3,473 research outputs found

    Avoiding coincidental correctness in boundary value analysis

    Get PDF
    In partition analysis we divide the input domain to form subdomains on which the system's behaviour should be uniform. Boundary value analysis produces test inputs near each subdomain's boundaries to find failures caused by incorrect implementation of the boundaries. However, boundary value analysis can be adversely affected by coincidental correctness---the system produces the expected output, but for the wrong reason. This article shows how boundary value analysis can be adapted in order to reduce the likelihood of coincidental correctness. The main contribution is to cases of automated test data generation in which we cannot rely on the expertise of a tester

    Rapid prototyping from algorithm to FPGA prototype

    Get PDF
    Abstract. Wireless data usage continuously increases in today’s world setting higher requirements for wireless networks. Ever increasing requirements result in more complex hardware (HW) implementation, especially telecommunication System-on-Chips (SoC) performance is playing a key-role in this development. Complexity increases design workload, therefore, it makes design flow times longer. High-Level Synthesis (HLS) tools have been designed to automate and accelerate design by moving manual work on a higher level. This Master’s Thesis studies MathWorks HLS workflow usage for rapid prototyping of Wireless Communication SoC Intellectual Property (IP). This thesis introduces design and FPGA prototyping flow of Application-Specific Integrated Circuit (ASIC). It presents good design practices targeted for HLS. It also studies MathWorks Hardware Description Language (HDL) generation flow with HDL Coder, possible problems during the flow and solutions to overcome the problems. The HLS flow is examined with an example design that scales and limits the power of IQ-data. This work verifies the design in a Field-Programmable Gate Array (FPGA) environment. It concentrates on evaluating the usage and benefits of MathWorks HLS workflow targeted for rapid prototyping of SoCs. The Example IP is a Simulink model containing MATLAB algorithms and System Objects. The design is optimized on algorithm level and synthesized into VHDL. The generated Register-Transfer Level (RTL) is verified in co-simulation against the algorithm model. Optimization and verification methods are evaluated. The HDL model is further processed through logic-synthesis using the 3rd party synthesis tool run automatically with a script created by MathWorks workflow. The generated design is tested on FPGA with FPGA-in-the-loop simulation configuration. FPGA prototyping flow benefits for rapid prototyping are evaluated. Coding styles to generate synthesizable HDL code and simulation methods to improve simulation speed of hardware-like algorithm were discussed. MathWorks HLS workflow was evaluated for rapid prototype purposes from algorithm to FPGA. Optimization methods and capability for production quality RTL for ASIC target were also discussed. MathWorks’ tool flow provided promising results for rapid prototyping. It generated human-readable HDL that was successfully synthesized on FPGA. The FPGA model was simulated in FPGA-in-the-loop configuration successfully. It also provided good area and speed results for the ASIC target when the algorithm was written strictly from the hardware perspective. The process was found to be distinct and efficient.Nopea prototypointi algoritmista FPGA-prototyypiksi. Tiivistelmä. Langattoman datan käyttö kasvaa jatkuvasti nykymaailmassa ja asettaa korkeammat vaatimukset langattomille verkoille. Kasvavat vaatimukset tekevät laitteistototeutuksesta kompleksisempaa, erityisesti tietoliikenteessä käytettävien järjestelmäpiirien (SoC) tehokkuus on avainasemassa. Tämä kasvattaa suunnittelun työmäärää ja näin ollen suunnitteluvuohon kuluva aika pidentyy. Korkean tason synteesi (HLS) on kehitetty automatisoimaan ja nopeuttamaan digitaalisuunnittelua siirtämällä manuaalista työtä korkeammalle tasolle. Tämä diplomityö tutkii MathWorks:n HLS-vuon käyttöä langattomaan viestintään suunniteltavien SoC:ien tekijänoikeudenalaisten standardoitujen lohkojen (IP) nopeaan prototypointiin. Työ esittelee perinteisen asiakaspiirin (ASIC) suunnitteluvuon, FPGA-prototypointivuon ja suunnitteluperiaatteet HLS:ää varten. Työssä käydään läpi MathWorks:n laitteistokuvauskielen (HDL) generointivuo HDL Coder:lla, mahdollisia ongelmakohtia vuossa ja ratkaisuja ongelmiin. HLS-vuota tutkitaan esimerkkimallin avulla, joka skaalaa ja rajoittaa IQ-datan tehoa. Esimerkkimallin toiminta tarkistetaan ohjelmoitavan logiikkapiirin (FPGA) kanssa. Työ keskittyy arvioimaan MathWorks:n HLS-vuon käyttöä ja hyötyä nopeaan prototypointiin SoC:ien kehityksessä. Esimerkkinä käytetään Simulink-mallia, joka sisältää MATLAB-funktioita ja System Object-olioita. Algoritmitasolla optimoitu malli syntesoidaan VHDL:ksi ja rekisterinsiirtotason (RTL) mallin toiminta tarkistetaan yhteissimulaatiolla alkuperäistä algoritmimallia vasten. Optimointi- ja verifiointimenetelmien toimivuutta ja tehokkuutta arvioidaan. Generoitu HDL-malli syntesoidaan kolmannen osapuolen logiikkasynteesi-työkalulla, joka käynnistetään MathWorks:n työkaluvuon generoimalla komentosarjalla. Luotu malli ohjelmoidaan FPGA:lle ja sen toiminta tarkistetaan FPGA-simulaatiolla. Syntesoituvan HDL-koodin generointiin vaadittavia koodaustyylejä ja algoritmimallin simulointinopeutta parantavia menetelmiä tutkittiin. MathWorks:n HLS-vuon soveltuvuutta nopeaan prototypointiin algoritmista FPGA-prototyypiksi pohdittiin. Lisäksi optimointimenetelmiä ja vuon soveltuvuutta tuotantolaatuisen RTL:n generoimiseen arvioitiin. MathWorks:n työkaluvuo osoitti lupaavia tuloksia nopean prototypoinnin näkökulmasta. Se loi luettavaa HDL-koodia, joka syntesoitui FPGA:lle. Malli ajettiin onnistuneesti FPGA:lla. Vuon avulla saavutettiin hyviä tuloksia pinta-alan ja nopeuden suhteen, kun malli optimoitiin asiakaspiirille. Tämä vaati mallin kuvaamista tarkasti laitteiston näkökulmasta. Prosessi oli kokonaisuudessaan selkeä ja tehokas

