
Automatically Generating Complex Test Cases from
Simple Ones

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Konstantin Rubinov

under the supervision of

Prof. Mauro Pezzè

October 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/43658583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Committee

Prof. Matthias Hauswirth Università della Svizzera Italiana, Switzerland
Prof. Mehdi Jazayeri Università della Svizzera Italiana, Switzerland

Prof. Mark Harman University College London, United Kingdom
Prof. Gregg Rothermel University of Nebraska-Lincoln, USA

Dissertation accepted on October 2013

Prof. Mauro Pezzè
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Igor Pivkin
PhD Program Director

i

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the content
of the thesis is the result of work which has been carried out since the official com-
mencement date of the approved research program.

Konstantin Rubinov
Lugano, October 2013

ii

Abstract

While source code expresses and implements design considerations for software sys-
tem, test cases capture and represent the domain knowledge of software developer,
her assumptions on the implicit and explicit interaction protocols in the system, and
the expected behavior of different modules of the system in normal and exceptional
conditions. Moreover, test cases capture information about the environment and the
data the system operates on. As such, together with the system source code, test cases
integrate important system and domain knowledge.

Besides being an important project artifact, test cases embody up to the half the
overall software development cost and effort. Software projects produce many test cases
of different kind and granularity to thoroughly check the system functionality, aiming
to prevent, detect, and remove different types of faults. Simple test cases exercise
small parts of the system aiming to detect faults in single modules. More complex
integration and system test cases exercise larger parts of the system aiming to detect
problems in module interactions and verify the functionality of the system as a whole.
Not surprisingly, the test case complexity comes at a cost – developing complex test
cases is a laborious and expensive task that is hard to automate.

Our intuition is that important information that is naturally present in test cases
can be reused to reduce the effort in generation of new test cases. This thesis devel-
ops this intuition and investigates the phenomenon of information reuse among test
cases. We first empirically investigated many test cases from real software projects and
demonstrated that test cases of different granularity indeed share code fragments and
build upon each other. Then we proposed an approach for automatically generating
complex test cases by extracting and exploiting information in existing simple ones. In
particular, our approach automatically generates integration test cases from unit ones.
We implemented our approach in a prototype to evaluate its ability to generate new and
useful test cases for real software systems. Our studies show that test cases generated
with our approach reveal new interaction faults even in well tested applications. We
evaluated the effectiveness of our approach by comparing it with the state of the art
test generation techniques. The evaluation results show that our approach is effective,
it finds relevant faults differently from other approaches that tend to find different and
usually less relevant faults.

iii

iv

Contents

Contents iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Research hypothesis and contributions . 3
1.2 Scope of research . 4
1.3 Structure of the dissertation . 5

2 State of the Art 7
2.1 Automating test case generation . 8
2.2 Test suite evolution . 13
2.3 Reuse in automating software testing . 14

3 Test Case Interrelation 17
3.1 Test entities . 19
3.2 Test case structure . 20
3.3 Test case complexity . 21
3.4 Structural overlap . 29
3.5 Important information in test cases . 32

4 Generating Integration Test Cases Automatically 35
4.1 Approach . 36
4.2 Extracting class dependencies . 38
4.3 Extracting instantiation and execution sequences 45
4.4 Generating test cases . 55
4.5 Example . 60

5 Evaluation 67
5.1 Prototype implementation Fusion . 68
5.2 Experimental setup . 71

v

vi Contents

5.3 Applicability and feasibility . 72
5.4 Usefulness . 73
5.5 Effectiveness . 76
5.6 Discussion . 78

6 Conclusions 83
6.1 Contributions . 84
6.2 Future directions . 85

Bibliography 87

Figures

3.1 Unit and integration test cases for the Facade component in PureMVC . 20
3.2 Frequency of class number in test cases . 24
3.3 Distribution of the number of method invocations in test cases vs. number

of instantiated classes . 25
3.4 Frequency of number of method invocations in test cases 25
3.5 Distribution of the number of classes in assertions in test cases 27
3.6 Two unit test cases for the Controller component 30
3.7 A unit test case for the View component . 31
3.8 An integration test case for PureMVC . 31

4.1 Overview of the approach . 37
4.2 Fragment of ORD for classes of JFreeChart 42
4.3 System interfaces for JFreeChart classes . 43
4.4 Fragment of class diagram for JFreeChart 44
4.5 Instantiation and execution sequences of a test case 46
4.6 Test execution order . 47
4.7 Execution sequence for class Message . 49
4.8 Test case with inner class . 50
4.9 Recursive algorithm ExtractInstSeq for extracting statements defining

variables used in an instantiation of a given class 52
4.10 Intermetiate data and statements captured with the data flow analysis

for instantiation of class CompilationUnitBuilder 53
4.11 Recursive algorithm ExtractExecSeq for extracting method invocation

statements on a given class . 54
4.12 An example of ORD . 56
4.13 Unit test cases for class BlockContainer . 61
4.14 Unit test cases for class CompositeTitle . 62
4.15 Integration test case exposing integration fault in class ColumnArrange-

ment through interaction of classes BlockContainer and CompositeTitle 63

5.1 High-level architecture of Fusion . 69

vii

viii Figures

5.2 Test case generated with Fusion for JGraphT that detects corner case unit
fault . 74

5.3 Test case generated with Fusion for JGraphT that detects integration fault 75
5.4 Test case generated with Fusion for TestabilityExplorer that detects inte-

gration fault . 75
5.5 Test case generated with Fusion for JFreeChart 79

Tables

3.1 Characteristics of subject programs . 19
3.2 Cyclomatic complexity of test cases . 22
3.3 Code reuse in test source code . 32

5.1 Subject programs with unit test cases . 71
5.2 Test cases generated with Fusion and execution time on the Desktop

configuration . 73
5.3 Faults found with Fusion, Randoop and Palus (r.f.: real faults; c.v.: implicit

contract violations; f.p.: false positives) . 76

ix

x Tables

Chapter 1

Introduction

This thesis develops an approach to automatically generate complex test cases starting
from simple ones. In particular, it automates the generation of integration test cases
from unit ones.

Software testing is the dominant practice to check correctness of software. Software
testing improves software products by preventing, detecting, and removing faults, while
assessing and improving the overall quality of software product.

Most successful software projects produce large amount of test cases manually
and automatically. They produce test cases of different kind and granularity, that
are essential to thoroughly check the functionality of the system. Simple unit test
cases ensure that methods correctly implement the specified and implied pre- and
post-conditions. Most commonly, individual unit test cases exercise only small parts of
the system, for example, a single class, and check that the state of the module on which
the methods are invoked is as expected. In contrast, complex integration and system
test cases ensure that modules correctly follow interaction protocols, they test class
interactions or complex system behavior. Such test cases exercise larger parts of the
system working through long sequences of method calls and checking the state of all
involved modules. As such, integration and system test cases are usually more complex,
more expensive to develop, and harder to generate and maintain than unit test cases.

Modern software development processes emphasize early testing activities [SB02].
They encourage the early development of unit test cases to test the basic functionality of
the system modules. Early testing activities follow test-first practices and are supported
by tools for automated test execution [Bec02]. This is why a large amount of unit
test cases is often available early in the software development process. In the current
industrial practice, complex integration and system test cases are developed after unit
ones.

Unit, integration and system test cases are often developed manually. At the same
time, software systems become increasingly complex, although more modularized and
distributed. The functionality of such systems results from multiple complex module

1

2

interactions and requires careful integration and system testing that involve complex
scenarios of module integration with a variety of potential interactions and corner cases.
Writing test cases manually is difficult and expensive, and both development effort and
cost grow with the complexity of the test cases.

A popular approach to reduce the manual effort in designing test cases and reduce
cost is automated test case generation. Most existing approaches to automated test case
generation focus on generating test cases to increase structural code coverage [dPX+06;
PLEB07; ZSBE11; BBDP11; TXT+09b; TXT+11]. These approaches for automatic test
case generation tend to generate rather simple test cases or parts of test cases. Some
approaches focus on automatic generation of test inputs, others on execution scenarios
or test oracles. While generating simple test cases is a rather simple process that can
often be automated, generating complex test cases is a laborious process that is hard to
automate.

This thesis inspires from the practice of software reuse – a process of creating
software systems from existing software rather than building software systems from
scratch. Software reuse has been widely studied and applied helping developers to
reduce software development effort [Kru92]. By analogy with software reuse, we aim
to reduce software development effort and cost by reusing information from existing
test cases to generate new test cases.

In this thesis we propose a technique to automatically generate complex test cases
starting from simple ones. We start from the observation that by looking at test case
implementation, for example, JUnit code, one can notice that complex test cases share
a lot of code with simple test cases. In particular, integration test cases share code with
unit test cases.

Not surprisingly, developers reuse acquired domain knowledge to evolve the soft-
ware system. Test suites evolve together with the software in the same way as software
evolves – building on available information [HO08; XR09; MPP12]. Simple test cases
are developed first to test single modules, then software is incrementally changed and
integrated, and test suites are augmented with more complex test cases. These simple
and complex test cases share information about the system under test and build on it
and on each other.

Starting from this observation we develop an approach to leverage a large amount
of unit test cases to generate new integration test cases automatically. We aim to extract
meaningful information from unit test cases and use it to drive the generation of more
complex ones.

Our approach derives from our investigation of test case structure and interrelation
of many real-life test cases of different granularity. The goal of our investigation is
twofold. First, it supports our observation that test cases share information and build
upon each other. Second, it investigates the test case structure to enable test case
analysis and extraction of important information available in test cases.

3 1.1 Research hypothesis and contributions

This investigation lays foundation to our approach. We identify the relevant pieces
of information in the test cases (class instantiation and initialization, method call
sequences and arguments, use of return values) and create more complex test cases
suitably assembling these fragments. We first identify class dependencies within the
system. We then compute the data flow information within the input test cases, and
use this information to segment the test cases into useful fragments (initialization and
execution). Finally, we generate new more complex test cases from the fragments
extracted from unit test cases using the class dependence and data flow information.

The approach aims to drive test generation towards complex module interactions.
It can serve to generate fresh integration test suites or to augment test suites with
behaviors that are not yet present in the integration test suites.

1.1 Research hypothesis and contributions

The main research hypothesis of this thesis is:

Test cases contain important and meaningful information. This information
can be automatically captured and exploited to construct new more complex
test cases.

The first part of the hypothesis describes the main intuition of this thesis that
test cases build on domain knowledge and contain important information about the
system under test. Recent research suggests that test cases contain important infor-
mation: A number of techniques have analyzed test cases for system comprehen-
sion [QODL10], creating formal software behavior models [TEL11], automating test
case repair [DGM10; MPP12], and others.

The second part of the hypothesis states that it is possible to capture and exploit
information in test cases to generate more complex ones. There is little work that
exploited information in test cases for automating test case generation and test suite
augmentation [Ton04; JED08; XR09; BPdM09], and to the best of our knowledge, none
of these techniques have exploited information in test cases to generate more complex
ones.

This thesis explores several directions in the area of software testing and analysis:
analysis of software artifacts, program analysis, and automatic test case generation. The
two main contributions of the thesis are:

1. A study of the relations between simple and complex test cases that discovered
important correlations. We experimentally investigate the structure of test cases
and test case complexity to characterize simple and complex test cases. We
use test case characterization to investigate the phenomenon of code reuse and
information sharing between simple and complex test cases. We demonstrate that

4 1.2 Scope of research

different fragments of test cases can be reused and build upon to construct new
test cases.

