402 research outputs found

    Computational dynamics and virtual dragline simulation for extended rope service life

    Get PDF
    The dragline machinery is one of the largest equipment for stripping overburden materials in surface mining operations. Its effectiveness requires rigorous kinematic and dynamic analyses. Current dragline research studies are limited in computational dynamic modeling because they eliminate important structural components from the front-end assembly. Thus, the derived kinematic, dynamic and stress intensity models fail to capture the true response of the dragline under full operating cycle conditions. This research study advances a new and robust computational dynamic model of the dragline front-end assembly using Kane\u27s method. The model is a 3-DOF dynamic model that describes the spatial kinematics and dynamics of the dragline front-end assembly during digging and swinging. A virtual simulator, for a Marion 7800 dragline, is built and used for analyzing the mass and inertia properties of the front-end components. The models accurately predict the kinematics, dynamics and stress intensity profiles of the front-end assembly. The results showed that the maximum drag force is 1.375 MN, which is within the maximum allowable load of the machine. The maximum cutting resistance of 412.31 KN occurs 5 seconds into digging and the maximum hoist torque of 917. 87 KN occurs 10 seconds into swinging. Stress analyses are carried out on wire ropes using ANSYS Workbench under static and dynamic loading. The FEA results showed that significant stresses develop in the contact areas between the wires, with a maximum von Mises stress equivalent to 7800 MPa. This research study is a pioneering effort toward developing a comprehensive multibody dynamic model of the dragline machinery. The main novelty is incorporating the boom point-sheave, drag-chain and sliding effect of the bucket, excluded from previous research studies, to obtain computationally dynamic efficient models for load predictions --Abstract, page iii

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation

    Production scheduling and mine fleet assignment using integer programming

    Get PDF
    Production Scheduling, extraction sequence of mining blocks in different production periods to maximize profit over the life of the mine and subjected to different constraints, is an important aspect of any mining activity. Mine production scheduling problem can be solved using various approaches, but the best approach is one which can give an optimal result. Production scheduling solely cannot result in a proper planning thus, fleet assignment problem needs to be incorporated into production scheduling problem to have a realistic mine plan. Proper fleet assignment ensures that the fleet is not under or over utilized. Fleet assignment problem is integer type programming since, size of fleet cannot be a floating number. In this thesis, production scheduling and fleet assignment problem are solved using branch and cut algorithm. Production schedule for 4736 blocks from a case study of coal mine is done with a production period of 5 years. Solution time for solving the production scheduling problem was 48.14 hours with an NPV value of Rs 4.45938x1011. Short terms production scheduling is done for one year and the NPV value obtained was Rs 7.59796x1010 with a solution time of 57.539 minutes. Fleet assignment is done for first year and is observed that the size of dumper fleet can be reduced to 30 thus saving huge amount of initial capital investment

    DEVELOPMENT OF A METHODOLOGY FOR THE EVALUTATION OF UAV-BASED PHOTOGRAMMETRY: IMPLEMENTATION AT AN UNDERGROUND MINE

    Get PDF
    Autonomous systems in underground mining are increasingly being implemented as tools to collect data in inaccessible areas and improve the safety of mine personnel. There are many areas in the underground mining environment that cannot be accessed by personnel due to the high potential for ground fall and insufficient ground support. By combining unmanned aerial vehicles (UAVs) with technologies such as photogrammetry and LiDAR (Light Detection and Ranging) scanners, 3D point clouds can be created for inaccessible sites. A 3D digital point cloud can provide valuable geotechnical information such as the ability to measure discontinuities, inspect rock conditions, generate accurate volume estimates, and obtain a georeferenced geometry of the inaccessible opening. There are many challenges to operating UAVs and collecting high-quality imagery in underground environments including poor lighting and visibility, dust, water, confined spaces, air turbulence, and a lack of GPS coverage for navigation and stability. Due to the difficult flying conditions and GPS-denied environment, several companies are developing UAVs with LiDARbased simultaneous localization and mapping (SLAM) to enhance the obstacle detection and avoidance capabilities of the platforms and minimize the potential for a collision. The objective of this research was to develop a methodology that can be used to evaluate UAV-based imaging tools designed to fly in underground environments. A series of demonstrations was designed to test the functionalities of available UAVs and to identify the most effective platforms for collecting UAV-based photogrammetric imagery in an underground mine. Each of the four participating teams was challenged to fly their UAV-based systems (Hovermap, Elios, M2, Ranger/Batonomous) in underground drifts and long-hole stopes while capturing high-quality imagery that could be used to create a 3D digital photogrammetric model of the opening. The demonstrations were held at Barrick Gold Corporation’s Golden Sunlight Mine (GSM) in Whitehall, MT. The systems were evaluated based upon the performance of the collision avoidance (or recovery) system in the underground environment and the quality and accuracy of the data provided. By successfully completing the underground flights and demonstrating well-developed SLAM-based collision avoidance, the Hovermap system proved to be the most reliable, robust, and easily controllable system. The Elios system, relying on collision recovery rather than avoidance, is an affordable alternative for flights in difficult environments. The imagery collected by each system was used to generate photogrammetric point clouds using three software packages: Agisoft PhotoScan, Bentley ContextCapture, and Pix4Dmapper. The point clouds were qualitatively compared based on completeness and detail and quantitatively evaluated for accuracy by comparing the geometry of the point cloud to LiDAR scans of the stopes. Based on the results of the qualitative comparison, the point clouds considered in the accuracy evaluation were built using the photogrammetry software Bentley ContextCapture. When the photogrammetric point clouds were compared with the LiDAR point clouds (assumed to be an accurate baseline reference), the mean error values ranged between 0.47 and 2.86 feet. Despite the different conditions and locations in which the imagery was collected for each model, the observed error varies by less than one order of magnitude. Improvements in the coverage and overlap of the imagery as well as in the method used for georeferencing could further increase the accuracy of the photogrammetric point clouds

