.115
6 Victim 311 0.096
7 Speak/Briefing/Interview 811 0.251

Total 3,225
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Experimental Setup. Different metrics are required to evaluate the perfor-

mance of MLC compared to those used in the single label classification. In the

literature, several metrics have been adopted [206]. The evaluation metrics applied

for our proposed model include Hamming Loss, micro-averaged F-measure and mean

average precision.

The Hamming Loss (HL) represents the proportion of the misclassified labels to

the total number of labels.

HL =
1

|N |

N∑
i=1

Yi ⊕Θi

|C|
(9.6)

where N is the total number of samples, |C| is the total number of concepts, Yi

is the ground truth label, Θi is the prediction results, and ⊕ is the binary logical

“exclusive or” operator. Micro averaged F-measure (MicroF1) calculates the micro-

averaged F1-score of all classes by counting the global True Positives (TP), False

Negatives (FN) and False Positives (FP) across all classes. Mean Average Precision

(MAP) calculates the average of the Average Precision (AP) over all the instances.

The dataset is randomly split into 60% training, 20% validation and 20% testing.

In addition, we keep the distribution of classes almost similar between training,

validation, and testing datasets. All model parameters are tuned using the validation

dataset. The total numbers of static features for visual, audio, and text are 2048,

1024, and 1000, respectively. The temporal feature extraction model is composed

of two bidirectional residual LSTM layers with 10% dropout, one dense layer using

the ReLu activation function with 50% dropout and the final dense layer using

Sigmoid activation function. The binary cross entropy is used as the cost function

for the network training. For the weighted SVM classifier in the fusion model, a

linear kernel is applied, a 0.9 penalty parameter for the error term is used and the

shrinking heuristic is enabled.
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Experimental Results. To demonstrate the effectiveness of the proposed

multi-label multimodal deep learning model, it is compared with several baselines

as follows. Single visual, audio, and textual models including static features from

Inception-V3, SoundNet, and Glove, respectively, each combined with a dense layer

for classification. The second group of baselines includes the combinations of two dif-

ferent modalities (e.g., visual+audio, visual+text, text+audio). We also compared

the proposed model with two different fusion techniques including early fusion and

late fusion. In early fusion, the static features are concatenated and then we apply

LSTM to generate the temporal features followed by dense layers to generate the

final scores. On the other hand, the late fusion concatenates the temporal features

from each modality and apply the dense layers for classification.

Table 9.2 shows the detailed performance results of the baselines and the pro-

posed model. It can be seen from the table that the single text models perform

better than the visual and audio models. Specifically, text model achieves 0.78 and

0.69 micro F1 and MAP, respectively. The visual model also achieves a reasonable

performance which is significantly higher than the audio model. These results il-

lustrate the importance of textual and visual data in event detection and disaster

information management applications. In the next step, every two various modali-

ties are combined to generate the classification results. Surprisingly, the audio+text

model achieves the highest performance (micro F1 of 0.86) among all these three

combinations. This is mainly due to the fact that audio and text can complete each

other better than visual+audio or visual+text. For example, audio can easily detect

concepts “speak” and “flood”, but it cannot perform well for “damage” or “human

relief” concepts, while text performs well in such concepts.

Finally, we used all the three modalities to further improve the results. It can

be inferred from the table that simply concatenating the static features using early
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Table 9.2: Performance evaluation results on the disaster dataset

Approach Features Micro F1 HL MAP
Single modal visual 0.6767 0.1586 0.6015
Single modal audio 0.5022 0.2565 0.4197
Single modal text 0.7789 0.1187 0.6945
Two modalities visual+audio 0.6667 0.1652 0.5928
Two modalities visual+text 0.823 0.0969 0.7472
Two modalities text+audio 0.8586 0.078 0.7882
Three modalities
(early fusion)

visual+audio
+text

0.812 0.102 0.7351

Three modalities
(late fusion)

visual+audio
+text

0.9022 0.0575 0.8409

Proposed
model

visual+audio
+text

0.9414 0.0348 0.8993

fusion cannot improve the classification performance compared to the two modal-

ities models. This is mainly due to the different nature of the feature sets that

cannot be easily combined in the early levels. However, if the features are fused in

the final levels (after applying the temporal module), we can achieve a significant

improvement in the final performance (e.g., 0.90 micro F1). Finally, we further

improve the performance by applying our proposed fusion technique which includes

late fusion followed by RF feature selection and a weighted SVM for imbalanced

data classification. As a result, we could beat all the benchmarks. Specifically, the

micro F1, HL, and MAP reach 0.94, 0.03, and 0.90, respectively. In other words,

the F1 score is improved by 4% and MAP is improved by almost 6% compared to

the best result (late fusion).