2. An approach to exploit identified correlations to automatically generate new complex
test cases. We propose a general approach to identify relevant pieces of information
in the test cases and generate more complex test cases using these fragments. The
approach aims to find new faults related to integration problems and complex
usage patterns. We evaluate our approach through a prototype implementation
Fusion that we apply on a number of open-source software projects in Java with
available test suites. The approach generates test cases that can find relevant
faults even in well tested applications. A comparison with state of the art test case
generation techniques shows that our approach is effective and it finds different
kinds of faults and is thus complementary to other approaches.

By tackling the problem of automatically generating complex test cases this the-
sis makes contributions in the area of software testing and analysis that aid design,
maintenance and evolution of quality software systems.

1.2 Scope of research

Our approach is general and explores the possibility to move up between testing levels
by generating more complex test cases from simpler ones. To develop our approach we
focus on generation of integration test cases from unit ones. This choice is motivated by
several factors.

First, as we discussed in the introductory section, software projects that follow
modern software development processes produce large amount of unit test cases. Sec-
ond, integration testing level (adjacent to unit level) is important for early detection of
integration faults. At the same time, existing approaches for automated generation of
integration test cases are few, and often rely on information extracted from the system
execution or the system code to generate test cases [MOP02; YX06; ECDJ09]. Relying
on system executions to monitor the behavior of a software product at the system level
can capture both correct and faulty behaviors as pointed out by Xie [Xie09], while
approaches relying on source code analysis suffer from the limitations of the code-based
techniques used for the underlying analyses, data flow analysis and symbolic execu-
tion [PV09]. Differently from existing approaches we do not rely on system executions
nor expensive code analyses, and we use test cases and the domain knowledge they
encapsulate to generate new test cases.

Definitions of unit, integration and system testing vary in the literature. Definitions
also change depending on the program domain and the software development model.
The many interpretations of testing terms cause some confusion in determining the
precise frontier between different testing levels, and unit and integration testing levels
in particular. We investigate this issue in our study of test case structure and test case

5 1.3 Structure of the dissertation

interrelation. We show that in practice test cases spread over a continuum of test case
complexity and we develop a taxonomy for simple and complex test cases based on real
examples of unit and integration test cases.

In this thesis we refer interchangeably to unit and simple test cases, as well as
integration and complex test cases.

Our approach targets the development and maintenance phases of the software
development process. To be applicable, the approach requires test cases and application
source code. We expect an initial set of test cases to be generated by developers
manually or automatically. With this prerequisite, our approach automatically generates
new more complex test cases.

We describe the approach referring to object-oriented software. The approach uses
software written in Java and test cases in JUnit format1 as proof of concept; however,
our approach is applicable in general to other typed languages and test case formats.
The approach works with the Abstract Syntax Tree (AST) representation of the source
code and test source code, and does not require the source code of the dependent
libraries of the system under test.

We evaluated the approach on open-source software. We did not target specific
application domains and our approach should be generally applicable for functional
testing of applications from different domains. Being general, our approach does not
address particular challenges posed by characteristics of the specific application domain.
For instance, it may not be suited for dealing with specific memory constraints in
embedded systems, interaction protocols in Web applications, or special integration
frameworks in large-scale distributed systems.

Moreover, specific domains introduce different classes of faults. The approach
is primary concerned with verifying functional behavior. We do not aim to verify
non-functional system properties such as resource consumption, response time, and
security.

Currently we do not analyze oracle information. We focus on generation of in-
stantiation and execution parts of test cases. In the experimental evaluation of our
approach we use exceptions to detect failures. We discuss the implications of this choice
in Chapters 5 and 6.

1.3 Structure of the dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 overviews the state of the art techniques for automating test case
generation. It identifies and discusses the main classes of techniques, namely,

1JUnit – state of the art test automation framework for Java applications http://www.junit.org

http://www.junit.org

6 1.3 Structure of the dissertation

specification and model-based testing, random testing, search based test gen-
eration, approaches relying on symbolic and concolic execution, and hybrid
techniques. Chapter 2 presents also the techniques applicable in the context of
software evolution, and discusses the approaches that reuse information from
existing test cases in test generation process.

• Chapter 3 focuses on the investigation of test case structure and information
sharing between simple and complex test cases. It illustrates the composition
of test cases in real software projects and describes the indicators of test case
complexity that we develop. The chapter characterizes test cases of different
granularity and describes the effects of the phenomenon of testing reuse.

• Chapter 4 introduces the approach for automatically generating complex test
cases from simple ones. In particular, it explains the underlying techniques
for analyzing and extracting information from source code and test cases, and
describes the test case generation process. The chapter presents an example that
illustrates the step-wise application of the approach.

• Chapter 5 describes the prototype implementation that we used to evaluate our
approach. It presents the results of the empirical evaluation and comparison of our
approach with the state of the art techniques that demonstrates the effectiveness
of the approach.

• Chapter 6 summarizes the contributions of this dissertation, and discusses the
future research directions opened by this work.

Chapter 2

State of the Art

Automating test case generation is a widely explored approach to reduce
testing costs and improve software quality. This chapter overviews techniques
to automatically generate complete test cases from simpler ones. We start
by describing the state of the art approaches to generate test cases. We then
survey techniques applicable in the context of software evolution and present
the challenges that emerge in this context. Finally, we focus our discussion
on the approaches that share with ours the idea of reusing information from
existing test cases to generate new test cases.

This thesis explores automatic generation of test cases both to reduce the cost of
software development process and increase the quality of the software. The thesis shares
its goal with a number of approaches that aim to augment test suites with automatically
generated test cases. Differently from many state of the art approaches the technique
proposed in this thesis leverages information available in existing test cases and it does
not rely on software specifications, nor expensive code analyses.

The main research related to this work lies in the area of automating test case
generation. In particular, related approaches tackle the problem of test case generation
in the absence of specifications. These include random testing, search based test
generation, symbolic and concolic execution based approaches, and hybrid approaches.
We also briefly survey the work on specification and model based testing that it is loosely
related to our work. We overview related work in the area of test suite augmentation
and test suite evolution.

Finally, because this thesis inspires from a practice of software reuse, testing reuse
for automating test case generation is an important part of related work. We discuss
test generation approaches that apply testing reuse, and share with our approach the
idea of leveraging existing test cases.

7

8 2.1 Automating test case generation

2.1 Automating test case generation

Software projects rely on software testing to verify software and improve its quality. A
large body of work reduces the cost of expensive testing activities through automation.
In particular, automating test case generation is an active research topic that produces
many important results [Har00; Ber07; PY07; ABC+13].

Different techniques automate the generation of complete test cases, while other
focus on automatic generation of parts of test cases like test inputs, execution scenarios,
or test oracles.

Specification and model based testing

Formal specifications and models can be used as the basis for automating parts of the test-
ing process [BJK+05; PY07; HBB+09]. A considerable amount of work automates test
case generation from formal and informal specifications [HBB+09; MSK09; BKM02].
Various formal specifications have been proposed for generating test inputs, execu-
tion scenarios and test oracles, for instance, descriptions of test suites from Z speci-
fications [SC96], test sequences from finite state-based languages [GGSV02; HKU02;
GOC06], test data and oracles from algebraic specifications [DF94].

Some of these techniques are very powerful, but test case specifications drawn
automatically from system specifications are often not well connected with the final
code. Automating test generation from formal models and specifications brings its own
issues. For instance, for many systems detailed finite state machines cannot be produced
due to the large state space. Reducing the state space through abstraction may lead to
inconsistency between feasible paths in the finite state machines and the program they
model. In addition, automating test generation from model-based languages requires
powerful analysis tools [HBB+09].

Well-designed informal specifications suitable for automatic test generation are
seldom available. Defining formal specifications for test generation is a time-consuming
and demanding activity. Recent work addressed this issue by designing user-friendly
specifications suitable for automating test case generation. For instance, Gligoric et al.
proposed a Java-based specification language for automating test generation, however
limited to the generation of test inputs [GGJ+10].

In practice, availability of specifications varies depending on the software devel-
opment process and the type of software system being developed. For instance, agile
software development processes produce little documentation and consider existing test
cases as system specifications [Bec00; SB02]. Heterogeneity of specifications hinders
application of some specification-based approaches.

9 2.1 Automating test case generation

Random testing

Random testing is a viable solution for producing a large number of test cases automati-
cally [CMWE04; CS04; GKS05; dPX+06; CLOM07; PLEB07]. This type of testing may
compensate for the absence of domain knowledge and specifications in generating test
cases. Along with valid and useful test cases, random testing produces invalid test cases
and test suites that unevenly sample the input domain. Recent research mitigates these
issues by improving the effectiveness of random testing in several ways.

A family of feedback-directed approaches improves random testing by directing
test generation process [AEK+06; PLEB07; REP+11]. The input space is explored with
randomly generated class instantiation and method call sequences. Valid sequences
are built incrementally, while intermediate sequences are selected after executing and
filtering them. Execution provides intermediate feedback in test generation process and
guides generation of valid method invocation sequences that do not raise unexpected
exceptions. The original technique is implemented in tools like Palulu [AEK+06] and
Randoop working with Java [PLEB07] and .Net [PLB08].

Adaptive random testing (ART) directs test case generation to cover contiguous
failure input regions [CMWE04; CKMT10]. The underlying idea stems from empirical
studies that indicate that failure-causing inputs tend to form contiguous failure regions.
ART aims to generate test cases that evenly spread across the input domain and thus
enhance the failure detection effectiveness of random testing.

ART approaches define distance metrics that allow to select the best candidate test
cases from an initial set of randomly generated inputs. Chen et al. developed distance
metrics for numerical data and demonstrated the effectiveness of the approach for
small numerical programs [CMWE04]. Ciupa et al. defined distance metrics for object
oriented software [CLOM08]. The distance is defined between the direct values of the
objects, between the types of the objects, and recursive distances between the fields of
the objects. The approach selects as inputs objects that have the highest average distance
to those already used as test inputs. A further improvement of the approach guides
object selection strategy to select objects satisfying method preconditions [WGMO10].
Despite a number of improvements, a general limitation of ART approaches relates to
their low scalability and high computational costs.

Random testing is fairly successful in detecting certain types of faults, but is inef-
fective in generating valid method call sequences when facing a large search space of
possible sequences due to its random nature. Random testing remains a viable solution
for test case generation in the absence of specifications. However, lack of knowledge
about a system under test makes random testing approaches prone to produce a large
amount of false positives [dPX+06].

10 2.1 Automating test case generation

Search based test generation

Software testing research is a predominant application area of search based approaches
in software engineering [HMZ12]. Search based testing (SBT) applies search-based
optimization to the problem of automating test data generation seeking cost-effective
solutions for combinatorial problems [McM04; Har07; HM10]. SBT approaches auto-
matically generate test data guided by adequacy criteria that are encoded as fitness
functions. The search process aims to generate test data that maximize the number of
program structures executed, for instance, maximizing branch coverage.

Search based techniques applied for test generation mostly use hill climbing, simu-
lated annealing, and evolutionary/genetic algorithms [McM04]. The algorithms vary in
their strategies and methods to explore the solution search space, avoid sub-optimal
results, and seek globally optimal solutions.

