977,902 research outputs found

    Autonomous linear lossless systems

    No full text
    We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given energy function into its kinetic and potential energy components

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles

    Non-autonomous Svinolupov Jordan KdV Systems

    Get PDF
    Non-autonomous Svinolupov-Jordan systems are considered. The integrability criteria of such systems are associated with the existence of recursion operators. A new non-autonomous KdV system is obtained and its recursion operator is given for all NN. The examples for N=2 and N=3 are studied in detail. Some possible transformations are also discussed which map some systems to autonomous cases.Comment: Latex file (amssymb), 10 page

    Architecture of autonomous systems

    Get PDF
    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here
    corecore