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The Internet of Things (IoT) concept proposes that everyday objects are globally accessible from the Internet and integrate into
new services having a remarkable impact on our society. Opposite to Internet world, things usually belong to resource-challenged
environments where energy, data throughput, and computing resources are scarce. Building upon existing standards in the field such
as IEEEI451 and ZigBee and rooted in context semantics, this paper proposes CTP (Communication Things Protocol) as a protocol
specification to allow interoperability among things with different communication standards as well as simplicity and functionality
to build IoT systems. Also, this paper proposes the use of the IoT gateway as a fundamental component in IoT architectures to
provide seamless connectivity and interoperability among things and connect two different worlds to build the IoT: the Things
world and the Internet world. Both CTP and IoT gateway constitute a middleware content-centric architecture presented as the
mechanism to achieve a balance between the intrinsic limitations of things in the physical world and what is required from them in
the virtual world. Said middleware content-centric architecture is implemented within the frame of two European projects targeting

smart environments and proving said CTP’s objectives in real scenarios.

1. Introduction

Since the last decade, we are assisting in a progressive
jump from a nonubiquitous Internet, where humans access
Internet using a computer at their work or at home, to the
current ubiquitous Internet where we access the Internet
using smartphones, tabs, or T'Vs, anytime, anywhere. In the
same way, now comes the time of the Internet of Things
(IoT) when not only humans but also things, any object
surrounding us, are present in Internet [1].

Things must be considered in the broadest sense of the
word as real or virtual entities that exist and evolve in a
context and time and have univocal identifiers. On the other
hand, the term Internet applied to them conveys the idea that
all these things are heavily communicated and interrelated
among them. Commonly IoT can be approached from
different perspectives: Internet for communications, cloud,
and services; things for physical elements, sensor networks,
and user interfaces; and semantic that considers ontology of
things in Internet [2].

Ideally, things on the IoT will have full interconnectivity
and computation resources, being natural to consider con-
necting these things to the web using current paradigms.
Different works investigate the types of things (sometimes
called smart objects), their nature, and relationship with
the IoT; according to the different perspectives, a thing has
awareness, representation, interaction, and so forth [3]. The
classification of things into standard groups helps to show
that they are the physical part of IoT with constraints and
needs that must be taken into account. So, coming down to
implementation, while IoT concept talks about ubiquitous,
invisible, and context aware things, technology poses hurdles
such as energy supply, price and size of devices, seamless con-
nectivity, or interoperability [4]. Additionally, as, currently,
Internet has a wired backbone, “being there” forces all the
things to be IP compatible and use access points or gateways
to bridge global fiber optic or cabled infrastructure.

Wireless communication protocols are mandatory if
things need to be mobile and ubiquitous. Depending on the
specific application, and leaving aside proprietary protocols,
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different standards are commonly used to provide connec-
tivity: ZigBee, RFID, Bluetooth, 6lowPAN, WIFI, 3G, and so
forth. Many works evidence the importance of selecting the
most appropriated technology in each situation comparing
them in terms of network topology, coverage, data through-
put, or energy consumption. In any case, the more data you
need to exchange, the further you need to communicate,
the more time you need to be online, then more energy
you need, and consequently the quicker you will run out of
batteries.

The arrival of IoT will lead to appearing multitude of new
services, improving the quality of life of people, and offering
new business opportunities. Ultimately, the IoT is expected
to bring a revolution in the concept of society, similar to
how Internet changed the concept of communications and
information [5]. In the last few years, initiatives and project
related with IoT have been growing in number and scope
throughout the entire world. The IoT concept is becoming
tremendously popular and already appearing systems that
claim to offer IoT solutions to the final user without high
technical requirements [6]. Current developments are in early
stages being most of the services based on monitoring or
sensing variables to extract information and then analyze and
represent them [7].

It is considered that the development of IoT will play an
important role in the near future; thus, public and private
investments have been made in R&D, demonstration, and
deployment activities [8, 9]. To date, most of IoT solutions
are small subnets of interconnected objects. It is not possible
to talk about IoT until all objects are interconnected and to
improve this interconnectivity, an architecture that ensures
interoperability between systems is mandatory. Thus, both
public and private initiatives are currently focusing on stan-
dardization of the IoT [10-14].

In summary, the evolution of IoT implies overcoming real
things’ limitations enabling them to communicate with the
Internet using a common language. In this paper, we propose
CTP (Communication Things Protocol) as an ontology-
based solution to enable understanding among things and
the use of an IoT gateway to take things to the Internet
world.

2. Internet of Things

2.1. Architecture. Most IoT implementations follow an archi-
tecture that contains different worlds each of them with their
own characteristics; Figure 1 shows an example [15].

The things world relates to michroelectromechanical
systems, smart sensors, simple human-machine interfaces
(HMIs), and so forth, which associate in networks (Networks
of Things, NoT) to ubiquitously interact with other things,
the environment and/or people. NoT are usually resource-
challenged ecosystems, typically with medium-high time
access delays, high error rates, low data throughput, and
limited online time where energy consumption must be
optimized to the maximum. In a simplified model of a thing,
basic blocks of communication, computation, and interaction
(sensors, actuators, and HMI) are distinguished.

The Internet world usually is constructed around com-
puters, centralized software infrastructures, or in the cloud
[16]. Applications and services use things to provide context
awareness, artificial intelligence, affective computing, and so
forth [16]. Depending on their consideration, tablets and
smartphones can be included in both worlds. Nevertheless,
due to their power (computing, communications, battery
lifetime, user interfaces, etc.) we find it more appropriate
to consider them closer to the world of computers and
Internet than to the world of things. Currently, Internet acts
as the base infrastructure for the exchange of information.
However, access to it has several constraints such as the
need for unique identifier, the change of communication
technology, and the adoption of the Internet Protocols.
Nowadays, this “IP wall” is usually jumped through an IoT
gateway.

Internet is the global interconnection method where mul-
titude of services and applications use extracted information
of IoT to provide services to end users. On each of them,
needs are a virtual representation of the things of the IoT
in order to enable interaction. Once “IP wall” is saved and
thanks to the connectivity provided by the Internet, services
can access the information, but, for the information to be
useful, it must be understood and this poses what we call the
“understanding wall”
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2.2. Interoperability. IoT interoperability implies capacity
to both exchange data (crossing the IP wall) and under-
stands the information embedded in data (crossing the
understanding wall). Communication standards ensure stack
layer’s communication between things in the same network
sharing the same protocol, that is, network management
and maintenance, security, data exchange, and so forth.
Nevertheless, if application layer is not defined, things will not
understand among them unless previously agreed between
developers, that is, information understanding. This is the
case of 6lowPAN, RFID, WiFi, or cellular; for example, if
two manufacturers want to develop 6lowPAN temperature
sensors and thermostats are able to interoperate among
them, there is no common definition to adopt; they will
need to agree on the protocol exchange application-related
information, temperature data format, procedure to virtually
bind devices, and so forth.