A large body of SBT work explores different solutions [MMS01; MHBT06; AH11;
KHS11; BHH+11; LHG13]. The approaches mostly generate test inputs. Here we survey
the work that is closest to ours with respect to generated data. In particular, we are
interested in approaches that produce test data for complex data structures and test
scenarios as method invocation sequences [Ton04; FA11].

Tonella proposed a test case generation technique eToc based on genetic algorithm to
automatically produce test cases for the unit testing of classes [Ton04]. eToc implements
a more sophisticated definition of the individuals’ chromosome than the ones used
for generating test cases for procedural programs. Chromosomes encode sequences
of statements for class instantiations and method invocations including sequences
of operations to be performed and the associated parameter values. The technique
is applicable for test case generation for single classes aiming to maximize branch
coverage.

An search based technique EvoSuite by Fraser and Arcuri improves over eToc in
several respects [FA11; FA12]. EvoSuite test suite generation is based on evolutionary
algorithms and mutation-based oracle generation. The test suite generation focuses
on an entire coverage criterion, instead of individual coverage goals. Test cases are
mutated by adding, deleting, or changing individual statements and parameters. To
help the generation of appropriate input data, EvoSuite uses focused local searches
and dynamic symbolic execution. EvoSuite generates oracles using mutation testing.
It executes the generated test cases on original and mutated programs and calculates
a reduced set of assertions that is sufficient to kill all the mutants. These assertions
represent suggested and potential oracles for generated test cases, and are relevant in
the context of regression testing, because they capture information from the program
source code.

11 2.1 Automating test case generation

Symbolic and concolic execution

Symbolic execution is a method for characterizing program behavior through symbolic
expressions in the form of predicates on program paths and program states [Kin76].
Symbolic execution abstracts over potentially infinite set of normal program executions.
It has been proposed for many activities, for instance, in verification techniques to build
operational models of the software [CPDGP01], and in test generation techniques to
derive constraints on test input data [PV09]. The constraints are solved with a constraint
solver to generate test inputs enabling systematic exploration of target program paths.
Examples of approaches applicable for data structures in object-oriented code include
Java PathFinder, Symstra and Symclat [VPK04; XMSN05; dPX+06]. Despite recent
advances, constraint solving still represents a major bottleneck for scalability. The
size of constraints grows quickly with the complexity of the program under analysis
impacting on the performance of constraint solving.

Dynamic symbolic execution, also known as concolic execution, combines symbolic
and concrete program executions to overcome some of the limitations of the former one,
such as availability of decision procedures and handling calls to native libraries [GKS05;
SMA05; TDH08; ADTP10]. Original concolic approach by Godefroid et al. executes a
program on random inputs and at the same time collects the path constraints along the
executed path [GKS05]. These path constraints are then used to compute new inputs
that drive the program along alternative paths. More precisely, branch conditions are
negated to guide the test generation process towards executing alternative branches.

Recent work by Artzi et al. uses concolic execution to aid fault localization by
generating test cases with execution characteristics similar to the given fault-exposing
execution [ADTP10]. The work develops similarity criterion to measure the similarity of
the executions of two test cases. This criterion is then used to direct concolic execution
towards generating test cases whose execution characteristics are similar to those of
a given failing execution. The approach generates minimal test suites effective in
localizing faults compared to concolic approaches.

Latest research attempts to improve symbolic and concolic execution. For example,
Kim et al. develop a distributed concolic testing framework to scale concolic execution
enabling distributed test case generation [KKR12]. Denaro et al. improve symbolic
execution by built-in term rewriting and constrained lazy initialization [BDP13]. The
improvement allows efficient verification of programs with complex data structures and
helps to avoid exploration of invalid traces.

Recent research widely applies symbolic and concolic execution in combination with
other approaches. In the following section we discuss hybrid approaches that improve
original test case generation and analysis techniques by combining them in a mutually
beneficial manner.

12 2.1 Automating test case generation

Hybrid approaches

A wide range of approaches for automating test case generation combine different
analysis techniques. Here we describe in some detail the most representative approaches
that share with ours a minimal set of requirements for being applied.

MSeqGen by Thummalapenta et al. statically mines sequences of method calls
from code bases [TXT+09b] and assists other automatic test generation approaches
such as Randoop and Pex [TDH08] by providing them with method call sequences for
instantiating complex objects. Extracting sequences from code bases limits MSeqGen,
because in practice code bases exist only for few specific types of applications, and code
bases are often incomplete.

Seeker by Thummalapenta et al. synthesizes method sequences combining static and
dynamic analyses to achieve desired object states and thus to cover branches and intra-
class DU pairs [TXT+11]. Seeker performs dynamic symbolic execution and combines it
with the results of static analysis on method-call graphs.

The test generation approach by Martena et al. aims to generate integration test
cases automatically [MOP02]. They generate complete test cases by deriving a set of test
case specifications for inter-class testing through data-flow analysis, and automatically
generate test cases that satisfy the derived specifications using symbolic execution and
automated deduction.

Andrews et al. [AML11] propose a hybrid approach using genetic algorithm to find
good parameters for randomized unit testing that optimize test coverage of a randomly
generated test suite. This way the approach aims to reduce the size of randomized test
suite, while achieving the same coverage. The approach has been shown to perform
well on small studies, however it has not been applied to larger systems yet.

Hybrid approach by Baluda et al. integrates test case generation and infeasibility
analysis to improve structural code coverage [BBDP11]. The approach combines
concolic execution with abstraction refinement and coarsening technique. It identifies
infeasible branches that can be eliminated from the computation of the branch coverage
and it steers the generation of new test cases toward uncovered branches. When it
does not find a test case that covers a target branch, it investigates the feasibility of the
branch using an analysis based on abstraction refinement of the control flow graph and
backward propagation of preconditions for executing the uncovered branches. Although
evaluated on the programs of limited size, the approach produces test suites that cover
all feasible branches and correctly identifies all infeasible ones, thus reporting a 100%
branch coverage of the code in most cases.

RecGen and Palus improve the effectiveness of random testing with static and
dynamic analyses aiming to achieve higher structural coverage [ZZLX10; ZSBE11]. The
approaches share the static analysis step to identify intra-class method dependences
that derive from accesses to common fields. Differently from RecGen, Palus uses a
dynamic step and generates more complex test cases extending sequences of methods
calls captured from system traces with new dependent method calls [ZSBE11]. In the

13 2.2 Test suite evolution

dynamic step, Palus traces system executions, captures sequences of method calls from
the traces, and generalizes them in the call sequence model. It then extends these
sequences with new calls to methods whose invocation depends on methods already in
the traces, and generates test cases from the extended sequences by means of directed
random test generation.

Despite suffering from the scalability issues due to the code-based techniques used
for the underlying analyses, such as data flow analysis and symbolic execution, many
hybrid approaches largely improve over original techniques.

2.2 Test suite evolution

A number of approaches automate test case generation in the context of software
evolution. In this context, evolving software not only needs to be retested after changes,
but test suites have to be augmented and optimized to reflect the changes in software;
obsolete test cases have to be repaired and maintained [HO08].

In the context of software evolution automatic test case generation aims to produce
test cases that can stress the effect of a given program change [QRL10]. Many test
suite augmentation techniques characterize the introduced changes by relying on
source code information to identify differences between versions of software. These
approaches identify the impact of changes using program dependence analysis and
symbolic execution combined with constraint solving [TXT+09a; QRL10; XKK+10].
Slicing on program dependence graphs is used to identify data and control dependencies
of the code affected by changes that require testing. Symbolic execution and constraint
solving generate test inputs that reach and execute identified code fragments.

Different granularity of changes represents a challenge for test augmentation and
test adaptation techniques. These techniques tackle simple changes and consider them
in isolation. However, some changes cannot be tested in isolation and lead to incorrect
program configurations [Zel99; RST+04].

Combinations of multiple syntactic program changes may have different impact
on program entities and program output. While change impact analysis for individual
changes is well studied, multiple change impact is still a challenge for test augmentation
approaches [QRL10]. When multiple changes are considered new challenges arise re-
lated to change interactions and change inter-dependence. Combined such changes may
impact program output differently than the individual changes. To determine whether
changes are inter-dependent program semantics need to be examined. Moreover, new
methods are needed to detect feasible change combinations to be covered. Generated
test cases should propagate the effects of changes to the program output and thus make
their semantic effects observable [TXT+09a; QRL10]. This remains an open area of
research [SHO10].

A currently active research area of Mining Software Repositories (MSR) offers sys-
tematized information for decision-making processes in software development. The

14 2.3 Reuse in automating software testing

data is used for making predictions, finding commonly occurring patterns, finding data
instances for given patterns, grouping data into clusters, and predicting labels of data
based on already-labeled data [Has08; XTLL09; HX10].

Recent work in software evolution leveraged MSR for change characterization. In
particular, MSR has been applied for change impact analysis and for collecting bug
relation information [RST+04; ZZWD05], and has been used to collect information
about patterns of changes in software [BMZ+05; KCM07; KR11]. However, to date
such information has not been used for software testing.

The challenge for most of the current approaches for test suite evolution is to find a
good compromise between expensive analyses and formality. Scalability of symbolic
execution is a major problem [PV09]. This problem is reflected in studies applying
symbolic execution that are generally performed on small subjects and investigate
simple changes in software. Such studies may be not representative. At the same time
approaches that do not rely on formal methods lack soundness and precision.

2.3 Reuse in automating software testing

Reuse in automating software testing, or testing reuse as we refer to it in this thesis, is
a phenomenon similar to software reuse. Software reuse has been widely studied and
applied helping developers to reduce software development effort [Kru92]. Despite
substantial progress in the area, reuse in automating software testing has attracted
much less attention from research community [TG13].

Previous studies mostly focussed on identifying and reducing reuse in test cases.
The main motivation behind these work came from the need to satisfy time constraints
on test execution for ever-growing test suites for evolving software. Since test suites
are often extended by copying, modifying and reusing parts of existing test cases, code
reuse across test cases may lead to overlap in functionality that test cases execute.
Many techniques have been proposed to eliminate possible drawbacks of code reuse by
identifying and removing redundant and repeating test cases and to reduce test suites
for regression testing [RH96; GHK+01; RH97].

Testing reuse pursues the same goals as software reuse does in software devel-
opment: to reduce effort in software development and maintenance. Reuse can be
employed in different testing activities including test case generation, test case exe-
cution, test report generation and analysis [QODL10; TEL11; PG12; CGS13]. In this
section we focus on testing reuse for test case generation, when domain knowledge in
existing test cases is build upon to create new test suites. This kind of reuse is closely
related to our work.

The process of reusing parts of test cases can help automating test case generation.
The idea of reusing parts of test cases can be traced back to the work of Leung and
White [LW90]. Leung and White proposed to reuse parts of existing unit test cases to
augment test suites for modified modules for regression testing.

15 2.3 Reuse in automating software testing

Recent research investigates the possibility of reuse of testing artifacts in test case
generation [Ton04; KRH+08; XR09; BPdM09; JED08; MPP12]. Some techniques reuse
testing artifacts through abstracting on test input data [TDH08; FZ11b] and abstract-
ing on various configurations for software product line testing [PM06; KM06; DK06;
RMP07; CCR10].

