1,607 research outputs found

    Engineering News, Fall 2019

    Get PDF
    https://scholarcommons.scu.edu/eng_news/1043/thumbnail.jp

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Smart Internet of Things Modular Micro Grow Room Architecture

    Get PDF
    This article proposes the Internet of Things-based self-sustaining modular grow room architecture for optimising the seed germination and seedling development process. The architecture is scalable and flexible as it can be adapted to particular environments, scopes, requirements and plant types; it is modular as the host room can contain one or more smaller-scale grow rooms, each of them controlling their own micro-environment independently. One of the main goals of the research was to develop such a system that could be deployed efficiently, with minimal costs and energy footprint, which would enable its practical usage primarily in private self-sustainable households. The usage of widely available and inexpensive components, open source code, and free cloud services all enabled us to reach such a goal. Besides simple automation mostly described by existing solutions, the architecture proposed within this article offers remote control and data processing and visualisation, data trend tracking, smart optimisation, and actuator control, and event notifications

    Privacy in the Smart City - Applications, Technologies, Challenges and Solutions

    Get PDF
    Many modern cities strive to integrate information technology into every aspect of city life to create so-called smart cities. Smart cities rely on a large number of application areas and technologies to realize complex interactions between citizens, third parties, and city departments. This overwhelming complexity is one reason why holistic privacy protection only rarely enters the picture. A lack of privacy can result in discrimination and social sorting, creating a fundamentally unequal society. To prevent this, we believe that a better understanding of smart cities and their privacy implications is needed. We therefore systematize the application areas, enabling technologies, privacy types, attackers and data sources for the attacks, giving structure to the fuzzy term “smart city”. Based on our taxonomies, we describe existing privacy-enhancing technologies, review the state of the art in real cities around the world, and discuss promising future research directions. Our survey can serve as a reference guide, contributing to the development of privacy-friendly smart cities

    A Review on Internet of Things Solutions for Intelligent Energy Control in Buildings for Smart City Applications

    Get PDF
    © 2017 The Authors. A smart city exploits sustainable information and communication technologies to improve the quality and the performance of urban services for citizens and government, while reducing resources consumption. Intelligent energy control in buildings is an important aspect in this. The Internet of Things can provide a solution. It aims to connect numerous heterogeneous devices through the internet, for which it needs a flexible layered architecture where the things, the people and the cloud services are combined to facilitate an application task. Such flexible IoT hierarchical architecture model will be introduced in this paper with an overview of each key component for intelligent energy control in buildings for smart cities

    Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings

    Get PDF
    This paper presents a scalable IoT architecture based on the edge–fog–cloud paradigm for monitoring the Indoor Environmental Quality (IEQ) parameters in public buildings. Nowadays, IEQ monitoring systems are becoming important for several reasons: (1) to ensure that temperature and humidity conditions are adequate, improving the comfort and productivity of the occupants; (2) to introduce actions to reduce energy consumption, contributing to achieving the Sustainable Development Goals (SDG); and (3) to guarantee the quality of the air—a key concern due to the COVID-19 worldwide pandemic. Two kinds of nodes compose the proposed architecture; these are the so-called: (1) smart IEQ sensor nodes, responsible for acquiring indoor environmental measures locally, and (2) the IEQ concentrators, responsible for collecting the data from smart sensor nodes distributed along the facilities. The IEQ concentrators are also responsible for configuring the acquisition system locally, logging the acquired local data, analyzing the information, and connecting to cloud applications. The presented architecture has been designed using low-cost open-source hardware and software—specifically, single board computers and microcontrollers such as Raspberry Pis and Arduino boards. WiFi and TCP/IP communication technologies were selected, since they are typically available in corporative buildings, benefiting from already available communication infrastructures. The application layer was implemented with MQTT. A prototype was built and deployed at the Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), using the existing network infrastructure. This prototype allowed for collecting data within different academic scenarios. Finally, a smart sensor node was designed including low-cost sensors to measure temperature, humidity, eCO2, and VOC.The authors wish to express their gratitude, for supporting this work, to the Fundación Vital through project VITAL21/05 and the University of the Basque Country (UPV/EHU), through the Campus Bizia Lab (CBL) program. Partial support has been also received from the Basque Government, through project EKOHEGAZ (ELKARTEK KK-2021/00092), the Diputación Foral de Álava (DFA) through the project CONAVANTER, and the UPV/EHU through the GIU20/063 grant

    A Review on Internet of Things Solutions for Intelligent Energy Control in Buildings for Smart City Applications

    Get PDF
    A smart city exploits sustainable information and communication technologies to improve the quality and the performance of urban services for citizens and government, while reducing resources consumption. Intelligent energy control in buildings is an important aspect in this. The Internet of Things can provide a solution. It aims to connect numerous heterogeneous devices through the internet, for which it needs a flexible layered architecture in which the things, the people and the cloud services are combined to facilitate an application task. Such flexible IoT hierarchical architecture model will be introduced in this paper with an overview of each key component for intelligent energy control in buildings for smart cities

    Protocol and Architecture to Bring Things into Internet of Things

    Get PDF
    The Internet of Things (IoT) concept proposes that everyday objects are globally accessible from the Internet and integrate into new services having a remarkable impact on our society. Opposite to Internet world, things usually belong to resource-challenged environmentswhere energy, data throughput, and computing resources are scarce. Building upon existing standards in the field such as IEEE1451 and ZigBee and rooted in context semantics, this paper proposes CTP (Communication Things Protocol) as a protocol specification to allow interoperability among things with different communication standards as well as simplicity and functionality to build IoT systems. Also, this paper proposes the use of the IoT gateway as a fundamental component in IoT architectures to provide seamless connectivity and interoperability among things and connect two different worlds to build the IoT: the Things world and the Internet world. Both CTP and IoT gateway constitute a middleware content-centric architecture presented as the mechanism to achieve a balance between the intrinsic limitations of things in the physical world and what is required fromthem in the virtual world. Said middleware content-centric architecture is implemented within the frame of two European projects targeting smart environments and proving said CTP’s objectives in real scenarios
    corecore