Automation and control networks such as Lonworks,
BACnet, Konnex, or CANOpen define how devices are
represented in their networks; objects and variables are the
most common approaches. Bluetooth and ZigBee go one
step further in interoperability defining profiles and device
objects within the application layer. Bluetooth defines profiles
(hands-free, health device, human-interface device, etc.)
corresponding to vertical applications. For example, we could
build a monitoring infrastructure with Bluetooth micro-
phones streaming audio according to hands-free profile; no
matter their manufacturer, any certified host compliant with
the profile will play the audio gateway role without any
additional programming [17].

ZigBee not only defines vertical profiles (home automa-
tion, energy metering, healthcare, etc.), but also defines
horizontal functional domains to specify how devices must
exchange application data attending their functionality [18].
For example, every ZigBee compliant temperature sen-
sor must implement “measurement & sensing functional
domain” and any other device in the network (e.g., a thermo-
stat) would be able to get temperature information as defined
in the specification. Additionally, ZigBee allows instantiation
of intelligence in the network by defining how to coordinate
devices to produce scenes and create virtual bindings among
devices [19], for example, to program a switch to turn on two
lights and open a motorized door.

Sometimes two specifications coordinate to solve inter-
operability, such as ZigBee that specifies how to interoperate
with BACnet. Devices using any wireless communication
standard (e.g., ZigBee) cannot directly interoperate with
devices over other standards (e.g., WiFi) unless there is a
protocol aggregator and translator connecting both worlds,
the IoT gateway.

Although IP connectivity is not necessarily required to
ensure inter-thing communication, many standards include
IP as part of their specification to ease the process to connect
things to the Internet. Nevertheless, this is not enough to
ensure interoperability at required IoT application level.
As things are resource-challenged communication nodes,
efficient data transmission mechanisms are needed at IP level;
CoAP [20], XMPP [21], RESTful HTTP [22], and MQTT are
relevant specifications at this level.

Once efficient connectivity between devices is granted,
standards such as EEML (Extended Environments Mark-
up Language), SensorWeb (including SensorML and Trans-
ducerML), or SenseWeb provide interpretation to bytes
exchanged integrating sensors and actuators with the virtual
world. These schemes just express queries and data modeling,
lacking of semantics, and ontologies that are necessary
for complex information processing and support to service
composition and adaptation at higher levels of abstraction.

[EEE1451 standard is a network-independent specifica-
tion for smart transducers (sensors or actuators) that provides
a common language regardless of the protocol used. The
standard defines different application profiles: environmental
(climate monitoring, greenhouse gases, and other chemical
sensors), smart meter (monitor water, gas, or electricity con-
sumption), health care (monitor the body using external or
implantable sensors), and smart home automation and indus-
trial (pipe’s monitoring, comfort, and surveillance sensors)
[23]. The standard is based on the Transducer Electronic Data
Sheet (TEDS) to describe a set of communication interfaces
for connecting transducers to microprocessors, instrumen-
tation systems, and control/field networks. According to
[EEFE1451.0 specification, TEDS provides information about
transducer’s identification, operation, calibration, manufac-
turer, and so forth.

Lying on IEEE1451.5 specification for radio-specific pro-
tocols [24], it is possible to implement wireless sensor
networks using IEEE1451 over communication standard pro-
tocols such as Wifi [25], Bluetooth, ZigBee [26], or 6LowPan
[27]. Similarly, IEEE1451.2 defines cabled SPI and UART,
IEEE1451.6 over CANOpen, and IEEE1451.7 over RFID.
This interoperability is enabled by the Network Capable
Application Processor (NCAP) that aggregates the different
Transducer Interface Module’s communication standards
(TIM) over the same common language. Through NCAP and
following IEEE1451 it is possible to implement web services
that make things discoverable, accessible, and controllable
via the Internet 22. In the same line, ZigBee defines the
ZigBeeGateway Public Application Profile that specifies how
devices must be connected to the Internet and to service
providers.

Initiatives, such as Sensei project [7], COSE [28], DogOnt
[29], and other [30] different ontological approaches to model
things (sensors, actuators, simple human-machine interfaces,
appliances, etc.) in smart environments, associate contained
devices through semantic relationships [31] and seamlessly
integrate things with web services.

3. Common Things Protocol (CTP)

3.1 Rationale. Networks of things (NoT), defined as smart
infrastructures of embedded devices with local intelligence
and access to the “information ether;” are the base of the
IoT. As a part of the Internet, one of the basic needs is the
interaction mechanism between agents which implies that,
between them, there must be connectivity and understanding
in order to provide interoperability. To achieve this goal, dif-
ferent IoT protocols are being proposed to provide efficient,



seamless, and robust connectivity (CoAP, XMPP, RESTful
HTTP, MQTT, etc.) but not providing semantics. From an
integral perspective, IEEE1451 appears to be a good suited
option for the IoT as it tackles specification from sensor to
network interface providing independence from the com-
munication protocol, enabling self-identification of devices,
long-term self-documentation, plug and play capacity to ease
field installation, upgrade, and maintenance [32]. On the
other hand, the standard has a limited penetration in IoT
applications out of the electronic instrumentation field. Rea-
sons for that can be the little compatible hardware available
(no commercial wireless sensor networks consider it) because
IoT developers mainly come from the computer science field
(usually considering semantic approaches), due to complex-
ity of the standard [33], or the excessive detail in electronic
aspects that are not commonly used by the application (e.g.,
transducer channel reads delay time or incoming propagation
delay through the data transport logic). Communication
standards such as ZigBee or 6LoWPAN are much more used
in IoT applications but involve hardware restrictions and lack
of interoperability among them.

The Common Things Protocol (CTP) aims to provide
a specification that allows interoperability among commu-
nication standards and coexistence with IoT protocols, but
prioritizing simplicity, efficiency, and functionality to build
final IoT systems.