Testing reuse underlies many search based approaches. An approach by Tonella uses
randomly generated set of test cases described as chromosomes to mutate them and
maximize given coverage measure [Ton04]. Test cases associated to each chromosome
are executed using the instrumented version of the system to determine the targets
(branches) covered by each individual. Fraser and Zeller propose an evolutionary
approach to improve the readability of automatically generated test cases [FZ11a]. The
approach collects object usage information from Java bytecode of the system under test
and available test cases, and evolves randomly selected portions of observed sequences
of method calls to shorten them without altering the overall coverage. The search-based
approach by Yoo and Harman reuses and regenerates existing test data for primitive
data types [YH10]. Yoo and Harman reuse test input data to generate additional test
input data applying meta-heuristic search algorithm and executing test cases on the
instrumented program to evaluate the fitness of a candidate solution.

Recent research in test suite augmentation leverages existing test data in different
ways. Xu and Rothermel use test cases to determine the program changes (branches) not
covered during test execution [XR09]. Authors use test executions to identify uncovered
changes and drive concolic execution to cover remaining branches by negating the path
conditions. The subsequent work empirically studied factors affecting effective and
efficient test case reuse for test case generation of test data-based techniques based on
concolic and genetic approaches and their combination [XKK+10; XCR10; XKKR11].
Mirzaaghaei et al. study relations of system source code and test code to automate test
case repair and test generation for sibling classes [MPP12]. They analyze compilation
errors in test code and apply data-flow analysis on test cases to identify argument values
suitable for repairing test cases. This way they leverage data from existing test suites to
augment them with new repaired test cases and new test cases for sibling classes.

Jorge et al. reuse system test executions to derive test cases for differential unit
testing. Their approach captures parts of the system test execution related to individual
methods and program states into abstract unit tests that they later aggregate into tests of
a coarser granularity [JED08]. These new tests replicate larger parts of system execution
and serve to detect regression faults based on the behavior differences between versions
of software. The data from system test execution is “carved” by instrumenting the
application to capture, serialize, and store run-time program states [ECDD06]. Although
this technique could be extended to generate new test cases with method sequences
not observed in system tests, so far it has only been proposed to replay the observed
behavior.

16 2.3 Reuse in automating software testing

Mariani et al. propose AutoBlackTest, an approach to generate test cases at the
system level [MPRS11; MPRS12]. Differently from the approach by Jorge et al., they
produce system executions with Q-learning agent. The agent incrementally executes the
system recording the system responce and calculates the cumulative “reward” measure
based on the amount of triggered system state changes and relevant computations. The
approach automatically generates test cases that combine actions with high cumulative
reward and thus exercise relevant portion of the statements in the target applications.

Testing reuse has been applied in the context of GUI testing. Atoms Framework
technique by Bertolini et al. uses small fragments of existing GUI test cases and data
observed in these test cases to generate new test cases that explore the state space of
application GUI and detect GUI crashes [BPdM09]. The test case fragments are selected
manually, while the data provided to these fragments is selected randomly from the
pool of data observed in existing and in newly generated test cases.

Automated test case generation, test suite augmentation and test suite evolution
are active research topics that establish a sound foundation for future research. Many
techniques focus on generation of simple test cases. Hybrid techniques gradually
improve the state of the art providing solutions to generate more complex test cases
turning to sophisticated analyses and new sources of information.

This dissertation tackles a problem of automating generation of complex test cases
during development and maintenance, when some test cases are available. Differently
from existing techniques, the proposed approach leverages test cases in a new way
enabling the generation of complex test cases automatically.

Chapter 3

Test Case Interrelation

Test cases of different kind and granularity are essential to test software
systems thoroughly. In this chapter we empirically investigate the structure
and complexity of test cases of different granularity. This is important, because
existing methods for characterizing test cases do not represent well their
structure hindering test code comprehension and analysis. Based on the results
of the investigation, we develop a taxonomy for characterizing test cases and
argue that simple and complex test cases are interrelated and share important
information. We propose to exploit the interrelation between test cases of
different granularity for test case generation.

In this thesis we argue that some information in test cases can be beneficially reused
to generate new test cases automatically in the same way as test suites evolve by copying,
modifying and reusing parts of existing test cases. We aim to identify such information
and develop an approach to use this information to generate new complex test cases.

In this chapter we discuss two main issues associated with the relation among test
cases: (1) defining a taxonomy of test cases and (2) understanding information sharing
and reuse among test cases. With respect to the first issue, we investigate test case
structure and test case complexity to characterize simple and complex test cases. We
rely on test case characterization to investigate the second issue, that is, how simple and
complex test cases share information. By investigating these issues we aim to support
our hypothesis that important information in test cases can be identified and reused,
and thus lay a foundation for our approach to automatically generating complex test
cases from simple ones.

Commonly test cases are differentiated by the goal of the testing phase they belong
to [PY07]. For instance, unit test cases check module functionality against specifications
or expectations with isolated and focussed test cases; integration test cases check
module compatibility and module interactions; and system test cases verify functionality
of the integrated parts of the system with respect to specifications and user needs.

17

18

In this chapter we show that such characterization of test cases is insufficient to
differentiate them automatically. We also show that characterizing the complexity of test
cases based on traditional intrinsic code complexity measures does not aid automatic
differentiation either. We present our analysis of test case structure that allows us to
define test case complexity through indicators based on the amount of system entities
used in the test cases.

We study the amount of code reuse between test cases to support our hypothesis
that test cases often build upon the knowledge from existing test cases. We measure
how much information test cases share, in particular, we are interested in distinguishing
the kinds of information shared among test cases. We use our measures of complexity
of test cases to understand the interrelation between simple and complex test cases,
and we exploit it for test case generation.

In the following sections we characterize test cases empirically aiming to define
and detect meaningful information encapsulated in test cases (Sections 3.1 and 3.2).
In Section 3.3 we describe our investigation of the complexity of real-life test cases.
Based on this investigation we characterize simple and complex test cases. We show
how test cases of different granularity spread along the complexity scale. In Section 3.4
we investigate test cases from real-life software systems to understand the strategies
and amount of reuse in real test cases.

We conclude the chapter by discussing the important information available in test
cases and we present a core idea for automatically generating complex (integration)
test cases from simple (unit) ones that stems from our intuition and the results of our
investigation.

Empirical framework

We draw our intuition from the state of the practice. Our empirical framework is based
on static analysis and inspection. We analyze real-life test suites and we focus on test
cases that are built during the software development phase. We investigate the structure
of test cases, the program entities test cases are build from, and the common test case
organization. We use these data to identify meaningful components of test cases that
are essential for generating new test cases.

Our investigation includes more than thirty different software projects. In this
chapter we report experimental data for a subset of the most representative projects that
belong to distinct program domains. Our analysis encompasses 7041 JUnit test cases1

from seven small and medium size software systems developed in Java (Table 3.1):

• TestabilityExplorer2, a source code analyzer;

1We refer to a test case as an individual test method in JUnit format. In JUnit test methods are
structurally aggregated in test classes with shared scaffolding and setup procedures.

2http://code.google.com/p/testabilityexplorer/

http://code.google.com/p/testability explorer/

19 3.1 Test entities

Program (version) LOC
unit test

cases, LOC
test coverage

(line - branch)

TestabilityExplorer (1.3.2) 8214 5596 81% - 66%
JGraphT (0.8.3) 12207 5637 70% - 63%
Apache Ant (1.8.4) 104307 24384 48% - 42%
JFreeChart (1.0.14) 93460 49644 56% - 46%
JodaTime (2.1) 27213 51715 60% - 55%
PMD (5.0) 60060 13922 58% - 45%
PureMVC (1.1) 666 706 53% - 69%

Table 3.1. Characteristics of subject programs

• JGraphT3, a library that supports graph theory;

• Apache Ant4, a Java library and a state of the art build tool;

• JFreeChart5, a professional chart generation library;

• JodaTime6, a calendar system library;

• PMD7, a source code analyzer;

• PureMVC8, a lightweight framework for creating applications based on the Model
View Controller pattern.

3.1 Test entities

Our analysis of unit and integration test cases indicates that both types of test cases
operate on the same program entities. We have inspected a large number of unit
and integration test cases from the selected case studies and we have observed that
both kinds of test cases use method calls as atoms to construct test cases from. For
example, consider unit and more complex integration test cases from PureMVC shown in
Figure 3.1. Both unit and integration test cases instantiate classes, invoke class methods
and verify the states of classes under test and dependent classes.

Unit test case testGetInstance in the figure exercises small part of the system
(single method getInstance() in this example) and checks that the return value

3http://jgrapht.org/
4http://ant.apache.org/
5http://jfree.org/
6http://joda-time.sourceforge.net/
7http://pmd.sourceforge.net/
8http://puremvc.org/

http://jgrapht.org/
http://ant.apache.org/
http://jfree.org/
http://joda-time.sourceforge.net/
http://pmd.sourceforge.net/
http://puremvc.org/

20 3.2 Test case structure

1 // Simple unit test case

2 public void testGetInstance() {

3 // Test Factory Method

4 IFacade facade = Facade.getInstance();

5 // test assertions

6 assertNotNull("Expecting instance not null", facade);

7 assertNotNull("Expecting instance implements IFacade", (IFacade) facade);

8 }

1 // More complex integration test case

2 public void testRegisterAndRemoveProxy() {

3 // register a proxy, remove it, then try to retrieve it

4 IFacade facade = Facade.getInstance();

5 IProxy proxy = new Proxy("sizes", new String[] { "7", "13", "21" });

6 facade.registerProxy(proxy);

7 // remove the proxy

8 IProxy removedProxy = facade.removeProxy("sizes");

9 // assert that we removed the appropriate proxy

10 assertEquals("Expecting removedProxy.getProxyName() == ’sizes’", removedProxy.getProxyName

(), "sizes");

11 // make sure we can no longer retrieve the proxy from the model

12 proxy = facade.retrieveProxy("sizes");

13 // test assertions

14 assertNull("Expecting proxy is null", proxy);

15 }

Figure 3.1. Unit and integration test cases for the Facade component in PureMVC

and the state of the class on which the method was invoked are as expected. More
complex integration test case testRegisterAndRemoveProxy exercises larger part of
the system instantiating several classes IFacade and IProxy, and executing longer
method call sequence. Both test cases are composed of homogeneous fragments with
similar constructors, method invocations and assertions. This observation witnesses our
experience on test suites for over thirty different software applications.

3.2 Test case structure

In principle, test cases on all abstraction levels, from unit to integration and system
testing, have a common structure. In the initial study we identified four test cases
parts: (1) test scaffolding, (2) setup of interacting components with a correct data, (3)
execution of the functionality under test, and (4) oracles to verify the mutual state of
interacting components.

Our investigation indicates that unit test cases use little or no scaffolding and
usually have only three parts: test initialization, which corresponds to the mutual setup
of objects, unit execution and verification of the results through assertions that serve
as oracles. Unit test cases often use mock objects to simplify the setup procedure and
focus testing efforts on a single class under test.

21 3.3 Test case complexity

In contrast, integration test cases often require instantiating real objects rather than
mock objects and more complex interactions between them. Integration test scaffolding
requires external dependencies to be resolved and the environment to be set up for
interacting objects. The setup of interacting objects requires information about object
dependencies and the data for their initialization and wiring. The execution order for
interacting objects must represent meaningful combinations of actions on integrated
objects. The oracle for the mutual state of interacting objects requires considering the
state transitions of these objects.

