59 research outputs found

    Zeitabhängige, multimodale Modellierung und Analyse von Herzdaten

    Get PDF
    Kardiovaskuläre Erkrankungen stellen in den westlichen Industrienationen eine der Haupttodesursachen dar. Für die Diagnostik steht inzwischen mit der Computer-Tomographie ein leistungsfähiges bildgebendes Verfahren zur Verfügung. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, um dem Radiologen durch eine weitgehend automatische und umfassende Analyse von 4D-CTA-Daten und der automatischen Berechnung wichtiger diagnostischer Parameter zu unterstützen

    Rechnergestützte Analyse kardiovaskulärer Strömungen auf Basis der Magnetresonanztomographie

    Get PDF
    Die tridirektional kodierte Phasenkontrast-Magnetresonanztomographie gilt als aussichtsreichster Ansatz, klinisch verwertbare Vektorfelder der Blutströmung aufzunehmen. Diese Arbeit beschreibt Verfahren, wie sich die Daten rechnergestützt verarbeiten lassen. Zentrale Themen sind die interaktive Flussdatenanalyse, die flussbasierte Kavitätensegmentierung und die Validierung der Flussquantifizierung. Ausgewählte Beispiele demonstrieren das Potenzial des Ansatzes für die kardiovaskuläre Diagnostik

    Rechnergestützte Analyse kardiovaskulärer Strömungen auf Basis der Magnetresonanztomographie

    Get PDF
    Die tridirektional kodierte Phasenkontrast-Magnetresonanztomographie gilt als aussichtsreichster Ansatz, klinisch verwertbare Vektorfelder der Blutströmung aufzunehmen. Diese Arbeit beschreibt Verfahren, wie sich die Daten rechnergestützt verarbeiten lassen. Zentrale Themen sind die interaktive Flussdatenanalyse, die flussbasierte Kavitätensegmentierung und die Validierung der Flussquantifizierung. Ausgewählte Beispiele demonstrieren das Potenzial des Ansatzes für die kardiovaskuläre Diagnostik

    Hybride Gefäßsegmentierung in 4D-Phasenkontrast-MRT-Daten

    Get PDF

    Bestimmung zeitabhängiger Blutdruckfelder aus Strömungsdaten der Magnetresonanztomographie

    Get PDF
    In cardiovascular diagnostics, blood pressure computation from flow data acquired by magnetic resonance imaging is considered promising. Accordingly, this work describes a method for the computation of complete spatiotemporal blood pressure fields in the human aorta. Key issues are the robust pressure computation from noisy input data, the application of regularized blood flow models, the combination of spatial and temporal blood pressure information, and the experimental evaluation

    Computergestützte 3D-Visualisierung histologischer Schnittbildserien am Beispiel des bovinen Mesonephros