CTP takes into consideration existing specifications in the
standards and the needs from the final applications that are
to be supported by the things in the field. It integrates the
strategies, concepts and terms of some of the alternatives,
for example, IEEEI451 TED’s concept to provide device’s
information, sensor and actuator working modes, and so
forth, or ZigBee concepts of clusters and endpoints. CTP
definition is approached from an ontological perspective
considering things, not just as sensors [34] but as electronic
devices that perform some sort of function in the IoT
application being in contact with user and context and usually
tulfilling the following paradigms:

(i) context interaction: embedded sensors (to sense the
user/context), actuators (to modify the environment),
and/or simple human interfaces (to interact with
people);

(ii) computin: to have computing capabilities and mem-
ory that allow them to implement from the simplest
logic to complicated services or data processing algo-
rithms;

(iii) communication: to have at least one, usually wireless,
communication media commonly following a stan-
dard and adapted to communication requirements
(range, power consumption, and data throughput). It
is required to interoperate among them and integrate
in the Internet. Thus, unless they are able to directly
connect to Internet, a network gateway is required
to allow interoperability among different networks of
things and to provide Internet access;

(iv) being an electronic thing: as anything in this world,
regardless it is electronic or not, each thing is unique
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and “lives” in a specific space and time. Additionally
as any electronics, it needs energy to operate.

Figure 2 represents said paradigms in the block diagram
of a thing able to integrate in the IoT.

Thus, derived from their capacity to interact with the
context, CTP considers that things can have three different
functionalities:

(i) sensors that gather and process information from
the real world in environmental and person-centric
contexts [35]. Information from the environmental
context is useful to create an objective snapshot of
what is happening in every moment, while person-
centric helps to understand and evaluate the objective
data in order to extract conclusions, to define guide-
lines, or to identify patterns adapted to each user;

(ii) actuators that provide the ability to act over the
environment. [oT applications may need to act over
the environment when the user is not able to control
(e.g., because he/she has a disability) or he/she is
not aware of specific situations that require actuation
(e.g., forget about the heating when going to sleep) or
simply he/she is not present in the environment;

(iii) pervasive human-machine interfaces including tradi-
tional (switches and dimmers) and new interaction
paradigms, providing the user with relevant infor-
mation or notifying him/her about events in new
and natural ways (e.g., a color device turns red when
house’s energy consumption is high).

Regardless its functionality, each thing will always “live” in
a certain location and time and will have a processor, commu-
nication transceiver, and power source. Similar to MetaTEDS
in IEEE1451 and ZigBeeDevice Object (ZDO) in ZigBee, this
constitutes the basic set of attributes and functionalities of
any device, which is modeled by the endpoint BASE in CTP.
Depending on the specific functionalities it integrates, it will
also implement multiple application endpoints that should be
of any of the said categories: SENSOR, ACTUATOR, or HMI.

Thus, an endpoint can be defined as each of the subde-
vices that have a complete functionality and together with
others build the thing; in total we just define the said 4
endpoints to model anything. Additionally, a cluster is defined
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as a set of commands, events, and responses (some manda-
tory to implement in order to guarantee interoperability)
which together define a communication interface between
two endpoints. Clusters constitute the implementation of
the ontological representation of thing’s nature; for example,
endpoint BASE includes location, time, and power clusters.
Endpoint and cluster concepts are shared with ZigBee and are
similar to transducer channels in IEEE1451.

Commands are usually action requests to an endpoint
(of the same or different thing) that should send back a
response informing about the action result, for example, ask
for a sensor value and get it back. The ontology defines
attributes which are implemented in the protocol as GET/SET
requests and responses. Events are asynchronously generated
messages sent to previously subscribed endpoints; for exam-
ple, presence detected by a sensor is sent to light actuator.
When defining a communication interface, two strategies
can be adopted: (i) using a small, but well defined, number
of messages, where the versatility is achieved by parameters
(i) or defining a greater number of messages allowing more
specific control with lower parametric content [36]. An
example of this duality is to define a single configuration
command with many parameters, or several commands to
adjust each parameter independently. The selection of one
or another philosophy conditions ease of use, generaliza-
tion capacity, adaptability to different scenarios and future
maintenance, and backwards compatibility. CTP chooses
to define a reduced and simple communication interfaces
defining the meaning type and range of the parameters when
needed. For example, many clusters have in common a read-
only information attribute; in the case of sensors it provides
information of ranges, accuracy, format, units, and so forth
of the measure it provides, while for actuators the same
attribute indicates how the actuator should be controlled.
Similarly, some clusters include a read-and-write configura-
tion attribute, whose specific parametrization depends on the
device.

3.2. Endpoints and Clusters. Figure 3 shows the four end-
point types (BASE, SENSOR, ACTUATOR, and HMI) with
their associated clusters and the main attributes, commands,
responses, and events.

3.2.1. Endpoint BASE. All devices, regardless their nature,
must have endpoint BASE containing the generic and com-
mon characteristics whatever their functions are. Related
with this endpoint we define the following clusters.

Cluster DEVICE. It manages device identification, description
of their functionalities (as in IEEE1451 TEDS’s globally
unique identifier and transducer channels), and minimum
self-operation functionalities (as BIOS). Its implementation is
mandatory in all CTP devices, as it is the basis for ensuring
interaction with other system elements. Devices may have the
ability to operate in different ways depending on the context;
the mode parameter is used to switch between them and to
facilitate the use of the thing, by providing to a nonadvanced
user a set of predefined modes of operation that do not

need any previous settings to set mode and operate. Also,
this cluster has several capabilities oriented to work with low
power devices, for example, and similar with TEDS, a timeout
parameter that indicates the amount of time after an action
for which the lack of reply following the receipt of a command
may be interpreted as a failed operation.

Cluster LOCATION. Each device will always have a location
that can be essential information for many services. It can
be known or not, it can change or remain, and device
can self-calculate it or be written externally, whichever the
case, this cluster allows getting and setting device’s position,
programming its timed update, or reporting it in response to
specific events.

Cluster POWER. As location, every device will have a power
source (battery, mains, energy harvesting, etc.); its type,
consumption profile, and energy remaining are the main
information deal within this cluster.

Cluster TIME. Again as location and power, every device
“live” in a specific instant of time, and whether relative or
absolute this cluster allows the management of temporal
information such as time synchronization and scheduling of
timed actions.

Cluster PROXY. Similar to TEDS, this cluster acts as an aggre-
gator of endpoints (or transducer channels) and datalogger
manager (if memory is available) simplifying access to data.
It reduces communication burden and thus increases battery
efficiency.