Our study of test cases shows that despite clear logical differentiation of test case
parts each having its own purpose, it is difficult to distinguish them in practice. First
of all, test cases operate on the same entities and parts of test cases invoke class
constructors and methods in scaffolding, setup, execution, and oracle parts. Consider,
for example, test case testRegisterAndRemoveProxy in Figure 3.1. It contains setup,
execution and oracle parts in the context of a single test method. It is not discernible
whether method invocation facade.registerProxy(proxy) in line 6 belongs to the
setup or execution parts of the test case.

The oracle part is easier to distinguish because it is often associated with assert()

methods. Nevertheless, some method invocations may belong to the oracle part provid-
ing access to class states to be verified and can be confused with method invocations
belonging to the test execution part. Figure 3.1 contains an example of such situation.
The statement in line 12 may belong to both test execution and test oracle parts.

Our observations have been also confirmed in a recent study by Greiler et al. [GvDS13].
The difficulty to differentiate parts of test cases automatically hinders test code compre-
hension and analysis. The same difficulty prevents distinguishing test cases from distinct
testing levels. Without clearly distinguishing the parts of test cases that operate on the
same program entities, it is difficult to distinguish test cases of different granularity
levels automatically. We propose to distinguish test cases from different testing levels
along the complexity scale. We characterize the complexity of test cases in the following
section and we show the distribution of test cases for real software projects along the
scale.

3.3 Test case complexity

In this section we characterize test cases of different granularity and we derive repre-
sentative complexity indicators based on the study of real-life test cases. Using these
indicators we develop a test case taxonomy for simple and complex test cases. To study
the complexity of real-life test cases we statically analyze and inspect test suites.

We investigate application of classical code complexity measures for understanding
the complexity of test code, and we conclude that classical complexity measures are not
applicable as complexity indicators of test cases. We hypothesize that test case structure
and, in particular, quantities of system entities used in test cases are representative

22 3.3 Test case complexity

indicators of test case complexity. In the following we present our intuition behind this
hypothesis and we support it with our study of real-life test cases.

Intuitively, simple test cases instantiate few classes and invoke one or few methods,
while complex test cases instantiate several classes and work through longer method
invocation sequences. We thus consider the number of classes involved in a test case
and the length of method invocation sequences as the primary indicators of test case
complexity.

Oracles in test cases implicitly indicate test case complexity. Oracles that verify the
state of a single class suggest that test case checks only the state of a single unit. Oracles
that verify states of several classes after test execution suggest that a test case checks
interactions between several objects. We use this information as an indirect indicator of
test case complexity.

Intrinsic code complexity measure

Traditional code complexity measures aid understanding the code complexity through
intrinsic structural properties of source code. For example, McCabe cyclomatic complex-
ity measure counts a number of linearly independent paths in a program to indicate
program complexity [McC76]. We have analyzed the cyclomatic complexity of test code
for our case studies using Google CodePro AnalytiX9. The results are summarized in
Table 3.2.

Program (version) Average cyclomatic complexity

TestabilityExplorer (1.3.2) 1.16
JGraphT (0.8.3) 1.19
Apache Ant (1.8.4) 1.32
JFreeChart (1.0.14) 1.33
JodaTime (2.1) 1.28
PMD (5.0) 1.19
PureMVC (1.1) 1.00

Table 3.2. Cyclomatic complexity of test cases

Despite slight variation of complexity in the test code, more than 97% of test code
has cyclomatic complexity of one. In other words, the majority of test cases have a
linear structure. Manual inspection of the test cases indicated that test cases with higher
cyclomatic complexity correspond to either test scaffolding involving loops for reading
data from file system or test cases for stress and performance testing.

There are two important implications of the observed results. First, little variation
of code complexity prevents distinguishing unit and integration test cases based on this
measure. For this reason we study and define other possible measures of complexity for

9https://developers.google.com/java-dev-tools/codepro/doc/

https://developers.google.com/java-dev-tools/codepro/doc/

23 3.3 Test case complexity

test code. Second, the linear structure of test code enables simplified analysis of this
code with other analysis techniques. For instance, the data flow analysis of test cases
can be substantially simplified and exclude analysis control flow information.

Primary test case complexity indicators

In this section we systematically explore the primary indicators of test case complexity:
the number of system classes involved in a test case and the length of method invocation
sequences.

To measure the indicators of test case complexity we implemented static data flow
analysis. The analysis captures a number of system classes instantiated in each test case
without considering external and library classes. The analysis captures the length of
method invocation sequences in each test case taking into account method invocations
contributing to test setup and cleanup procedures.

Since most of test cases do not rely on inter-procedural nor inter-class dependencies,
our analysis does not deal with these dependencies without significantly affecting the
accuracy of the analysis. It does not capture method invocations from auxiliary methods
and method invocations from external or inherited classes.

Number of system classes Unit test cases are designed for testing individual classes
of the system, while integration test cases – for testing aggregations of classes and their
interactions. Although unit test cases focus on a single class under test, they often need
to instantiate auxiliary or dependent classes, or to use mock objects to substitute them.
The higher the coupling of the unit, the more classes the test case needs to instantiate
or mock for test execution.

In practice, developers tend to instantiate the least necessary number of classes
for test execution to make unit test cases lightweight and quickly executable. For this
reason, unit test cases often use partial class instantiation with null object references
instead of the required class instances.

We have analyzed the distribution of number of classes in test cases. The resulting
frequency of number of classes in test cases is shown in Figure 3.2.

Our analysis indicates that on average test cases instantiate two classes (statis-
tical mean). However, most often (in 40% of cases) test cases instantiate only one
class (statistical mode). Further we observed that 93% of test cases contain up to
four classes and 99% of all test cases do not operate on more than seven classes.
Less than one percent of test cases instantiate 8–14 classes.

Manual inspection of test cases operating on four and more classes indicated
that such test cases exercise complex scenarios of class instantiation and integra-
tion. The number of system classes is a clear indicator of test case complexity.

24 3.3 Test case complexity

Histogram of NumberOfClassesInvolvedFull

NumberOfClassesInvolvedFull

Fr
eq
ue
nc
y

2 4 6 8 10 12 14

0
10
00

20
00

30
00

40
00

50
00

Figure 3.2. Frequency of class number in test cases

A fraction of test cases that instantiate more than four classes do not test complex
test scenarios, but rather represent simple test cases aggregated together with repetitive
checking of the same class property for different class instances. These are anomalous
test cases that ideally should be developed as isolated simpler test cases.

Length of method invocation sequences Unit test cases usually contain few method
invocations. Short sequences of method invocations either aim to verify the functionality
of a single method invocation or represent a single class state transition that is checked.
Additionally, some unit test cases aim to check the wiring of classes. These test cases
instantiate and wire (integrate) several classes invoking their constructors, however
check the wiring with few or no method invocations. This can be illustrated with
the composition of unit test suites for our case studies. 95% of data in test cases is
distributed as shown in Figure 3.3. The other 5% contain atypical test cases with long
method invocation sequences that we discuss in the next paragraph.

A fraction of the test cases contain very long method invocation sequences: 4% of
test cases contain from 20 to 43 method invocations and less than 1% of test cases have
up to 230 method invocations. Manual inspection of these test cases indicated that they
do not exercise complex test scenarios, but rather aggregate multiple test cases together.

The frequency of the number of method invocations in test cases is shown in
Figure 3.4.

25 3.3 Test case complexity

1 2 3 4 5 6 7 8 9 10

5
10

15

Method invocations (95 quantile)

Classes involved

M
et

ho
d

in
vo

ca
tio

ns

Figure 3.3. Distribution of the number of method invocations in test cases vs. number
of instantiated classes

Histogram of NumberSysMethodInvocationsFull

NumberSysMethodInvocationsFull

Fr
eq
ue
nc
y

5 10 15

0
50
0

10
00

15
00

20
00

Figure 3.4. Frequency of number of method invocations in test cases

26 3.3 Test case complexity

Average length of method invocations is 6.35 (statistical mean), 17% of test
cases include one method invocation (statistical mode). While 80% of test cases
have up to eight method invocations.

We have manually inspected test cases with method invocation sequences
longer than the mean value. Test cases with long method invocation sequences
correspond to two main categories. The first category contains test cases that
are associated with the same complex test cases that instantiate more than four
classes and test complex class interactions. The second category contains test cases
that explore large amount of method invocations with different parameter values
for single classes. Together with the number of classes, the length of method
invocation sequences is a good indicator of the test case complexity.

Indirect test case complexity indicators

Oracle is an essential part of a test case that represents human knowledge about
expected system behavior. Our intuition is that oracles can indirectly indicate whether
test cases verify simple class properties or complex interactions and thus indicate test
case complexity.

Oracle can indicate an interaction between several classes that changes their mutual
states. Such oracle accesses and checks the state of several classes. In contrast, oracles
in simple test cases usually check the state of a single class under test. Simple test cases
often instantiate several classes and keep unchanged the state of auxiliary classes, while
the state of the class under test changes and is controlled in the oracle.

We statically analyzed and categorized assertions in test cases according the number
of classes assertions operate on considering a total number of assertions in each test
case. We recorded the data for assertions that directly access class instances of different
classes. We did not record indirect references to the class instances (for instance,
assertion accessing a variable assigned as a result of a method invocation). We also did
not count instances of anonymous classes, nor did we consider the class types returned
from method invocations. The results of analysis are summarized in Figure 3.5.

37% of test cases predicate on one class. 51% of test cases predicate on two
classes. 10% of test cases predicate on three classes, while less than 2% of test cases
predicate on more than three classes.

Manual inspection of test cases operating on three and more classes revealed
that most of these test cases (with some exceptions) check complex interaction
scenarios and verify states of complex objects. In few exceptional cases, test
cases contain large amount of assertions (more than ten assertions) because

27 3.3 Test case complexity

0 1 2 3 4 5 6

0
20

40
60

80
10
0

Number of assertions

Number of classes

N
um

be
r o

f a
ss

er
tio

ns

Figure 3.5. Distribution of the number of classes in assertions in test cases

they aggregate simple test cases and do not explore complex scenarios of class
integration. These results suggest that the number of classes used in assertions in
test cases is a good indirect indicator of test case complexity.

The analysis does not capture indirect references to the class instances in assertions
when assertions comparing test execution results with expected values without accessing
class instances under test. This is why the leftmost box plot in Figure 3.5 designates
distribution of a number of assertions in test cases, where assertions operate on zero
classes. The precision of the analysis can be improved to extract information for
assertions that indirectly check the states of the classes under test or computation
results.

28 3.3 Test case complexity

Taxonomy of simple and complex test cases

We now define simple (unit) and complex (integration) test cases based on representa-
tive complexity indicators: CT – a number of system classes a test case operates on, M –
a length of method invocation sequence in a test case, and CA – a number of system
classes test assertions operate on.

Definition. A simple test case is a test method operating on less than four system classes
in less than six method invocations with assertions on less than three classes (CT < 4
and M < 6 and CA < 3).

Conversely, a definition of a complex test case is as follows:

Definition. A complex test case is a test method operating on four or more system classes
in six or more method invocations with assertions on three or more classes (CT ≥ 4 or
M ≥ 6 or CA ≥ 3).

In this thesis aim to generate complex test cases from simpler ones. In particular
we focus on generating integration test cases from unit test cases. Using the presented
taxonomy we associate unit test cases with the simple test cases and integration test
cases with the complex ones. The taxonomy is generalizable and can be extended for
characterizing test cases of different granularity.