We further demonstrate the effectiveness of the proposed model in Figure 9.2, in

which our model is compared with the other two fusion techniques (early and late

fusions). This figure visualizes the micro F1 results for each concept in the disaster

dataset. It can be observed from the figure that the proposed model beats early and

late fusions in all the concepts. For a few concepts such as “speak” and “flood”,
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Figure 9.2: Performance comparison between the fusion models

the late fusion’s performance is very close to the ones from our method. However,

in other concepts such as “demo” and “emergency response”, there is a big gap

between our performance and other fusion techniques. As shown in Table I, these

concepts have lower P/N ratios compared to “speak” and “flood”. Therefore, the

proposed model can successfully enhance the performance of the minority classes

without scarifying the majority ones.

In summary, the proposed multi-label multimodal imbalanced data classification

model achieves an outstanding performance for a very challenging and complex

dataset.

9.5 Conclusion

This chapter presents a new multi-label multimodal model based on deep neural

networks for imbalanced data classification. The proposed model includes static

feature extraction for each modality using transfer learning, temporal feature anal-

ysis using ResBiLSTM, and a new fusion module which considers the correlation

between both data modalities and labels. The proposed model also handles the
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imbalanced data problem by automatically assigning a weight to each class during

the classification. This model is evaluated using the disaster video dataset.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

In this dissertation, a comprehensive framework is proposed for spatio-temporal

multimedia big data analytics based on deep neural networks. It includes several

main components as follows: (1) synthetic data generation, (2) automatic sam-

pling for imbalanced data, (3) deep representation learning, (4) automatic hyper-

parameter learning, (5) deep spatio-temporal learning, and (6) multimodal deep

learning. These components are integrated as a coherent entity to provide new solu-

tions for existing challenges in multimedia big data. Each component is summarized

as follows:

• Novel synthetic data generation models are proposed based on simulators and

adversarial networks to overcome the difficulties of collecting large-scale real-

world data. Specifically, they are designed to generate data for rare events,

that are difficult to be obtained from the real world. Domain and scenario

randomization are leveraged to bridge the reality gap between simulation and

the real world while Cycle-GAN is used to generate data for rare cases from

normal data automatically. These techniques are combined with deep learning

to solve two important applications, namely autonomous driving in simulation

and flood detection.

• A new sampling model is proposed to overcome data imbalanced problem

in multimedia big data. This model is a combination of two new sampling

models namely spatio-temporal synthetic oversampling and dynamic sampling

approaches. The first model is used before the training process starts and
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tries to balance the dataset by generating new synthetic video data using

random frame selection and augmentation. The second model, however, is

integrated with CNNs and updates the data samples of each class based on

its performance in each training iteration.

• A new deep learning model is proposed to extract discriminative features for

multimedia semantic event detection. This model consists of an ensemble of

several pre-trained deep models for feature extraction and a new combination

called Residual-Inception layers. The proposed deep feature extraction uses

transfer learning techniques and improves the detection performance compared

to the conventional hand-crafted features. Moreover, the proposed Residual-

Inception model helps further improve the classification results and signifi-

cantly enhance the training speed compared to very deep and complicated

learning models.

• A new algorithm is proposed to automatically adjust the hyper-parameters

in DNNs. This algorithm is called T-LRA, which is a general learning rate

scheduler for SGD algorithm based on statistical trend analysis methods. It

automatically modifies the learning rate based on the previous training trends

and can achieve higher prediction performance in fewer training iterations.

• A novel spatio-temporal representation learning is presented to not only ex-

tract the static features from multimedia data but also leverages the temporal

information in time-series data, such as video and audio. The proposed model

shows how spatial and temporal information can be integrated effectively to

improve the final classification results. This component utilizes deep learning

techniques such as CNNs for spatial data analysis and LSTM for temporal

feature analysis in multimedia data.
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• After extracting static and temporal features from multimedia data, how to

integrate different data modalities in an effective and efficient manner becomes

important. For this purpose, a new fusion model is proposed to handle multi-

modal data classification. Specifically, a multi-label multimodal deep learning

model is proposed as a fusion technique to consider the correlation between

classes and different data modalities. The proposed fusion model is used specif-

ically to detect semantic concepts from videos containing natural disasters and

can be used for disaster management systems.