Often, implementation of networks of smart sensors and
actuators goes through a central device that receives data
from sensors, processes the information, and then orders
actions to the actuators. This has a number of problems: (i)
density of data traffic, (ii) increased energy consumption,
(iii) masking the mesh concept, since there is a central node
acting as sink and source of information, and (iv) reducing
robustness to failure. To face that, it is possible to define a
basic distributed intelligence by subordinating the behavior
of some devices to the events generated by other devices.

Cluster BEHAVIOR. Similar to ZigBee this allows the creation
of groups of devices or endpoints and the establishment
of logical relationships (bindings) among them. We expand
its native definition defining the concept of a trigger event
for a binding which allows that any endpoint generating
events (e.g., timing, threshold event, etc.) could trigger any
endpoint(s) in one or more devices with their corresponding
parameters (e.g., changing the mode to low power of a
device). Also, as in TEDS when defining embedded actuators,
these bindings can be internal to a device and serve, for
example, to trigger actions; button event triggers a light
actuator.

This cluster also allows delegation of system’s intelligence
in the devices as it provides methods to program autonomous
operation based on the specification of operational rules. It
is based on logical rules that verify compliance with certain
conditions of different endpoints of the device. Each situation
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FIGURE 3: Summary of endpoints, clusters, and main interfaces in CTP.

that activates a behavior is called activation scenario. Notice
that as a result of a rule of behavior a binding could be
triggered.

3.2.2. Endpoint SENSOR. Sensors are elements that can
extract information from the context. CTP allows man-
agement of basic features and supports more abstract and
complex capabilities.

Cluster SENSOR. As transducer channels TEDS, it manages
the basic actions to request measure, defines sensor settings
(e.g., sampling period), and defines the mode for transmitting
the data set or data packets aggregating several measurements
(e.g., on command, timed, or buffer full). It also provides
essential attributes of the measurement such as units, accu-
racy, data ranges, warm-up time, vectors, and data packets.
Every sensor type must implement this cluster.



International Journal of Distributed Sensor Networks

Layer 4-IoT services

dency

Layer 3-CTP devices

Layer 2-NoT management

Layer 0-NoT bridge connectivity

Layer 1-NoT bridge interpretation

[ CTP objects )
e.g. temperature sensors
NoT objects
e.g. ZigBee devices

NoT bridge object
e.g. ZigBee bridge

Serial connection object
e.g. serial port

FIGURE 4: IoT gateway middleware architecture.

Cluster SENSOR_EVENT. Again as transducer channels
TEDS it configures event triggers associated with a sensor
(e.g., upper and lower thresholds, bit patterns, etc.) and
provides the events.

Cluster SENSOR_STATS. This cluster performs local prepro-
cessing and analysis of the captured data. This is of special
interest when we are interested in obtaining a summary
of the observation (e.g., maximum values, average values,
etc.). As energy consumption between communication and
computation in a wireless sensor node has a high ratio
(“sending one bit” versus “computing one instruction”) [37],
its implementation is especially interesting in low power
applications.

3.2.3. Endpoint ACTUATOR. While sensors allow obtaining
contextual data, actuators are the elements that provide
means to act over the environment. In relation with the
IoT, an actuator can be considered as a device that trans-
mits information or energy to another power mechanism
or system (motors, electromagnets, thermocouples, heaters,
coolers, etc.) that finally alters the environment. Thus, a
thing with actuation capabilities is usually a device with
control outputs, which is connected to an electromechanical
system that opens doors, windows, shutters, control lighting,
heating, and so forth.

Cluster ACTUATOR. It manages basic actions, controls the
states of the actuator, and defines its configuration parame-
ters. These states can be as simple as on/off or define complex
operation patterns such as open the door for two minutes and
then close and lock it.

3.2.4. Endpoint HMI. HMI (Human Machine Interface)
devices are aimed to interact with a human user. In fact,
they could be considered as sensors and actuators to interface
people (in the same way that sensor and actuator connect
with the environment). But given its importance and different
use from the application perspective, it is convenient to
assign its own type of endpoint. CTP considers the following
clusters.

Cluster HMI_INPUT. It manages configuration and operation
of simple input devices interface, such as buttons, switches, or

dimmers. It also considers groups of elements such as arrays
of keys to model a keypad.

Cluster HMI_OUTPUT. It manages basic operation of simple
output devices such as LEDs and buzzers. It also considers
groups of elements such as arrays of LEDS to model a LED
strip.

4. IoT-Gateway Architecture

According to the proposed architecture, the different things,
maybe on several NoTs, must interconnect to the Internet,
that is, jumping to the IP world. In most cases, this involves
changing not only the communications protocol but also
communication technology, which imposes the need of a
gateway interfacing things and Internet worlds.

In the proposed architecture, the gateway is not a single
bridge between protocols; it is also an intelligence aggregator
and distributor of services. The IoT gateway must sup-
port management (discovering, recruiting, and connecting
devices) in the NoTs and provide interoperability between
them. Such duty requires that the IoT gateway have enough
power computation to handle requests and responses from
both domains and a flexible architecture to ensure interop-
erability. To accomplish such task, the layered middleware
architecture shown in Figure 4 is proposed.

Lower layer of the middleware is in charge of providing
base connectivity with the NoT through the device acting
as the network bridge, typically a USB dongle, a Bluetooth
device, or a TCP socket which results in a sort of serial
connection object allowing sending and receiving bytes as
data streams.

Second layer adds meaning to those bytes, implementing
the specific communication protocol of the bridge and
allowing effective communication with the NoT. This results
in an object representing the bridge, which encapsulates
the communication protocol with appropriate methods and
fields.

Middle layer is in charge of managing the NoT through
the usage of the bridge representation service, being capable
of discovering network devices (things), recruiting them,
and handling network unavailability. At this layer, objects
representing network devices are available, although they are
already described in terms of the underlying technology.
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In the next layer, objects related to NoT devices are
described as CTP objects, regardless their network tech-
nology, and full interoperability among things is achieved.
CTP objects are described as a main device representing
the endpoint BASE plus a collection of channels related to
remainder endpoints.

Upper layer is devoted to gateway IoT services, which use
CTP objects to link them to remote services (such as sending
data to a remote database or allowing accessing a thing from
a remote client) or build local services to perform offline
operations.

5. Experimentation and Results

CTP has been successfully applied in several projects, but
the largest implementations have been done in two European
projects: “Easy Line Plus” [38] in the domain of Ambient
Assisted Living and “Renaissance” [39] in the domain of
Energy Efficient Buildings. The Easy Line Plus project sets
the frame to define the CTP protocol, but it was within the
Renaissance project where all the aspects described above
have been formally deployed and tested. Therefore, we will
describe below the Renasissance project setup.