    Get PDF
    Der rechte Mesonephros, sein Ductus mesonephricus sowie drei Tubuli eines bovinen Embryo mit 35 mm SSL wurden aus 902 histologischen Einzelbildern am Computer rekonstruiert. Zur Verwendung kam die kommerzielle Software „Amira“. Die Arbeit wurde über einen Remote-Zugang auf den Rechensystemen des Leibniz-Rechenzentrums in Garching bei München durchgeführt. Die Schwierigkeiten und Grenzen der computergestützten Visualisierung aus kon¬ventionellen Schnittbildserien konnten gezeigt werden. Das Vorgehen mit physi¬kalischen Schnitten brachte vor allem Probleme beim Ausrichten der Schnitte sowie beim Zuordnen von Bildpunkten zu Strukturen mit sich. Bei der bearbeite¬ten histologischen Serie handelte es sich um archivierte Bilder. Diese waren zum Zeitpunkt ihrer Herstellung nicht zum Zwecke der Bearbeitung an einem PC be¬stimmt und daher nicht mit Markersystemen zur besseren Reorientierung aus¬gestattet. Konventionelle Schnittbildserien komplizierter Strukturen können also als Ausgangsdaten zur digitalen Weiterverarbeitung als nicht optimal bezeichnet werden. Im Ergebnis konnten jedoch mit größtenteils zeitaufwendigen, händi¬schen Verfahren dank der sehr guten Hardware-Performance befriedigende Er¬gebnisse erzielt werden. Diese bestätigten größtenteils die bisherigen Beschreibungen des Mesonephros. Hinweise auf einen kraniokaudalen Gradienten in der Entwicklung und Degene¬ration konnte ebenso gezeigt werden wie grundsätzliche morphologische Bezie¬hungen. Ein Nephron besteht aus dem medial gelegenen Glomerulum, dem ge¬streckten proximalen Tubulus und einem stark gewundenen, distalen Tubulus mit attachment-Zone in direkter Nachbarschaft zum Glomerulum. Ein unmittelbar unter der Organkapsel verlaufender, kollektiver Abschnitt mündet schließlich in den Wolffschen Gang. Die Stellung der Nephrone ist segmentübergreifend und nahezu senkrecht zum Verlauf des Wolffschen Gangs. Der mit der Visualisierung der Schnittbildserie verbundene hohe Zeitaufwand sowie die Notwendigkeit ständiger manueller Kontrolle zeigt deutlich, dass bis zum routinemäßigen Einsatz dreidimensionaler Techniken im lichtmikroskopi¬schen Forschungsbereich noch großer Handlungsbedarf besteht. 3D-Modelle sind in der Lage, Wissenschaftlern neue Einblicke und Zugänge zu gewähren sowie Studierenden den Lernstoff auf anschauliche Art und Weise zu vermitteln. Der Aufwand zu ihrer Herstellung muss jedoch in einem sinnvollen Verhältnis zu ihrem Nutzen stehen.Computer-based 3D visualisation of histological serial sections using the example of the bovine mesonephros A mesonephros, its Wolffian duct and three of its tubuli of a bovine embryo measuring 35 mm CRL have been reconstructed out of 902 histological slices on a computer platform using the commercial visualisation software “Amira”. Main work has been done using a remote-access to the systems of the Leibniz-Rechenzentrum in Garching near Munich. Difficulties and limits of computer-based visualisation of conventional serial slices could be shown. Proceeding with physical sections lead to problems in alignment and labelling. The series used was an archived one that hasn´t been prepared for modern digital techniques and so has not been provided with any marker-systems. Thus, conventional se¬rial thin sections of complicated structures are not optimal for creating visualisa¬tions. However, satisfying results could be achieved by the use of time-consum¬ing manual work and thanks to the excellent hardware performance. These results mostly confirmed former descriptions of the mesonephros. There were signs that development and degeneration proceed in a craniocaudal direc¬tion. One nephron consists of the glomerulum situated medially, a straight proxi¬mal tubule and a highly contorted distal tubule with the attachment-zone next to the glomerulum. The collecting tubule runs directly subcapsular and empties into the Wolffian duct. The position of the nephrons reaches across multiple seg¬ments and is nearly perpendicular to the Wolffian duct. The time needed for operations and the need of permanent manual interactions clearly shows the necessity of progress in three-dimensional visualisation of light microscopical data to make it easy and fast enough for routine use. 3D-models are able to provide new insights to scientists and a more interactive way of learning for students. But efforts in achieving them must remain in reasonable relation to their value

    Neue Methoden des 3D Ultraschalls zur Geschwindigkeitsrekonstruktion und intraoperativen Navigation

    Get PDF

    Beschreibung von Organgrenzen als Äquipotentialverlauf finiter Quellpunkte mit Q/r-Potentialen