10.2 Future Work

It is shown in the previous chapters the effectiveness and efficiency of the proposed

framework (depicted in Figure 3.1) for multimedia big data analytics. However,

there are still several challenges that need to be considered in the future work as

explained below.

10.2.1 Automatic Hyper-Parameter Learning

In this dissertation, the proposed hyper-parameter learning technique mainly fo-

cused on learning rate scheduling. It uses a statistical drop-based mechanism in

which the learning rate parameter will be reduced gradually based on the training

losses. It is already shown that this technique can adjust the step size until it reaches

the minimum loss. However, if the model gets stuck in the local minimum, it is still

challenging to reach the global minimum. Some optimizers have tried to address

this issue by introducing adaptive momentum parameter [130]. However, these tech-

niques are not always successful to get out of the local minimum. This is also the

limitation of the proposed T-LRA algorithm. To address this issue, the future work
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Figure 10.1: Stochastic gradient descent with restarts (photo by Hafidz Zulkifli [5])

should focus on designing effective SGD Restart (SGDR) techniques [207, 208]. In

other words, instead of applying various types of learning rate decay, we should also

reset the learning rate after several iterations. This process, also known as “cyclic

learning rates”, is shown in Figure 10.1.

The important question is how to decide the number of epochs to restart the

learning rate. Loshchilov and Hutter [207] utilized the cosine function as the learning

rate restart function. However, instead of setting each cycle to the same period

of time, the length of the restart period should be expanded as we get closer to

the global minimum. In future work, the T-LRA algorithm will be extended to

automatically restart the learning rate based on the trend of the training loss.

In addition to the learning rate, there exists other hyper-parameters and pa-

rameters that need to be automated. For example, the whole structure of DNNs

including the number of layers, kernel size, number of filters as well as global hyper-

parameters (e.g., momentum) can be determined using revolutionary and genetic

algorithms [209, 210, 211]. Yet, evolving DNNs is computationally expensive, as
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a complete training process is needed for each newly generated model. Therefore,

more advanced techniques are required to only select the best generated models that

will not only save the training time but also enhance the model performance within

fewer iterations.

10.2.2 Integrated Synthetic Data Generation

Two different synthetic data generation models are proposed in this dissertation.

The first model is based on Cycle-GAN that performs an image to image style

transfer. Specifically, in our flood event detection application, it transfers abnormal

styles such as blurry, night, and rainy to normal flood images and augments it to

the regular flood images to enhance the DNN model. While in the second model,

simulators (e.g., Unity Game engine) are used to generate image samples. Then,

various domain and scenario randomizations are applied to bridge the reality gap.

In future work, we propose to integrate these two techniques to further reduce

the gap between synthetic and real-world data. In other words, simulators can be

used to automatically generate large-scale samples of images for different conditions

and then adversarial models can be applied to these data to transfer the style of

the real-world images to the simulation data. Using this method, we will not need

any annotated real-world data. Instead, we can quickly generate labeled data with

simulators and then collect a series of real-world images (without any labels). Cycle-

GAN can transfer the annotated simulated data to the real-world data.

The preliminary results of our integrated simulation and Cycle-GAN model are

shown in Figures 10.2 and 10.3. The first set of results show how the images can be

transferred from a photo-realistic simulation world to the real world (Figure 10.2).

From this figure, it can be seen that transferring from simulation to the real world
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Figure 10.2: Style transfer from real to simulation (and vice versa) using Cycle-GAN

is very challenging (i.e., center images are very noisy and some objects are missing).

This issue is mainly due to the complexity of the real-world images and the huge

difference between these two domains. Therefore, we did another experiment to

transfer the images from a primitive simulation (Domain1 in Chapter 4) to a more

realistic world (Domain 2 in Chapter 4) as shown in Figure 10.3. The results from

the second experiment are more promising as the two domains are more similar

(both are from simulators) and have less complexity. Thus, in the future work, one

can transfer the style of realistic simulation to a primitive inexpensive simulation

and later use these data to train a DNN model that is able to work on the real

world.