5.1. Test Scenario. “Renaissance” main objective is energy
saving, through the implementation of bioclimatic buildings,
urban planning and rehabilitation, incorporating renewable
energy, and reduction of energy consumption in households
by improving habits of energy usage by users. Through
remote data analysis, the system derives user patterns relating
their energy consumption and comfort variables and then
issues recommendations in order to increase their awareness
and enhances energy savings. This requires an accurate and

long-term monitoring of energy consumption and environ-
mental conditions in order to generate enough data to extract
relevant information.

To meet the needs of this project, the IoT paradigm is
the ideal solution. The simplified structure of the system
is a number of things that ubiquitously extract context
information (temperature, humidity, heating energy, and
power consumption). Through the proposed architecture,
this information is handled (data aggregation, data base
management, and cloud computing) and analyzed (habits
recognition) to provide a range of services (data visualization,
user profiling, assessment of the best practices, and user
information through multimodal user interfaces).

Technically the system developed followed the archi-
tecture in Figure 1; things use ZigBee standard plus CTP;
IoT gateway is a Linux embedded PC running the already
presented middleware, and services run in different hosts
(PC, mobile phones) using data stored in the cloud. As
evaluation has been done in a real and operative deployment,
the system previously ensured a number of quality require-
ments such as stability, ease of deployment and maintenance,
and low intrusiveness in the context. Similarly, a number of
limitations related to the things have been solved, namely,
reducing power consumption to ensure months of operation
with the same batteries, cost-effectiveness, and reduced size.

Two different types of installations have been done as
follows (Figure 5):

(i) 80 m? dwellings with one ZigBee network formed by 3
ambient (temperature + humidity) sensors, 1 heating
energy sensor, 1 monophasic power consumption
sensor, and an IoT gateway;

(ii) 20.000 m? building with one ZigBee network formed
by 70 ambient sensors, 20 triphasic power consump-
tion sensors, 17 routers, and an IoT gateway.
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In both cases, although the environment is quite different,
the technological development is similar, allowing assessing
and evaluating CTP in different scenarios.

The system has been installed and was running for 9
months in 43 dwellings simultaneously (i.e., 43 systems) in
Zaragoza, proven to be stable, no maintenance was needed,
and the expected functionality was provided. The building
installation has been running for 6 months (already running)
at the University of Zaragoza [40].

5.2. ZigBee Network of Things. Besides forming a ZigBee
network, the sensors developed allow sensing the physical
environment, connecting to analog or digital simple external
sensors (e.g., presence detector, magnetic contact, etc.), and
connecting to external commercial smart meters (e.g., com-
mercial electricity or heating water consumption).

The aforementioned 20.000 m* building with long cor-
ridors, anti-fire doors, and so forth is a challenging sce-
nario for wireless communication network with a hundred
of nodes. A multihop mesh topology with an overlap of
coverage areas and redundant communication paths was
deployed. The ZigBee network backbone is formed by 17
routers, 1 network coordinator, and a data sink connected
to the IoT gateway. The infrastructure is devoted to keep
routing tables to date and interconnect 90 CTP things (70
ambient sensors and 20 power consumption sensors) that
are ZigBee Sleepy End Devices. Any sensor enters low
power mode between measurements, being disconnected
from the network along this time, and its father (a router)
holds its messages. Periodically, sensors poll their parents
to check for incoming messages. This time between polls
introduces latency in the communication but reduces energy
consumption of the thing; to avoid possible loss of messages
it is set to 4 seconds. Also, time between measurements,
time between sending data, timestamping, and so forth can
be configured in order to balance power consumption and
application requirements. In this application, environmental
nodes measure and immediately send data every 10 minutes,

while power consumption sensors measure and store data
every minute and then send it every 10 minutes. As it is not
necessary that measures are simultaneous, the update process
of the system is randomized to reduce the probability of
several things trying to send messages at the same instant,
which would increase medium access time and, therefore,
energy consumption.

5.2.1. Hardware. Hardware implementation (Figure 6) is
designed to be versatile. Device implementation is based in
a dual hardware architecture where a low power microcon-
troller (PIC18F26]11) runs the main application and controls
the network coprocessor that implements ZigBee Pro stack
(Ember 357). After deep analysis and experimentation, we
found architecture more efficient in terms of power consump-
tion than using a system on chip solution (embedding a radio
module plus a programmable microcontroller) as it allows
splitting tasks between two specialized microcontrollers, one
for sensing and processing tasks and the second for com-
munication [41]. The device additionally has an EEPROM
memory, a real time clock, expansion ports, a button, a LED,
and a temperature and humidity digital I2C sensor (Sensirion
SHT?21). Along with these onboard capacities, the hardware
features two expansion ports: first for connection of external
analog/digital sensors and second for communications to
external systems. Thanks to them, different things are built: a
noninvasive AC current sensor (a SCT-013-000 0-100A split
core current transformer) enables power consumption sensor
and a communication port connected to a commercial device
(Kamstrup) for measuring heating water consumption.

5.2.2. Firmware. Accordingly, the basic configuration of the
device (only onboard capabilities) presents 5 endpoints: base
(base type), temperature (sensor type), humidity (sensor
type), button (HMI type), and LED (HMI type). Note that
although SHT21 sensor is a single electronic component that
measures temperature and humidity, there are two different
endpoints one for each magnitude.
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Nevertheless, similar to IEEE1451, access to both end-
points is possible using the proxy cluster within the base
endpoint. According to the devices connected to the ports
described above, news endpoints (power and heating water
consumption, both sensor types) are added when necessary.
The CTP protocol is therefore suited to the different charac-
teristics of the hardware, while performing an abstraction of
it.

Clusters implemented per endpoint are as follows:

(i) BASE: device, power (for battery level monitoring),
time (to provide timestamps), proxy, and behavior (to
program clima control when event happens),

(ii) SENSOR: sensor (to provide single measurements),
sensor event (to get events when upper and lower
thresholds are surpassed), and sensor stats (to provide
maximum and minimum levels),

(iii) HMI: HMI input (to handle button events) and HMI
output (to handle LED operation).

The use of CTP provides a structured and simple pro-
gramming strategy, which results in modular code with high
reusability. Figure 7 shows a simplified view of the proposed
structure for a common firmware of a thing: configuration
of the microcontroller, peripherals, ZigBee communications,
and CTP and system behavior.