    Get PDF
    In dieser Arbeit wurde ein neues Verfahren zur komprimierten Beschreibung bereits bekannter Konturlinien kompakter menschlicher Organe und zu deren verbesserter Anpassung an die in individuellen medizinischen Bild-Datensätzen erkennbaren Kantenlinien entwickelt. Dazu wurden physikalisch motivierte mathematische Beschreibungen, hier die durch Äquipotentiallinien und -flächen elektrischer Felder, mit der Bildverarbeitung verknüpft. Die Potentialtheorie liefert die flexible Basis, um kompakte, geschlossene Organe zu modellieren. Zu diesem Zweck wird eine Verteilung von virtuellen Quellpunkten generiert, die über ein Q r -Potential verfügen. Die betrachtete Organschicht schneidet die gemeinsame Äquipotentialfläche und liefert eine Äquipotentiallinie, die den Organrand nachbildet. Die Überführung in eine Äquipotentialdarstellung geschieht mit bereits manuell segmentierten Organen. Die segmentierten Daten stammen von dem Voxelmodell ‘‘Laura’’, das als Grundlage für das ICRP-Referenzphantom RCP-AF verwendet wurde, und hat eine Auflösung von 1,875 x 1,875 x 5mm. Alle Programmierarbeiten wurden in der Interactive Data Language (IDL) 8.2 durchgeführt. Es werden Schichten von Herz, Magen, Blase und Niere mittels Quellenverteilungen modelliert. Eine Darstellung der Organe mittels dieser Methode liefert folgende Vorteile. Die Konstellation an virtuellen Quellpunkten ist intuitiv erfassbar. Die Modellierung mit virtuellen Quellpunkten stellt eine sehr komprimierte Art der Datenspeicherung dar und ist auflösungsunabhängig. Im Bereich hochaufgelöster Datensätze ist dies ein wesentlicher Vorteil. Es genügen die Koordinaten der Quellpunkte, ihre Stärken und eine Potentialangabe. Die Form lässt sich über die Lage und Anzahl der Quellpunkte verändern. Eine Ähnlichkeitstransformation und eine Innerhalb/Außerhalb-Entscheidung sind möglich. Der Einsatz von Standard-Computersystemen sowie die Übertragbarkeit der Daten über gängige Systeme, z.B. derzeitige Internetprotokolle, wäre damit gegeben. Eine Überführung in ein Voxelmodell ist problemlos möglich. Die Potentialflächen sind kontinuierlich und müssen mit Voxeln gefüllt werden. Eine Generierung verschiedener Modelle mit unterschiedlicher Auflösung ist möglich. Gegenüber der Voxeldarstellung von Organgrenzen verspricht das Konzept der Äquipotentialdarstellung eine Zeitersparnis a) bei der interaktiven Anpassung, b) beim Datentransfer und c) bei der Innerhalb/Außerhalb-Entscheidung für Interaktionspunkte im Laufe von Monte-Carlo-Simulationen der Berechnung von Organdosen. Die ermittelten Quellenverteilungen der modellierten Organe werden anschließend in den individuellen CT-Datensatz eingebracht, um die bereits vorhanden Segmentierung der Organgrenzen ausgewählter Schichten nochmals zu verbessern. Dazu werden die Quellpunkte anhand der vorhandenen, detektierten Kanten neu justiert, um eine optimale Platzierung zu generieren. Wo es keine erkennbaren Kanten im Schichtbild gibt, verbleiben die Quellen an ihrem Platz. Das Modell wird nicht verzerrt und kann bei Bedarf manuell ausgerichtet werden. Die gemeinsame Äquipotentiallinie bildet den segmentierten Rand und überbrückt die Gebiete, in denen keine Kanten im medizinischen Bild zu sehen sind, aber ein Organ an ein anderes grenzt. Die Güte der Anpassung der so ermittelten Äquipotentiallinien an die wirklichen Organgrenzen übertrifft nicht selten diejenige, die man durch die Anpassung der Äquipotentiallinien an die bereits voxelierte Organgrenzlinien erhält. Die Anpassung der durch das Potentialmodell bereits beschriebenen Organkonturlinien an die in individuellen medizinischen Bildaten erkennbaren Kanten kann man als zweite Näherung im Rahmen der Segmentierung bezeichnen; ihr Anwendungsgebiet ist die Individualisierung der Darstellung von Organkonturen. Obwohl dieser Algorithmus ein komplexes Wissen in die Bearbeitung einbringt, besteht weiterhin die Möglichkeit, manuell zu interagieren. Ein direktes Zugreifen auf die Quellpunkte ist möglich und sinnvoll, da es auch bei trainierten Algorithmen zu Fehlerkennungen in der Analyse der Organe kommt. Da nur der Quellpunkt