Remarks

The presented taxonomy is based on a thorough investigation of test suites from many
software projects. It reflects our intuition and supports our hypotheses. We have shown
that test cases can be hardly distinguished automatically by their goal and that intrinsic
code complexity measure is not applicable as a complexity indicator for test cases,
because the intrinsic complexity of the JUnit code does not change significantly between
simple and complex test cases.

Our investigation indicates that the test case structure and, in particular, the amount
of system entities used in the test cases are representative indicators of test case
complexity. In the next section we use the described characterization to study the
overlap and reuse of information between unit and integration test cases.

Limitations and threats to validity

We selected the case studies according to the availability of test suites and not randomly,
and this involves a threat to the validity of the experiment. The discovered indicators of
test case complexity are specific to the object-oriented software. Case studies used for
investigation are open source software. Projects and test suites extensively supported by
software developers. Some projects, like JodaTime, PMD, JGraphT, JFreeChart are used
in many research papers as case studies. Analyzed software projects come with mature

29 3.4 Structural overlap

test cases with from medium to high coverage of system functionality (Figure 3.1). A
threat to validity concerns generalization of the results to industrial systems that employ
different testing standards and procedures than object-oriented open source software.

Another threat to validity concerns the generalization of the results to systems using
special integration frameworks and to systems from domains not covered in the study.
Large component-based systems and distributed enterprise applications often employ
special integration frameworks, such as Camel10. These frameworks integrate system
components according to the integration rules defined in a domain-specific language.
Throughout our study we focus on applications that do not rely on special integration
frameworks. We study the applications with class integration incorporated in the system.
For instance, applications that integrate classes through dependency injection relying
on class constructor parameters.

In this study we apply well known statistical techniques that are robust to violations
of their assumptions. One general threat to validity is the number of test cases analyzed,
which may reduce the ability to reveal patterns in the data.

Finally, the chosen analysis techniques may represent a threat to validity. Precision
of static analysis is limited. The static analysis of number of classes used in assertions
does not capture indirect references to the class instances in assertions. The static
analysis of primary complexity indicators does not deal with inter-procedural nor inter-
class dependencies in test cases. It does not capture method invocations from auxiliary
methods and method invocations from external or inherited classes. This limitation
should not significantly affect the accuracy of the analysis since most of the test cases in
the study do not rely on inter-procedural nor inter-class dependencies.

3.4 Structural overlap

The study presented in this section explores the phenomenon of information sharing
and reuse among test cases. The study aims to support our hypothesis that important
information in test cases can be identified and reused. We investigate the extent of the
phenomenon of testing reuse in real-world test suites. We hypothesize that different
fragments of test cases are reused and build upon, and we investigate what fragments
of test cases are reused. We aim to detect interrelation between simple and complex
test cases with the goal to exploit it for test case generation.

The study of code reuse builds on results of our exploration of test case structure
and common parts of test cases (Sections 3.1 and 3.2), and indicators of test case
complexity (Section 3.3). In this section we investigate how simple and complex test
cases share information and we present our analysis of the amount of code reuse in
manually developed test cases taken from open-source projects.

10https://camel.apache.org/

https://camel.apache.org/

30 3.4 Structural overlap

Reuse in simple and complex test cases

Figures 3.6 and 3.7 show the excerpt of some unit test cases for the Controller and
the View components of PureMVC. These test cases exercise short sequences of method
invocations on individual classes aiming to check the behavior of the single classes.

In particular, the two test cases in Figure 3.6 exercise the Controller functionality
to register, execute and remove Commands (the code corresponding to these method
invocations is underlined in the figures), but they do not check the interactions with the
View where the corresponding Observers are registered. These unit test cases focus on
the effects of the method invocations in the scope of the class Controller.

Similarly, the unit test case for the View class shown in Figure 3.7 does not check
the interactions between the Controller and View classes.

1 // Complexity indicators: C_t = 3; M = 2; C_a = 1;

2 public void testRegisterAndExecuteCommand() {

3 IController controller = Controller.getInstance();

4 controller.registerCommand("ControllerTest", new ControllerCommand());

5 ControllerTestVO vo = new ControllerTestVO(12);

6 Notification note = new Notification("ControllerTest", vo, null);

7 controller.executeCommand(note);

8 assertTrue("Expected result == 24", vo.result == 24);

9 }

1 // Complexity indicators: C_t = 3; M = 4; C_a = 1;

2 public void testRegisterAndRemoveCommand() {

3 IController controller = Controller.getInstance();

4 controller.registerCommand("ControllerRemoveTest", new ControllerCommand());

5 ControllerTestVO vo = new ControllerTestVO(12);

6 Notification note = new Notification("ControllerRemoveTest", vo, null);

7 controller.executeCommand(note);

8 assertTrue("Expected result == 24", vo.result == 24);

9 vo.result = 0;

10 controller.removeCommand("ControllerRemoveTest");

11 controller.executeCommand(note);

12 assertTrue("Expected result == 0", vo.result == 0);

13 }

Figure 3.6. Two unit test cases for the Controller component

Figure 3.8 shows a complex test case from the integration test suite of PureMVC.
This test case exercises the interactions between the classes Controller and View.
Class Controller registers, removes and registers again the same Command, and class
View notifies the Observers associated with the registered Command.

By comparing the simple test cases for classes Controller and View shown in
Figures 3.6 and 3.7 with the test case for the integrated classes in Figure 3.8, we can

31 3.4 Structural overlap

1 // Complexity indicators: C_t = 3; M = 2; C_a = 0;

2 public void testRegisterAndNotifyObserver() {

3 IView view = View.getInstance();

4 Observer observer = new Observer(this, this);

5 view.registerObserver(ViewTestNote.NAME, observer);

6 INotification note = ViewTestNote.create(10);

7 view.notifyObservers(note);

8 assertTrue("Expected var == 10", viewTestVar == 10);

9 }

Figure 3.7. A unit test case for the View component

1 // Complexity indicators: C_t = 4; M = 5; C_a = 1;

2 public void testReregisterAndExecuteCommand() {

3 IController controller = Controller.getInstance();

4 controller.registerCommand("ControllerTest2", new ControllerTestCommand2());

5 controller.removeCommand("ControllerTest2");

6 controller.registerCommand("ControllerTest2", new ControllerTestCommand2());

7 ControllerTestVO vo = new ControllerTestVO(12);

8 Notification note = new Notification("ControllerTest2", vo, null);

9 IView view = View.getInstance();

10 view.notifyObservers(note);

11 assertEquals("Expected result == 24", vo.result, 24);

12 view.notifyObservers(note);

13 assertEquals("Expected result == 48", vo.result, 48);

14 }

Figure 3.8. An integration test case for PureMVC

notice that all the code of the integration test case belongs also to the unit test cases
(reused statements are underlined in the figure).

We measure the amount of code reuse in test cases by identifying code sections that
are equivalent except for a systematic change of parameters. We use Google CodePro
AnalytiX to collect these data and we select reuse information for code fragments
containing more than two lines of code. The results of the analysis are summarized in
Table 3.3.

32 3.5 Important information in test cases

Program (version) Test cases, LOC

TestabilityExplorer (1.3.2) 5596
JGraphT (0.8.3) 5637
Apache Ant (1.8.4) 24384
JFreeChart (1.0.14) 49644
JodaTime (2.1) 51715
PureMVC (1.1) 706
PMD (5.0) 13922

Total: 151604

Original code reuse 15008 (9.8%)
Total code reuse 44942 (29%)

Table 3.3. Code reuse in test source code

We have observed that for seven subjects a total of 29% of code is reused. In
other words, one third of test code is shared across test suites. We also observed
that test code is reused repeatedly. For the analyzed subjects, a total of 15008 LOC
of unique code is repeatedly reused. Average length of reused code pieces is of five
to six lines of code (Mean 5.45), while on average these pieces of code are reused
three times (Mean 3.04).

We have manually analyzed reused code in test cases. Our analysis indicates that
reused code involves all parts of test cases, including test setup and scaffolding, test
execution and oracle. Moreover, some blocks of reused code correspond to several parts
of test cases. For instance, different test cases share combinations of test execution and
oracle parts, and different test setup.

These results suggest that different parts of test cases can be reused to construct
new test cases.

3.5 Important information in test cases

Test cases are built using knowledge about system under test and they carry important
information. As source code captures information about design and objectives of the
system, test code captures information about various scenarios of system assembly and
execution.

A test case is an instance of a test specification that derives from various sources
including: system specification, module specification, interface specification, system
design and architecture models, source code specification, source code structure, histor-
ical software project data, previous faults found in the system, and domain knowledge
of application developer and tester.

33 3.5 Important information in test cases

Automatically derived test cases also carry meaningful information. Such test cases
capture certain heuristics and assumptions about software system that allow them to
explore system executions and detect specific structural and functional problems.

Different aspects of test cases and test case structure can be mapped to the important
system information they capture. Correct instantiation of classes requires valid sets
of inputs and parameter values for constructor and method invocations in test cases.
The absence of input parameters, for instance, null class references in place of class
constructor and method parameters indicate what information can be omitted in a
certain context. In addition to valid inputs and parameters, dependent classes shall be
instantiated in correct order. Instantiation order and mutual order of class instantiation
and method invocations in test cases represent implicit protocols of class setup and
class usage.

Information about external class dependencies, operational environment dependen-
cies, and external system interactions are captured in test setup and test scaffolding.
Scaffolding may include test drivers that substitute calling programs and thus contain
information about how the system can be used or interacts with its environment. In
addition, scaffolding contains information about dependencies to auxiliary and library
classes used by the system.

Test oracles capture expected system behavior, effects of class interactions and
method invocations. They indicate data that should change as a result of test execution,
as well as invariant properties and data. A scope of an oracle check indicates the
scope of changes and side-effects caused by test execution. Test oracles indicate what
information is relevant in a given context in the same way as omitted parameters
indicate their irrelevance for specific method invocations.

Intuition and core idea

We argued that test cases capture important system information and domain knowledge.
Some of this information can be automatically identified and exploited.

In the discussion of the related work in Section 2.3 we have shown that different
approaches analyze and leverage information from test cases and test executions to
support software engineering tasks and system comprehension, facilitate and enable
test case repair, test suite evolution, and test case generation.

Our intuition is that information from test cases can be exploited not only to support
system comprehension, test case repair and test suite evolution, but also to generate
new test cases automatically.

Differently from existing approaches, we intend to leverage important information
in test cases to automatically generate more complex ones and to drive test generation
towards complex module interactions. We aim to generate fresh integration test suites
or to augment test suites with behaviors that are not yet present in the integration test
suites.

34 3.5 Important information in test cases

We draw our intuition from the study of many test cases presented in this chapter.
Our observations indicate that many test cases build on the information from other
test cases. In the same way, we aim to reuse information in test cases to support
automatic test case generation exploiting the common program entities used for test
case construction that we identified in Section 3.1 and the similarities in test case
structure that we identified in Section 3.2.

This study motivates our core idea: to reuse meaningful information in test cases
to generate new test cases. We aim to identify fragments of meaningful information in
test cases and capture relationships between these fragments to combine them into new
complex test cases. In the next chapter we describe our approach to automatic test case
generation.

Chapter 4

Generating Integration Test Cases
Automatically

In this chapter we present a novel approach to generate test cases by
automatically reusing information from existing test cases. The core idea is to
automatically extract relevant fragments of test cases and combine them into
meaningful and complex test cases. We present the key challenges in extracting
and combining information from test cases, and we introduce our solutions
that enable test case generation from the information in the system source
code and in the corresponding test suites. We illustrate the approach on a
real example by generating a new test case that detects a previously unknown
integration fault.