5.3. IoT Gateway. An embedded computer running Linux,
where the middleware described before was implemented,
acts as the IoT gateway. The middleware architecture falls
within the SOA (Service Oriented Architecture) paradigm,
and we use OSGi [42] (Open Services Gateway initiative) as
development framework. OSGi defines a framework where
pieces of code are organized into bundles that can be
managed separately. OSGi bundles are agents which might be
dedicated to specialized tasks, such as handling a serial port,
providing a command line interface, collecting, aggregating
and analyzing data, and so forth. These bundles communicate
and interact with each other by means of services which are
published within the framework, and each bundle can acquire
and utilize them. The main strength of OSGi is that the frame-
work manages these bundles dynamically, allowing them to
be upgraded without terminating the full application, as well
as enabling the availability of the services to other bundles
depending on the situation. That allows us provinding new
features and capabilities to the IoT Gateway by adding new
services, which may use the services already existing in the
framework, but keeping current features unaltered.

Using OSGi as development framework also eases devel-
opment of the middleware layers, as we may focus on
one single layer when developing, comprising one of more
bundles, while the whole application layers will be arranged
on execution time. Middle-layer interfaces are also defined to
specify interoperability among adjacent layers and eliminate
direct dependencies among bundles implementing each layer.
According to Figure 8, the different layers have the following
objectives.
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(i) The network bridge is a USB dongle with a ZigBee

module that can be controlled through an AT com-
mand interface on a serial port. On the lower layer,
the Serial Communication middle interface defines
a SerialConnection service, which basically allows
writing bytes and notifies about incoming bytes, and
a SerialDriver service, which is in charge of creating
and discovering available Serial Connection services.
Main bundle implementing this layer operates the
UART interface, but other stream-based interfaces,
such as a Bluetooth connection, may adopt the same
middle-layer interface, allowing communication with
Bluetooth devices transparently to the upper layers.
In our particular case, we have implemented an
application service that wraps a SerialConnection
into a TCP socket, and at the remote client, another
bundle creates a Serial Connection services that allows
communication with the SerialConnection services
on the server side like a local one. This would allow
any service on the Internet to remotely handle the
serial port traffic, which is very useful for debugging
or auditing deployed IoT systems.

(ii) On the NoT Bridge Interpretation layer, a Zigbee-

Gateway bundle looks for newly created SerialCon-
nection services, checks if they correspond to the Zig-
bee USB dongle, and creates ZigbeeGateway services
implementing the AT command protocol in such a
case. Again, the ZigbeeGateway service is defined in
the ZigbeeGateway middle interface, which isolates
layers and allows using different versions of the USB
dongle.

(iii) Above that, there is a ZigbeeDriver, which uses the

ZigbeeGateway to accomplish network management
tasks, such as network creation or device enumer-
ation, and a Driver Manager which uses the Zig-
beeDriver to perform automatic maintenance tasks
such as message route maintenance. It would be
possible to aggregate these services into a single
one but that will introduce complexity and hinder
interoperability, whereas using separated services
increases reliability and robustness as units of code are
smaller and easier to test. This allows also deploying
gateway facilities to accomplish transversal tasks,
such as network monitoring, debug, maintenance,
and commissioning, which may use limited parts of
the Driver Layer. In the case of having other networks,
the scheme is similar. The ZigbeeDriver will create
ZigbeeNode services representing nodes in the net-
work which allows sending and receiving messages
to and from the physical device and provides Zigbee
related properties such as its MAC address or its type.

(iv) On the CTP Devices layer, a CTP Driver service will

use the ZigbeeNode services to create CTP Device
services representing the real devices available on the
NoT, following the CTP definition. This layer isolates
devices’ technology and registers them attending to
their nature in order to provide interoperability; a
temperature sensor always provides temperature the
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FIGURE 7: ZigBee thing firmware implementation.
same way regardless its technology. There are also dif- by OSGi services which are smart enough to operate on

ferent gateway facilities at this level (web servicesand ~ the IoT and among them. Internet applications access-

TCP sockets) providing Internet access and virtual  ing those things require address resolution services which

representation in order to allow remote applications allow reaching them through an URL [2]. This is over-

to use NoT infrastructure. come by delegating things’ addresses resolution to the IoT

gateway which forwards incoming requests to the physical

(v) At the IoT services layer, a Data Collector service  thing. Thus, accessing things from the Internet is granted

tracks for CTP Device services of type Sensor, sub- by knowing the IoT gateway address. It is also feasible

scribes itself to receive a notification when a new  that things themselves access the IoT services directly; for

sensor value is received, and sends a data report to example, we feed data from sensors to IoT services on

a remote database, where it can be accessed from  the cloud specialized on data managing like Cosm [43] or
elsewhere. Nimbits [44].

On top of the middleware described and thanks to the

At this point, local network devices, which were not ~ OSGi modularity, we also have developed communications

able to reach the IoT by themselves, are now represented  terminal to sniff ZigBee communication (mainly intended as
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a development tool for hardware/firmware/software develop-
ers) and a Network Manager that allows full management and
commissioning of deployed ZigBee networks.

5.4. System Performance. The system deployed is built by a
backbone of 19 nodes (1 coordinator, 17 routers, and 1 data
sink) that exchange network management messages. Also 90
sleepy sensors poll their parents every 10 seconds and report
the data sink every 10 minutes. Due to network topology,
some sensor messages must be relayed by routers up to
five times to get to the data sink which passes them to the
IoT gateway that maintains networK’s virtual image, checks
data inconsistencies, registers loss of expected messages, and
uploads data to exploitation database. These processes allow
network commissioning, node-problem targeting, and data
integrity validation.

Evaluating the quality of service (QoS) of an IoT appli-
cation is not easy as it is a large and complex system
based on heterogeneous technology and high application
dependency. Currently, there are not well-defined standard
metrics that can be used as a common agreed and widespread
comparison of IoT systems; derived from this application
specificity, researchers usually define their own metrics [45-
47]. As IoT is usually made up by different subsystems, it is
possible to analyze the layers separately; for example, there
are many metrics to evaluate the effectiveness of data transfer
in networks [48]; however, the success of an IoT should be
assessed as a whole not just one particular aspect of the
architecture [49].

The system proposed uses 90 sensors to deterministically
measure ambient and power consumption information and
make it available in the IoT. Three different areas are assessed:
relative and absolute energetic cost, data efficiency, and
message latency.