selber verschoben werden muss, nicht z.B. die Interpolationspunkte von Splines auf dem Organrand, stellt dies einen akzeptablen manuellen Aufwand dar, der geringer ist als die Kombination von grauwertbasierten Techniken mit Splines. Es ist auch möglich, die Quellstärke anzupassen und auf diese Weise die Äquipotentiallinie zu verschieben. Dafür muss keine Umwandlung in eine andere Modellform vorgenommen werden oder die Organabgrenzung neu approximiert werden. Für die Strahlentherapie, in der die persönliche Verantwortung über die Segmentierungsarbeit bei den Ärzten liegt, ist eine manuelle Überprüfung und Bearbeitungsmöglichkeit unabdingbar. Die vorgestellte Methode liefert somit gute Resultate für die automatische Modellierung und die verbesserte Segmentierung kompakter konvexer Organe. Damit ist eine flexible Basis für weitere Anpassungen an verschiedene Aufgabenstellungen geschaffen. Die Möglichkeit zu einer einfachen Ähnlichkeitstransformation der im Äquipotentialmodell dargestellten Organkonturen lässt sich auch bei der Anpassung von Organkonturen, z.B. an unterschiedliche Lebensalter oder an Unterschiede im Körpergewicht, als Mittel zur Zeitersparnis verwenden. Somit dient die in dieser Arbeit vorgestellte Äquipotentialdarstellung der Organkonturen gleichermaßen dem herkömmlichen Zweck der Organdosisberechnungen im Strahlenschutz als auch der immer aktueller werdenden Aufgabe der komprimierten digitalen Übermittlung von Organkonturen zu medizinischen Zwecken. Die vorliegende Betrachtung beschränkt sich auf die zweidimensionale Beschreibung der Organgrenzen und schlägt die dreidimensionale Darstellung mittels einer Normierungsmatrix für die Potentiale auf dem Organrand vor. Der Algorithmus beinhaltet ein komplexes Modellwissen und kann als “High Level”-Algorithmus angesehen werden.The scope of the dissertation is to introduce a new method for organ contour modelling and segmentation in radiology and radiation protection. The method makes use of functions customary in physics, in this case the equipotential lines caused by a distribution of point sources. The mathematical description of electrical fields is transferred to virtual anatomy modelling and image segmentation. Each source point is assumed to have a Q/r potential, and the distribution of point sources is so optimized that one of their resulting equipotential lines traces the given organ contour. Therefore, the source points are placed in accordance to an organ border in a human voxel phantom that had previously been generated from 2-dimensional CT images of a real patient. The results for several closed and compact organs shall be presented, appropriate models for the contours for e.g. heart, stomach and bladder were generated. After the creation of the organ contour by source points these new organ models shall be adapted to the segmentation of organs from medical images. The distribution of source points is transferred to CT data, and the edges of the images are overlain with the equipotential line. The source points are able to move within a given area, thereby the equipotential line is editable. The principle of electrical fields offers an aspect that serves as criteria for optimising the place of a source point. Their field lines are perpendicular to the equipotential lines and lead in radial direction from the source point. The edge detection of the medical images is performed by means of gradient methods which provide vectors of the edge directions. The single source points shall be adjusted to the vectors of the edges and put on an optimised place. The resulting match of the equipotential line with the detectable edges is considered in the optimisation process and aimed to maximise. A better tracing of the equipotential lines with the existing edges is expected and the results of the suggested outlines for several organ will be presented in 2D slices of the CT data. The organ modelling by equipotential lines provides the advantages of compacted data and of the mathematical continuity of the equipotential lines, different from the limited resolution of voxelised organ contours