10.2.3 Other Future Work

Other Modalities

The proposed multimodal deep learning model utilizes different data modalities in

order to enhance the classification performance. The current model utilizes visual,
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Figure 10.3: Style transfer from primitive simulation to a photo-realistic simulation
(and vice versa) using Cycle-GAN

audio, and text data which are taken from video clips and its metadata. In the

future, this framework can be extended to leverage other data modalities such as

Light Detection and Ranging (LIDAR) data, geographic information, and structured

data. It can also be utilized for not only classification tasks but also other problems

like multimedia retrieval, object detection/segmentation, regression, etc.

Unsupervised Learning

This dissertation utilizes several unsupervised learning techniques such as Cycle-

GAN for image-to-image translation, transfer learning for static feature extraction,

and data augmentation for generating additional synthetically modified data. Nev-

ertheless, the main focus of this study is video classification and supervised learning.

The main challenge in supervised learning is the annotation process which is very

tedious and time-consuming. For instance, it took us several months and lots of

human efforts to collect and annotate our disaster dataset. To tackle this challenge,

many researchers have focused on unsupervised learning techniques such as unsu-
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pervised generative adversarial networks and autoencoders [212, 213]. In addition,

low-shot learning (learning from a few examples) can be considered as an alternative

when there are a few supervised data [214]. These techniques can be leveraged in

our framework in the future.

Online Learning

In general, the network topologies and architectures in deep learning are time static

(i.e., they are pre-defined before the learning starts) and are also time invariant

[47]. This restriction on time complexity poses a serious challenge when the data is

streamed online. Online learning previously came into mainstream research [215],

but only modest advancement has been observed in online deep learning. Conven-

tionally, DNNs are built upon the Stochastic Gradient Descent (SGD) approach

in which the training samples are used individually to update the model parame-

ters with a known label. The need is that rather than the sequential processing

of each sample, the updates should be applied as batch processing. One approach

was presented in [216] where the samples in each batch are treated as Independent

and Identically Distributed (IID). The batch processing approach proportionally

balances the computing resources and execution time.

Another challenge that stacks up on the issue of online learning is high-velocity

data with time varying distributions. This challenge represents the retail and bank-

ing data pipelines that hold tremendous business values. The current premise is

that the data is largely close in time to safely assume piece-wise stationarity, and

thus having a similar distribution. This assumption characterizes data with a cer-

tain degree of correlation and develops the models accordingly, as discussed in [217].

Unfortunately, these non-stationary data streams are not IID and are often longi-
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tudinal data streams. Moreover, online learning is often memory delimited, harder

to parallelize and requires a linear learning rate on each input sample.

In the future, developing methods that are capable of online learning from non-

IID data would be a big leap forward for multimedia big data deep learning.

Big Data and Distributed Systems

This dissertation mainly concentrates on improving algorithms and machine learning

techniques for efficient multimedia big data analytics. In the future, advanced big

data analytics techniques such as distributed systems, cloud computing, and edge

computing will be used in this framework to further reduce the computational costs

and also speed up the training process. For example, data parallelism and model

parallelism techniques can be used to train ML models in a distributed system [218].

Both data-parallel and model-parallel strategies have their own limitations. On

one hand, if data parallelism has too many training modules, it has to decrease the

learning rate to make the training procedure smooth. On the other hand, if model

parallelism has too many segmentations, the output from the nodes will increase

sharply and reduce the efficiency accordingly [219]. Generally speaking, the larger

the dataset is, the more beneficial it is to have data parallelism. The larger the deep

learning model is, the more suitable it is to have model parallelism. Besides, com-

pared to data parallelism, it is hard to hide the communication needed for synchro-

nization in model parallelism because only partial information is included in each

node for the whole batch, though some advanced frameworks like TensorFlow[220]

support asynchronous kernels to save the communication cost. Thus, it is neces-

sary to wait till the synchronization step finishes before moving forward to the next

layer since the activities are unable to be processed with only partial information.

The two kinds of strategies can be also fused to a hybrid model as discussed in
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[219]. Both these techniques can be also integrated with genetic algorithms to dis-

tribute the evaluation of the fitness of population members among different GPUs

and machines.
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