    Dandelion: Certified Approximations of Elementary Functions

    Get PDF
    Elementary function operations such as sin and exp cannot in general be computed exactly on today's digital computers, and thus have to be approximated. The standard approximations in library functions typically provide only a limited set of precisions, and are too inefficient for many applications. Polynomial approximations that are customized to a limited input domain and output accuracy can provide superior performance. In fact, the Remez algorithm computes the best possible approximation for a given polynomial degree, but has so far not been formally verified. This paper presents Dandelion, an automated certificate checker for polynomial approximations of elementary functions computed with Remez-like algorithms that is fully verified in the HOL4 theorem prover. Dandelion checks whether the difference between a polynomial approximation and its target reference elementary function remains below a given error bound for all inputs in a given constraint. By extracting a verified binary with the CakeML compiler, Dandelion can validate certificates within a reasonable time, fully automating previous manually verified approximations

    VLSI Architecture and Design

    Get PDF
    Integrated circuit technology is rapidly approaching a state where feature sizes of one micron or less are tractable. Chip sizes are increasing slowly. These two developments result in considerably increased complexity in chip design. The physical characteristics of integrated circuit technology are also changing. The cost of communication will be dominating making new architectures and algorithms both feasible and desirable. A large number of processors on a single chip will be possible. The cost of communication will make designs enforcing locality superior to other types of designs. Scaling down feature sizes results in increase of the delay that wires introduce. The delay even of metal wires will become significant. Time tends to be a local property which will make the design of globally synchronous systems more difficult. Self-timed systems will eventually become a necessity. With the chip complexity measured in terms of logic devices increasing by more than an order of magnitude over the next few years the importance of efficient design methodologies and tools become crucial. Hierarchical and structured design are ways of dealing with the complexity of chip design. Structered design focuses on the information flow and enforces a high degree of regularity. Both hierarchical and structured design encourage the use of cell libraries. The geometry of the cells in such libraries should be parameterized so that for instance cells can adjust there size to neighboring cells and make the proper interconnection. Cells with this quality can be used as a basis for "Silicon Compilers"

    Continuous Integration for Fast SoC Algorithm Development

    Get PDF
    Digital systems have become advanced, hard to design and optimize due to ever-growing technology. Integrated Circuits (ICs) have become more complicated due to complex computations in latest technologies. Communication systems such as mobile networks have evolved and become a part of our daily lives with the advancement in technology over the years. Hence, need of efficient, reusable and automated processes for System-on-a-Chip (SoC) development has been increased. Purpose of this thesis is to study and evaluate currently used SoC development processes and presents guidelines on how these processes can be streamlined. The thesis starts by evaluating currently used SoC development flows and their advantages and disadvantages. One important aspect is to identify step which cause duplication of work and unnecessary idle times in SoC development teams. A study is conducted and input from SoC development experts is taken in order to optimize SoC flows and use of Continuous Integration (CI) system. An algorithm model is implemented that can be used in multiple stages of SoC development at adequate complexity and is “easy enough” to be used for a person not mastering the topic. The thesis outcome is proposal for CI system in SoC development for accelerating the speed and reliability of implementing algorithms to RTL code and finally into product. CI system tool is also implemented to automate and test the model design so that it also remains up to date
    corecore