11,358 research outputs found

    Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    Get PDF
    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface

    Automatically generating complex test cases from simple ones

    Get PDF
    While source code expresses and implements design considerations for software system, test cases capture and represent the domain knowledge of software developer, her assumptions on the implicit and explicit interaction protocols in the system, and the expected behavior of different modules of the system in normal and exceptional conditions. Moreover, test cases capture information about the environment and the data the system operates on. As such, together with the system source code, test cases integrate important system and domain knowledge. Besides being an important project artifact, test cases embody up to the half the overall software development cost and effort. Software projects produce many test cases of different kind and granularity to thoroughly check the system functionality, aiming to prevent, detect, and remove different types of faults. Simple test cases exercise small parts of the system aiming to detect faults in single modules. More complex integration and system test cases exercise larger parts of the system aiming to detect problems in module interactions and verify the functionality of the system as a whole. Not surprisingly, the test case complexity comes at a cost -- developing complex test cases is a laborious and expensive task that is hard to automate. Our intuition is that important information that is naturally present in test cases can be reused to reduce the effort in generation of new test cases. This thesis develops this intuition and investigates the phenomenon of information reuse among test cases. We first empirically investigated many test cases from real software projects and demonstrated that test cases of different granularity indeed share code fragments and build upon each other. Then we proposed an approach for automatically generating complex test cases by extracting and exploiting information in existing simple ones. In particular, our approach automatically generates integration test cases from unit ones. We implemented our approach in a prototype to evaluate its ability to generate new and useful test cases for real software systems. Our studies show that test cases generated with our approach reveal new interaction faults even in well tested applications. We evaluated the effectiveness of our approach by comparing it with the state of the art test generation techniques. The evaluation results show that our approach is effective, it finds relevant faults differently from other approaches that tend to find different and usually less relevant faults

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Design reuse research : a computational perspective

    Get PDF
    This paper gives an overview of some computer based systems that focus on supporting engineering design reuse. Design reuse is considered here to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. A design reuse process model, containing three main processes and six knowledge components, is used as a basis to identify the main areas of contribution from the systems. From this it can be concluded that while reuse libraries and design by reuse has received most attention, design for reuse, domain exploration and five of the other knowledge components lack research effort

    TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    Get PDF
    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management
    • …
    corecore