    Evaluation of Truck Dispatch System and its Application using GPS in Opencast Mines- a Case Study of Indian Mines

    Get PDF
    Truck haulage now a days is the most common means which is used for moving ore/waste in open-cast mining operations. The truck haulage is usually the costliest unit operation in a truck shovel open cast mining. The advancement in computer coding technology has advanced to a point where there are many truck dispatching systems which will give the potential of advancing truck-shovel productivity and future savings. By trying a dispatching system in any mine can give operational increase in production by minimizing waiting times and can give other beneficial advantages and can also be obtained through good monitoring, optimal routing. The capacity of the employed truck-shovel fleet counts on the dispatching methodology in use, the intricacy of the truck shovel system and a number of other variables. It is a very common situation in mining that considerable number of analysis of the available techniques is undertaken before dispatching is done. In many number of cases, computer simulation is the better applicable and effective method of relating the alternative dispatching strategies. Keeping this in mind computer programs are developed using C++ language for the monitoring of the equipment performance in truck dispatch system in opencast mines. To study about the truck dispatch system (TDS), we have made a choice to make it on the shovel dumper combination using GPS. In TDS system the computer monitors the location and status whether the dumper is full or empty and its heading, velocity of each vehicle in the fleet. The system analyses production numbers, such as haul routes, historic data about drive time to a specific shovel location and the cycle time and time taken to make a complete trip, trip from the shovel to the dump site and back

    A lunar/Martian anchor emplacement system

    Get PDF
    On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment

    Lunar surface construction and assembly equipment study: Lunar Base Systems Study (LBSS) task 5.3

    Get PDF
    A set of construction and assembly tasks required on the lunar surface was developed, different concepts for equipment applicable to the tasks determined, and leading candidate systems identified for future conceptual design. Data on surface construction and assembly equipment systems are necessary to facilitate an integrated review of a complete lunar scenario

    Electrified Powertrains for a Sustainable Mobility: Topologies, Design and Integrated Energy Management Strategies

    Get PDF
    This Special Issue was intended to contribute to the sustainable mobility agenda through enhanced scientific and multi-disciplinary knowledge to investigate concerns and real possibilities in the achievement of a greener mobility and to support the debate between industry and academic researchers, providing an interesting overview on new needs and investigation topics required for future developments

    Characterizing formation dredgeability for clamshell dredge

    Get PDF
    The lack of metrics to assess clamshell dredge formation dredgeability limits the ability of engineers to predict the dredgeability of compact material and increases the risks associated with clamshell selection. Research is, therefore, necessary to increase our understanding of clamshell dredgeability assessment by evaluating possible metrics that will allow the operator to select the optimal clamshell for the operation. Work done and motor energy are possible dredgeability metrics that can be estimated using micro-processor based machine monitoring. The objective of this work is to test the hypotheses that: (i) work done by the pistons during dredging, by a hydraulically actuated dredge, is a better predictor of clamshell dredgeability than motor energy; and (ii) work done during dredging increases with increasing cycle time. The first objective of this work was achieved by carrying out field data collection and analysis. The field data (motor current, bucket closing pressure and displacement) was sourced from a 16 yd³ clamshell dredge operating at a mine in Seattle, WA. Work done and motor energy were obtained from the field data. The first research hypothesis was tested by comparing the measure of uncertainty surrounding mean estimates, the coefficient of variation. Kinematics and dynamics models of clamshell dredging were built and validated using the field data. The validated model was then used to test the second research hypothesis. From this work, it can be concluded that work done is a better predictor of formation dredgeability than motor energy. Also, work done was determined to increase marginally with increasing cycle time. This is a pioneering effort to assess the dredgeability of hydraulically actuated clamshell dredges --Abstract, page iii

    Methods for evaluating effect of operators on drag line energy efficiency

    Get PDF
    Draglines are dominant machines and the most significant electricity consumers in surface coal mines. With the growing price of energy, environmental concerns, and the high sensitivity of mine profitability to dragline productivity, any improvement in efficiency of dragline will be beneficial for mines. Research has shown that operator practices have a significant impact on energy efficiency of mining loading tools. However, not enough work has been done to provide guidance on how to quantitatively assess the effect of operator practices on dragline energy efficiency. The objectives of this work were to: (i) test the hypothesis that dragline operator\u27s practices and skills significantly affect dragline energy efficiency; and (ii) develop a methodology to identify the critical parameters that explain the differences in operator energy efficiency. Statistical tests are suggested to study the effect of operator practice and skills on dragline energy efficiency to achieve the first research objective. The second objective was achieved with a novel methodology based on sound statistical principles. Both approaches were illustrated with a real-life dragline operation. The suggested methodology was used on the data collected from an 85yd³ BE-1570w dragline to compare the energy efficiency of five operators during a one month period. Valid methods have been formulated for testing operator effects on dragline energy efficiency and for identifying critical parameters that explain such differences. Using the developed approaches, the case study shows that operator practices can affect dragline energy efficiency. The tests show that there is a high probability that differences in energy efficiency are due to dumping height, vertical and horizontal drag distances, and spotting and dumping time among the surveyed operators --Abstract, page iii
    corecore