In this thesis we introduce a technique to automatically generate complex test cases
from simple ones. Our approach stems from the two key observations that derive from
the study of many test cases from popular open-source software systems (Chapter 3).

First observation: both unit and integration test cases operate on the same program
entities, and use method calls as main components of test cases. Both kinds of test cases
exercise parts of the system functionality and check the resulting state of the system.
The difference lies in the scope of those checks. Unit test cases exercise small parts of
the system, for example, a single class. They invoke few methods and check that the
method return values and the state of the class are as expected. In contrast, integration
test cases exercise large parts of the system by replacing mock objects with real module
implementations, working through long method call sequences, and checking the state
of all modules involved.

Second observation: simple (unit) and complex (integration) test cases share consid-
erable amount of information. We have observed that fragments of complex test cases
are identical to the fragments of simpler unit test cases. This is not surprising, because
integration testing usually follows unit testing and, according to our first observation,

35

36 4.1 Approach

integration testing operates on the same entities as unit testing. This is why integration
test cases tend to share fragments with unit test cases.

Moreover, unit test cases contain information on how to instantiate classes in
meaningful ways, how to construct arguments for method calls, and what the resulting
system state should be after calling methods with those arguments. By reusing fragments
of existing unit test cases developers reuse and consult human-made, meaningful and
relevant information about a system under test.

These observations motivate the core idea behind our approach: using simple unit test
cases to automatically generate complex integration test cases that can reveal interaction
faults.

4.1 Approach

Figure 4.1 shows a general overview of the approach. The approach works by analyzing
software system to identify dependent system components that can be integrated and
tested together. It identifies dependencies among these components to stress them in
generated test cases. Our approach analyzes test cases to extract relevant fragments.
It then selects, reuses and combines relevant test case fragments into new test cases
guided by the dependencies between the system components. Once new test cases are
generated, they can serve as input to the process to generate even more complex ones.

We use information from existing test cases to construct more complex test cases
that focus on class interactions rather than on individual state transformations. We aim
to detect faults that depend on the interaction between several modules, and as such
can be hardly detected with simple test cases that check the behavior of single units.

In the following section we describe the challenges of generating complex integration
test cases, and we frame our approach for automatic test case generation that effectively
tackles these challenges.

Challenges

Our approach relies on the hypotheses that we can identify automatically the test frag-
ments that can be used to build new test cases, and that we can automatically assemble
the identified fragments to generate feasible test cases. Capturing and composing these
fragments poses a number of key challenges we need to address to enable our approach.

First, we need to identify meaningful code fragments that can be assembled together.
The problem is difficult, because, as we have shown in our study of test case structure,
the logical fragments in test cases are mixed and not easily identifiable (Section 3.2). We
need to map the logical structure of the test cases to the underlying syntactic structure to
enable test case analysis, automatic extraction and manipulation of code fragments. We
propose to segment test cases in composable fragments that correspond to instantiation

37 4.1 Approach

Software system

Test Cases
=====
=====
=====
=====

Extract system
dependencies

⌨

📶

🕪

⚙

System dependencies

Extract information

=====
=====

=====
=====

=====
=====

=====
=====

=====
=====

=====
=====

Select relevant
information

Generate new
test cases

Test Cases
=====
=====
=====
=====
=====Augment test suites

Test fragments

Figure 4.1. Overview of the approach

of system classes and scenarios of class usage, and we solve this problem with data flow
analysis of the test cases as illustrated in Section 4.3.

Second, for any non-trivial software system the number of possible combinations
of test case fragments is prohibitively large. We need to efficiently combine test case
fragments in effective test suites.

Since not all combinations of fragments are meaningful, we propose to explore
the combinations for clusters of dependent classes and use the system dependencies
to indicate these clusters. In Section 4.2 we describe our approach to identifying and
capturing class dependencies.

Finally, we need to combine test case fragments into valid and useful test cases.
Combinations need to be valid with respect to the rules of a programming language
the system is implemented in, and the underlying constraints imposed by the operating
environment, including initialization and setup of the system. Useful combinations
should trigger interactions between the components of the system, explore new and
untested system states, and detect integration faults.

38 4.2 Extracting class dependencies

We address these challenges by developing integration strategy that drives the
generation of new test cases using dependence and data flow information. In Section 4.4
we present the details of the integration strategy that we propose and the overall test
generation process.

Three main phases

Our approach to generate complex integration test cases from simple unit ones requires
the system source code and a set of test cases as input, and works in three main phases:
(1) identify class dependencies within the system in the form of an object relation
diagram (ORD), (2) compute the data flow information within the input test cases, and
use this information to segment the test cases into useful fragments (initialization and
execution), and (3) generate new test cases using the class dependence information
together with the data flow information to combine the fragments extracted from the
simple test cases to build feasible complex test cases.

4.2 Extracting class dependencies

In this phase, we build an object relation diagram of the system under test to iden-
tify clusters of dependent classes that shall be tested together. We derive the class
dependencies from the system source code.

We distinguish implicit and explicit class dependencies in our approach. The goal of
our approach is to exercise interactions between dependent classes to reveal integration
faults. As we show in this section, implicit class dependencies can be tested in the
context of a single unit and are less relevant for exercising class interactions. In contrast,
explicit class dependencies indicate stronger connections between components and
potential class integrations that we exploit and exercise in our approach.

Implicit and explicit class dependencies

A class dependency exists when a class uses/accesses an instance of another class. A
class A depends on a class B when either the constructor or a method of class A requires
one or more instances of class B. The dependency is explicit when a class A declares
explicitly an argument of type B in the interface of its constructors or methods. The
dependency is implicit when a class A uses some instances of B, but B is not specified in
the interfaces of any method of class A. An example of such implicit dependency is a
class that accesses some instances of other classes using the Singleton pattern.

Our categorisation of class dependencies redefines a “uses” relation proposed by
Parnas [Par78]. Parnas defines the “uses” relation for pairs of programs: a program
A uses program B if correct execution of B may be necessary for A to complete the
task described in its specification. In the same way, we distinguish class dependencies

39 4.2 Extracting class dependencies

that for pairs of classes indicate if correct execution of one class is required for correct
execution of another class.

We give the classification of different kinds of implicit and explicit class dependencies
using Java programming language constructs.

1. Implicit field/variable. A class instantiates and uses an object of another class:

1 public class ImplicitDependency1 {

2 private Writer writer = new Writer(null); // instantiation of class Writer shows

implicit dependency to Writer

3

4 public void write() {

5 Format format = new Format("Times"); // instantiation of class Format shows implicit

dependency to Format

6 writer.compile(format);

7 }

2. Implicit instance access. Class accesses existing instance of another class using
static method:

1 public class ImplicitDependency2 {

2 private Writer writer = Writer.getInstance(); // implicit dependency to Writer (

instance of Writer may exist already)

3

4 public void write() {

5 writer.compile(Format.TIMES); // static field access shows implicit dependency to

Format

6 }

3. Implicit intermediary class method call. Class accesses (existing) instance of
another class through a method invocation on a intermediary class:

1 public class ImplicitDependency3 {

2 private WriterFactory writerFactory = new WriterFactory(); // intermediary class

WriterFactory

3

4 public void write() {

5 Writer writer = writerFactory.createWriter(new GoodMood()); // return type shows

implicit dependency to Writer

6 writer.compile("style");

7 }

4. Explicit class creation. A class cannot be instantiated without manifested depen-
dency:

1 public class ExplicitDependency1 {

2 private Writer writer;

3 public ExplicitDependency1(Writer writer) { // formal parameter shows explicit

dependency to Writer

4 this.writer = writer;

5 }

6 public void write() {

7 writer.compile("style");

8 }

40 4.2 Extracting class dependencies

5. Explicit method invocation. Method cannot be used without manifested depen-
dency:

1 public class ExplicitDependency2 {

2

3 public void write(Writer writer) { // formal parameter shows explicit dependency to

Writer

4 writer.compile("style");

5 }

Different types of dependencies determine the class instantiation order and allow
or prohibit class substitution during class instantiation. In particular, class substitution
is not configurable for classes related through all types of implicit class dependencies.
On the contrary, for both types of explicit dependencies class substitution is possible
due to polymorphism and is configurable outside of the class. Consequently, explicit
dependencies allow to instantiate classes using mock objects or null values without
using instances of dependent classes.

Explicit class dependencies impose class instantiation and method invocation orders,
while implicit dependencies do not impose such orders. For implicit dependencies these
orders can be indicated in the class specification. Explicit class creation dependency
(case 4) imposes class instantiation order with respect to the order of constructor invoca-
tion, while explicit method invocation dependency (case 5) imposes class instantiation
order with respect to the order of method invocation (execution order). The following
listing shows the explicit class dependencies and syntactically valid constructs with the
imposed order of class instantiation:

1 public class TestExplicitDependencies {

2 public void testExplicitDep1() {

3 Writer writer = new Writer(); // Writer has to be instantiated before constructor

call

4 ExplicitDependency1 dep = new ExplicitDependency1(writer);

5 dep.write();

6 }

7 public void testExplicitDep2() {

8 ExplicitDependency2 dep = new ExplicitDependency2();

9 Writer writer = new Writer(); // Writer has to be instantiated before method call

10 dep.write(writer);

11 }

12 }

In practice explicit dependencies (cases 4 and 5) are used to integrate collaborating
classes and represent situations, when the state of the dependent class may be changed
from the outside by other classes. Such dependent classes should be either tested in
conjunction or can be partially substituted by the mock objects for testing purposes.

In the study of many software systems we have observed that class integration
through explicit dependencies usually follows two patterns. The first pattern involves
class integration through class constructor parameters where each parameter is in-
stantiated in a complex class instantiation sequence. The second pattern involves

41 4.2 Extracting class dependencies

class instantiation where classes are instantiated through constructor calls with few or
no parameters followed by a sequence of set/add method invocations that integrate
dependent classes through method parameters.

Implicitly instantiated classes are less likely to change their state from the outside.
Implicit class instantiation is used in practice to encapsulate dependent classes in the
scope of a single class without exposing them outside as a part of the state of the class.
The class dependency formed this way can be tested in the context of the class that
integrates other classes (in the other terms – it can be targeted during unit testing).

There are two rare cases when classes related by implicit dependency can have state
changes initiated outside of the class. First case happens for classes integrated through
an implicit class dependency using instance access methods (case 2). In this case the
instance of a dependent class is not created in the user-class, but is accessed with the
static (instance access) method call. Since the dependent class instance is not controlled
by the user-class it can have state changes initiated from the outside of the user-class,
and unexpected state changes may trigger integration faults.

The second case takes place when a class implicitly instantiates other classes, but
does not encapsulate them well and allows their modification from the outside (for
instance, class with public fields). This case is rare and represents a poor programming
practice that can be prevented with various analysis techniques.

In our approach we model class dependencies of a system in the form of object
relation diagram and we use the diagram in the next phases of the approach.

Object Relation Diagram (ORD)

ORD represents the class dependencies extracted from the class relations such as
inheritance (I), association (As) and aggregation (Ag), and can be extracted from
a system class diagram [BLW03]. ORDs are commonly used to derive integration
and test orders from class dependencies. Extended versions of ORD such as Test
Dependency Graph additionally model dependencies of the method level, although these
dependencies do not impose a strict test order of classes.