Data efficiency considers the amount of data generated in
the ZigBee network and the data correctly stored in the cloud
database. Similar indicators are used to assess the quality of
a communication network, in which case it is common to
consider lost messages and total messages. However, for the
global evaluation of the IoT is preferable to consider both
ends of the system, thus we use the messages generated by the
physical things and the amount of data available in the logical
scope. Note that if there would be nondeterministic events
(e.g., alarms, presence detection, etc.) the data generated
in the IoT will not be known a priori and also difficult to
measure. We define the data efficiency of the IoT, DE,, as

DE — DAIOT — DAIOT (1)
ot DGyt Yy (MS; x ND;)’

where DA is the data available on the [oT, DGy is the data
generated by the NoT, # is the number of things, MS; is the
number of messages sent by thing I, and ND; is the amount
of data sent in each message (we assume this is constant for
all the messages sent by a thing). This value can be measured
accumulated or disaggregated in different periods to assess
the variation of stability over the time. In our case, we check
the number of new registers in database and considering
that the total number of inputs should be 12960 per day
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FIGURE 9: Latency time intervals.

(defined by the number of things and their scheduling), we
can calculate the ratio. In our case, the accumulated data
efficiency is 98.3%. It has been found that in general, errors are
due to failures on the electrical supply or Ethernet network
not directly attributable to the system.

Message latency quantifies the availability of a thing in
order to exchange information with it. Again, we consider
this availability from the IoT layer, that is, how much time
takes to force a sensor to refresh, and effectively update the
data in the cloud. There are two main factors that influence
this indicator: how many hops away from the gateway is the
sensor and how much time does the sensor spend in sleep
mode (i.e., disconnected from the ZigBee network). Thus, we
define the message latency per hop, MLH j»as:

)

Zznil RTij
MLH; = -

i

where RT;; is the response time for thing i, which is j
hops away from the gateway, and n; is the number of
things being j hops away from the gateway. Figure 9 shows
the latency intervals (in seconds) within a 95% confidence
interval according to the distance in hops between sensor and
gateway. If we need to provide a global metric of the system
latency we would say it will be between 0,6 s and 15,9 s.

Energy consumption of a device is a common indicator
of its efficiency. In the particular case of IoT, we must take
into consideration the consumption of the things andalso
communications infrastructure (routers) and logical infras-
tructure (gateway). Given the data volume managed, energy
consumption of routers and gateway is independent from the
amount of data sent by things, and the absolute energetic cost
of the system over time AEC(t) can be defined as follows:

n
AEC(t) = | Pgy, +ng X Pp+ Y P, | xt, 3)

i=1

where Pg,,, is the power consumption of the gateway, Py
is the power consumption of a router, ny is the number of
routers, P; is the power consumption of thing i, and # is the
number of things. As we show in [41] to calculate a thing’s
power consumption, a good characterization of its duty cycle
is required. We have defined the figure of merit of power
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FIGURE 10: Relative energetic cost variation with respect to the
proposed scenario when including new devices.

consumption for each type of thing and the routers and we
consider constant the power consumption of the gateway.
For the proposed IoT, the absolute energetic cost in one
day is 19,76 MJ (5,49 kW-h). It is important to remark that
only 0,013% of the energy is due to things, battery-powered
devices. Given that in the proposed scenario, the number
of data and time are directly related, we can also define the
relative energetic cost REC as the energy required per byte of
processed data during a day:

AEC (1)

REC = .
AIoT 1day

(4)

For the present IoT application we have a relative
energetic cost of 121,97 ] per byte sent. This includes 15 m]
corresponding to the energy drained from batteries. This
parameter is related to the scalability of the network; if we
enlarge the communications infrastructure (more routers to
have broader coverage) and increase the number of things (to
have more measurement points), relative energetic cost varies
as in Figure 10.

Including new sensors supposes decreasing the REC as
they provide additional data with reduced energy consump-
tion. Specifically, power sensor consumption is related to
a better REC than ambient sensor as it sends more data
(44 bytes versus 4 bytes) with a similar energy consumption.
As expected, including routers improves network backbone
and/or range but worsens the metric, as they do not increase
D AIoT‘

6. Discussion

Main conclusion of the described field trial is that architecture
and the protocol proposed are feasible in large and long-term
IoT deployments. Also it demonstrates that implementation
of CTP over ZigBee in order to create low power things
(running with batteries for a year) that efficiently integrates
in an IoT system is possible. As we developed the whole
system, from the hardware design of things to the service
implementation, our concerns have been from the limited
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resources of hardware and firmware to the versatility and
generality required by applications.

In order to analyze under which circumstances CTP
is a convenient option, Table 1 compares it with main IoT
protocols mentioned in Section 2. Three different levels are
identified: (1) standard communication protocols (6lowPAN,
RFID, WiFi, Cellular, ZigBee, and Bluetooth), (2) protocols
abstracting from communication media and being mounted
over the protocol’s payload (IEEE1451, CTP), and (3) proto-
cols assuming IP connectivity on anything (CoAP, RESTfull-
HTTP, XMPP, MQTT, SensorWeb, EEML, and SenseWeb).
Comparison items are as follow.

(i) Application layer interoperability among things indi-
cates whether things can effectively exchange infor-
mation among them, for example, if a light controller
(protocol A) can be operated by a light sensor (pro-
tocol B). Communication standards (1) are limited on
this because they are not intended to define how to
interoperate with other standards. On the other side,
protocols abstracting from communication standard
(2, 3) are precisely designed to enable this feature.
Also IP-based protocols (3) are more restrictive as
they need that things are IP enabled.

(ii) Things representation models indicate if the protocol
provides a virtual representation of things; for exam-
ple, a temperature sensor has some characteristics
(range, accuracy, etc.) and provides some methods
(get temperature measurement, configure it, etc.).
The protocols that just consider data exchange (e.g.,
6LowPAN, WiFi, or MQTT) do not provide this def-
inition hindering interoperability. ZigBee and Blue-
tooth define some things, those considered in their
applications. IEEE1451, CTP, and SensorWeb define
how anything needs to be specified, for example, the
datasheet format.

(iii) Things’ interaction model: interaction means on step
further than representation as it implies providing
relationships among things, for example, how a light
controller can be operated by a light sensor.

(iv) Suitability for low power and lossy networks: this
relies very much on the possibility to run on wireless
sensor network standards, mainly ZigBee and 6Low-
PAN.

(v) Simplicity and exhaustiveness are important features
that determine adoption of protocols. For example,
IEE1451 is a very exhaustive protocol defining every-
thing in a sensor, but precisely this makes its use
complicated by an app developer that just wants
temperature value of a sensor.