    Ultraschallbasierte Navigation für die minimalinvasive onkologische Nieren- und Leberchirurgie

    Get PDF
    In der minimalinvasiven onkologischen Nieren- und Leberchirurgie mit vielen Vorteilen für den Pa- tienten wird der Chirurg häufig mit Orientierungsproblemen konfrontiert. Hauptursachen hierfür sind die indirekte Sicht auf die Patientenanatomie, das eingeschränkte Blickfeld und die intra- operative Deformation der Organe. Abhilfe können Navigationssysteme schaffen, welche häufig auf intraoperativem Ultraschall basieren. Durch die Echtzeit-Bildgebung kann die Deformation des Organs bestimmt werden. Da viele Tumore im Schallbild nicht sichtbar sind, wird eine robuste automatische und deformierbare Registrierung mit dem präoperativen CT benötigt. Ferner ist eine permanente Visualisierung auch während der Manipulation am Organ notwendig. Für die Niere wurde die Eignung von Ultraschall-Elastographieaufnahmen für die bildbasierte Re- gistrierung unter Verwendung der Mutual Information evaluiert. Aufgrund schlechter Bildqualität und geringer Ausdehnung der Bilddaten hatte dies jedoch nur mäßigen Erfolg. Die Verzweigungspunkte der Blutgefäße in der Leber werden als natürliche Landmarken für die Registrierung genutzt. Dafür wurden Gefäßsegmentierungsalgorithmen für die beiden häufigsten Arten der Ultraschallbildgebung B-Mode und Power Doppler entwickelt. Die vorgeschlagene Kom- bination beider Modalitäten steigerte die Menge an Gefäßverzweigungen im Mittel um 35 %. Für die rigide Registrierung der Gefäße aus dem Ultraschall und CT werden mithilfe eines bestehen- den Graph Matching Verfahrens [OLD11b] im Mittel 9 bijektive Punktkorrespondenzen definiert. Die mittlere Registrierungsgenauigkeit liegt bei 3,45 mm. Die Menge an Punktkorrespondenzen ist für eine deformierbare Registrierung nicht ausreichend. Das entwickelte Verfahren zur Landmarkenverfeinerung fügt zwischen gematchten Punkte weitere Landmarken entlang der Gefäßmittellinien ein und sucht nach weiteren korrespondierenden Gefäß- segmenten wodurch die Zahl der Punktkorrespondenzen im Mittel auf 70 gesteigert wird. Dies erlaubt die Bestimmung der Organdeformation anhand des unterschiedlichen Gefäßverlaufes. Anhand dieser Punktkorrespondenzen kann mithilfe der Thin-Plate-Splines ein Deformationsfeld für das gesamte Organ berechnet werden. Auf diese Weise wird die Genauigkeit der Registrierung im Mittel um 44 % gesteigert. Die wichtigste Voraussetzung für das Gelingen der deformierbaren Registrierung ist eine möglichst umfassende Segmentierung der Gefäße aus dem Ultraschall. Im Rahmen der Arbeit wurde erstmals der Begriff der Regmentation auf die Segmentierung von Gefäßen und die gefäßbasierte Registrie- rung ausgeweitet. Durch diese Kombination beider Verfahren wurde die extrahierte Gefäßlänge im Mittel um 32 % gesteigert, woraus ein Anstieg der Anzahl korrespondierender Landmarken auf 98 resultiert. Hierdurch lässt sich die Deformation des Organs und somit auch die Lageveränderung des Tumors genauer und mit höherer Sicherheit bestimmen. Mit dem Wissen über die Lage des Tumors im Organ und durch Verwendung eines Markierungs- drahtes kann die Lageveränderung des Tumors während der chirurgischen Manipulation mit einem elektromagnetischen Trackingsystem überwacht werden. Durch dieses Tumortracking wird eine permanente Visualisierung mittels Video Overlay im laparoskopischen Videobild möglich. Die wichtigsten Beiträge dieser Arbeit zur gefäßbasierten Registrierung sind die Gefäßsegmen- tierung aus Ultraschallbilddaten, die Landmarkenverfeinerung zur Gewinnung einer hohen Anzahl bijektiver Punktkorrespondenzen und die Einführung der Regmentation zur Verbesserung der Ge- fäßsegmentierung und der deformierbaren Registrierung. Das Tumortracking für die Navigation ermöglicht die permanente Visualisierung des Tumors während des gesamten Eingriffes

    Analyse endoskopischer Bildsequenzen für ein laparoskopisches Assistenzsystem

    Get PDF
    Rechnergestützte Assistenzsysteme zielen auf eine Minimierung der chirurgischen Belastung und Verbesserung der Operationsqualität ab und werden immer häufiger eingesetzt. Im Fokus der vorliegenden Arbeit steht die Analyse endoskopischer Bildsequenzen für eine Unterstützung eines minimalinvasiven Eingriffs. Zentrale Themen hierbei sind die Vorverarbeitung der endoskopischen Bilder, die dreidimensionale Analyse der Szene und die Klassifikation unterschiedlicher Handlungsaspekte
    corecore