According to Table 1, most similar protocols are CTP,
IEEEI451, and ZigBee Cluster Library. In order to make a
more detailed comparison among them, we define a scenario
based on a ZigBee temperature sensor where these three
specifications are encapsulated in the payload of the ZigBee
application layer (Figure 11).
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TaBLE 1: IoT protocols comparison.
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FIGURE 11: ZigBee protocol encapsulation.

Communication is established through requests and cor-
responding responses; Table 2 contains the frame descrip-
tions for the three cases. Each frame includes different fields
defined in the specifications.

In order to use the temperature sensor several requests
need to be answered by the sensor: (1) retrieving gen-
eral information about the device, (2) retrieving chan-
nel/endpoint mandatory information, and (3) retrieving
temperature measurement. If using ZCL, sensor temperature
must be 2 bytes in length, in degrees Celsius, and specified
in the range from -273.15°C to 327.67°C with aresolution
of 0.01°C. Thus, step 2 is not needed as information about
the measure is already defined. This is positive in terms
of easy use but limitative in some cases; if using CTP or
IEEE 1451, variables such as accuracy, range, units, and so
forth are open to the hardware developer and must be
specified in the channel/endpoint mandatory information.
Table 3 indicates the number of bytes exchanged for each

action and the number of variables encoded. It should
be noted that just mandatory fields are considered in the
table.

Regarding protocol efficiency, it is obvious that ZCL is the
most efficient, but this has important implications: as ZCL
focuses on specific application domains (home and building
automation, health, etc.) if the thing is not specified in the
standard or the representation of the information differs from
it, its implementation is not possible and thus it will not be
interoperable. For example, there is no way to use inertial
sensors according to ZCL.

On the other hand, IEEE 1451 is the heaviest protocol
because it leaves open a lot of variables. This flexibility turns
to be its main drawback to be used in IoT applications because
it makes it too complicated for developers not versed into
electronics. Additionally, as it is more oriented to electronics
than to application, it does not consider human-machine
interfaces in its specification, just sensors and actuators.
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TABLE 2: Frame description of IEEE 1451, CTP, and ZCL.

Request
(6 + n) bytes

IEEE 1451

CTP Frame
(5 + n) bytes

Length: 2 bytes

ZigBee
Cluster
Library

ZCL Frame
(5 + n) bytes

Cluster identification: 1 byte
Command identifier: 1 byte

Frame Control: 1 byte

Manufacturer code: 2 bytes
Transaction sequence number: 1 byte
Command identifier: 1 byte

Destination transducer channel: 2 bytes
Command Class: 1 byte

Command Function: 1 byte

Offset Length: 2 bytes

Response Success flag: 1 byte
(EEFONG Y Offset Length: 2 bytes

Endpoint destination: 1 byte

Data: nbytes
Data: nbytes

Data: nbytes

Id attribute: 2 bytes
Value attribute: nbytes

Id attribute m: 2 bytes
Value attribute m: nbytes

TaBLE 3: Number of payload bytes (differentiating request + response) and variables associated.

ZigBee Cluster
Library

IEEE 1451

Bytes Variables | Bytes Variables | Bytes Variables

Retrieve general 50 (7 +43)

4
information about the 21 G 531)
device 42 (7 +35)
Retrieve channel/endpoint  [RESNEERZ)) 34
mandatory information 33 (7 + 26) (5+29)

Retrieve temperature 12
12(7+5 1

Observations

In case of ZCL, information obtained is partial,

14 same amount/type of variables must be done
7+7) from a lower level of the protocol; at ZigBee
Device Object.

ZCL strictly defines the nature of the variables
in each cluster, so no need to declaration.

14
(7+7)

As a summary, CTP is a balanced protocol especially
suited for the IoT allowing definition of any device and just
specifying those variables that are needed at application level.
As it can be efficiently encapsulated in any communication
protocol, it is strongly focused on the interoperability of
things while considering their technical limitations (energy,
processing, and communication capabilities). CTP is based
on an ontological representation and interaction model; thus,
besides interoperability, it allows local intelligence and inter-
action among things. Also as it describes the characteristics
and properties of things, higher-level protocols can use it as a
source of information.

7. Conclusions

IoT is perceived as a huge generator of services and appli-
cations, but it requires that two important issues to be
solved: things’ connectivity (communication of the physical
things with the Internet) and interoperability at all levels
(understanding of the information exchanged). This paper
emphasizes the need to maintain an integrative and broad
point of view when considering architectures and proto-
cols for IoT. Considering IoT development areas and their

associated technologies, an architecture and protocol with
a comprehensive view considering current technological
capabilities at all levels (services, gateway communications,
firmware, and hardware) are proposed.

In order to tackle connectivity challenge, the appropriate-
ness of using gateway-based solutions to connect Networks
of Things with the Internet has been discussed. This is
considered an optimal way to solve the problem of the
heterogeneous networks, jumping from the real world to
the IP world and ensuring the unambiguous designation of
each of the things in the Internet, performing a tunneling
process (e.g., the need of a unique identification). Regarding
the functionality of the IoT gateway, the use of layered and
modular middleware architecture to constitute a versatile,
interoperable, scalable, and easy to maintain system has been
proposed.

Common Things Protocol (CTP) has been presented as
a solution to provide interoperability among things. Main
guidelines considered in its design are an ontological repre-
sentation and interaction model of things andimplementa-
tion feasibility in standard communication protocols. CTP
reflects the need for equilibrium between the networks of
things, data traffic, and virtualized world of things, which
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is not common in the current proposals. Main principles
of CTP are self-description of the nature and capabilities
of the thing, organization capabilities through the endpoint
and cluster concepts, simplifying the use of the thing in
standard situations through mechanisms such as modes and
scenarios, allowing distributed intelligence by using bindings
and behaviors, and being simple and compact to ease its
implementation fitting on current standard communication
protocols.

The IoT architecture (ZigBee network of things, IoT
gateway and related Internet services) and CTP proposal
have been implemented in two European research projects
related to smart environments for Ambient Assisted Living
and energy efficiency. The paper describes specific hardware
and software implementations and deployment in large scale
environments, with real end users, during periods of several
months. We also measure energetic cost, data efficiency, and
message latency metrics demonstrating proposal’s feasibility
and suitability in order to meet current IoT requirements.

This paper does not intend to define a standard but an ini-
tial proposal to adopt a minimum agreement (currently not
considered in the state of the art) with a global and inclusive
vision that facilitates the development of the IoT. To this end,
it should be mentioned that most of the developments shown
have been carried out under open source license, in particular
CTP is accessible and well documented [50].
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