We capture class dependencies in a modified ORD. Differently from the general
ORD that models multiple class relations we model only explicit class dependencies that
correspond to the class association (As). These dependencies impose class instantiation
and execution orders, and indicate classes that shall be tested in conjunction. We also do
not highlight inheritance relation (I) in ORD, and we substitute it with the association
(As) between subclasses and other classes directly associated with the corresponding
super class.

42 4.2 Extracting class dependencies

BlockContainer
(Arrangement)

FlowArrangement
(HorizontalAlignment hAlign,

VerticalAlignment vAlign,
double hGap,
double vGap)

DataSet()

LegendItemBlockContainer
(Arrangement arrangement,

Dataset dataset,
Comparable seriesKey)

CompositeTitle
(BlockContainer)

ColumnArrangement
(HorizontalAlignment hAlign,

VerticalAlignment vAlign,
double hGap,
double vGap)

CompositeTitle()

BlockContainer()

FlowArrangement() ColumnArrangement()

Figure 4.2. Fragment of ORD for classes of JFreeChart

Consider, for example, a fragment of ORD for the JFreeChart library1 in Figure 4.2.
The ORD is extracted from the constructor signatures shown in Figure 4.3 and the class
diagram shown in Figure 4.4.

In the diagram, nodes represent the class constructors and directed arcs represent
the dependencies between the constructors. Classes can have several constructors that
may manifest dependencies to different classes and each constructor corresponds to a
different way class can be instantiated. Thus nodes of the ORD correspond to distinct
class constructors and ORD can contain several nodes for a given class with several
constructors. ORD also contains disconnected nodes (CompositeTitle() constructor
node in Figure 4.2) that do not require other class instances and are not required to
construct other classes.

1www.jfree.org

www.jfree.org

43 4.2 Extracting class dependencies

1 /**
2 * A title that contains multiple titles within a {@link BlockContainer}.

3 */

4 public class CompositeTitle extends Title implements Cloneable, Serializable {

5 public CompositeTitle() {}

6 /**
7 * Creates a new title using the specified container.

8 * @param container the container (<code>null</code> not permitted).

9 */

10 public CompositeTitle(BlockContainer container) {}

11 }

12 /**
13 * A container for a collection of {@link Block} objects. The container uses

14 * an {@link Arrangement} object to handle the position of each block.

15 */

16 public class BlockContainer extends AbstractBlock implements Block, Cloneable,

PublicCloneable, Serializable {

17 public BlockContainer() {}

18 /**
19 * Creates a new instance with the specified arrangement.

20 * @param arrangement the arrangement manager (<code>null</code> not permitted).

21 */

22 public BlockContainer(Arrangement arrangement) {}

23 }

24 /** A container that holds all the pieces of a single legend item. */

25 public class LegendItemBlockContainer extends BlockContainer {

26 /** Creates a new legend item block. */

27 public LegendItemBlockContainer(Arrangement arrangement, Dataset dataset, Comparable

seriesKey) {}

28 }

29 /**
30 * An object that is responsible for arranging a collection of {@link Block}s within a {@link

BlockContainer}.

31 */

32 public interface Arrangement {}

33 /** Arranges blocks in a flow layout. This class is immutable. */

34 public class FlowArrangement implements Arrangement, Serializable {

35 public FlowArrangement() {}

36 public FlowArrangement(HorizontalAlignment hAlign, VerticalAlignment vAlign, double hGap,

double vGap) {}

37 }

38 /** Arranges blocks in a column layout. This class is immutable. */

39 public class ColumnArrangement implements Arrangement, Serializable {

40 public ColumnArrangement() {}

41 public ColumnArrangement(HorizontalAlignment hAlign, VerticalAlignment vAlign, double

hGap, double vGap) {}

42 }

Figure 4.3. System interfaces for JFreeChart classes

More formally, given a set of classes S, ORD is a tuple 〈C , E〉, where

C is a set of constructors for the classes in S;
E is a set of edges between constructors;

E = { 〈c1, c2〉 ∈ C2 | ∃p ∈ param(c1) subt ype(class(c2), p) }, where

44 4.2 Extracting class dependencies

BlockContainer

CompositeTitle

«interface»
Block

Title

0..*

1..*

add(Block block)

LegendItemBlockContainer

FlowArrangement

«interface»
Arrangement

ColumnArrangement

Figure 4.4. Fragment of class diagram for JFreeChart

param : C → 2S associates constructors with the classes of formal parameters in
constructors,

class : C → S associates constructors with the classes they instantiate, and
subt ype : S× S→ {T, F} is a predicate over inheritance relation between the pairs

of classes with the property that subt ype(s1, s1) evaluates to true. subt ype(s1, s2)
evaluated to true denotes “s1 is a subtype of s2”.

Constructor dependencies define a preorder relation between classes and can poten-
tially form cycles in the ORD.

ORD construction We build ORD from class references and class hierarchy infor-
mation. We identify class references from syntactic entities in a system source code.
To identify class references we statically analyze the system source code, identify the
public constructors and analyze formal parameters of the class constructors. We extract
class hierarchy information analyzing class declarations and we use it to connect the
nodes of the object relation diagram. We connect the constructor node of a class X

45 4.3 Extracting instantiation and execution sequences

to the constructor node of a class Y if Y or Y ’s super class is referenced in the formal
parameters of the constructor of class X .

Consider, for example, the ORD shown in Figure 4.2. The corresponding constructor
interfaces are shown in Figure 4.3 and a corresponding class diagram is shown in
Figure 4.4. In the ORD, a constructor of BlockContainer class is connected with the
constructors of ColumnArrangement and FlowArrangement classes.

Both ColumnArrangement and FlowArrangement classes implement the Arrange-

ment interface that is a formal parameter in BlockContainer’s constructor, and thus
both subtypes of Arrangement can be used in the BlockContainer’s constructor as
indicated in the ORD. Similarly, as one can see from the class diagram in Figure 4.4,
LegendItemBlockContainer extends the BlockContainer class and thus can be used
in a constructor of CompositeTitle class. This is modelled in the ORD with an edge
connecting the CompositeTitle and the LegendItemBlockContainer constructors.

We use ORD to model only dependencies for the classes of the system under test
and we do not analyze external or system dependencies. In the example of the ORD in
Figure 4.2, there is no dependency between LegendItemBlockContainer and Compa-

rable, although LegendItemBlockContainer depends on the interface Comparable as
indicated in line 27 in Figure 4.3. Node Comparable and the corresponding dependency
are not included in the ORD because this is a dependency to the external Java interface.

4.3 Extracting instantiation and execution sequences

In this phase, we use data flow information on the input test cases to identify test
case fragments and dependencies among them. We automatically derive only relevant
statements that contribute to particular logical parts of test cases using dominance data
flow analysis. We aim to identify fragments that correspond to instantiation of classes
and fragments that correspond to different scenarios of class usage.

We analyze data flow and control flow information in input test cases to extract
homogeneous test case fragments that represent subsets of statements from test cases
with a specified order of execution. We extract fragments corresponding to sequences of
statements that either instantiate the classes involved in the test (instantiation sequence),
or execute methods of the instantiated classes for testing a specific class (execution
sequence). We derive the order of execution in the sequences from the control structure
of test case imposed by testing frameworks like JUnit.

There can be several instantiation and execution sequences for each test case,
depending on the number of classes involved in the test. We identify instantiation and
execution sequences from a given test case for all the system classes that occur in the
test cases, both for the class under test and for the system classes used to create auxiliary
objects in the test. We capture library and external class instances as an auxiliary data
for the sequences of the analyzed system classes.

46 4.3 Extracting instantiation and execution sequences

We associate instantiation and execution sequences with the classes that are instan-
tiated and used by the sequences, and with the classes for which the sequences can be
applied due to polymorphism. We associate the sequences and classes in the ORD by
augmenting the nodes of the ORD with the corresponding sequences. Since each node
in the ORD represents a class constructor, we augment the nodes that are related to
a specific class and the nodes that are related to its sub classes through polymorphic
relations.

Figure 4.5 shows one example of instantiation and execution sequences that can be
derived from the test in the figure. The test class instantiates four system classes and
thus contains four instantiation sequences (I1-I4): one sequence for the class under
test CompilationUnitBuilder, and other sequences for the classes Qualifier, JavaS-
rcRepository, and JavaClassRepository that are used to create auxiliary objects in
the test. The test class contains five execution sequences (E1-E5): each execution
sequence is composed of statements that invoke methods on the instantiated classes in
the order imposed by the test structure.

1 public class JavaClassInfoBuilderTest extends TestCase {

2 I1 I3 I4 ClassRepository parent = new JavaClassRepository();

3 I1 I3 JavaSrcRepository repository = new JavaSrcRepository(parent, null);

4 I1 I2 Qualifier qualifier = new Qualifier();

5 I1 CompilationUnitBuilder builder;

6

7 protected void setUp() {

8 I1 E3 qualifier.setPackage("pkg");

9 I1 builder = new CompilationUnitBuilder(repository, qualifier, "");

10 }

11 public void testClassNameIsConcatinationOfPackageAndType() throws Exception {

12 E1 builder.startType(0, "A", null, new ArrayList<Type>());

13 E1 builder.endType();

14 assertNull(builder.type);

15 E4 assertEquals("pkg.A", repository.getClass("pkg.A").getName());

16 }

17 public void testInnerClass() throws Exception {

18 E3 qualifier.addAlias("B", "pkg.A$B");

19 E2 builder.startType(0, "A", null, new ArrayList<Type>());

20 E2 builder.startType(0, "B", null, new ArrayList<Type>());

21 E2 builder.endType();

22 E2 builder.endType();

23 assertNull(builder.type);

24 E5 assertEquals("pkg.A$B", repository.getClass("pkg.A$B").getName());

25 }

26 }

Figure 4.5. Instantiation and execution sequences of a test case

The execution order within test classes is determined by the control flow structure
that is generally imposed by the testing framework. The majority of testing frameworks
support the three-part logical structure of test cases described in Section 3.2. In

47 4.3 Extracting instantiation and execution sequences

testing frameworks like JUnit the logical structure is mapped to the corresponding
setup(), test() and assert() methods. Testing frameworks also distinguish a cleanup
(tearDown()) test part that follows test execution.

Test frameworks enforce execution order between setup(), tearDown() and test()

methods as shown in Figure 4.6. This control structure of the test cases allows to
determine the execution order in the instantiation and execution sequences that we
extract from test classes.

Setup

Cleanup

Class initialization

Test_1 Test_NTest_2 ...

Figure 4.6. Test execution order

An instantiation sequence includes all the method invocations and the object
instantiations that occur in a test case, and that contribute to instantiate a certain
class.

An instantiation sequence includes the statements that directly instantiate the
objects required for the test execution, the method invocations of these objects, as well
as the statements that are involved in the instantiations indirectly, i.e., for which there
is a dependency relation with the direct instantiations. For example a statement that
instantiates an object required for testing may need some value produced by another
statement, which, as such is not directly involved in the instantiation, but must be
included in the sequence. We identify all the statements that belong to the instantiation

48 4.3 Extracting instantiation and execution sequences

sequences by means of dominance data flow analysis on the test cases described in the
next section.

In Figure 4.5, the instantiation sequence for the class CompilationUnitBuilder

is marked as I1. Class CompilationUnitBuilder requires instances of classes JavaS-
rcRepository and Qualifier to be instantiated. JavaSrcRepository class also re-
quires another ClassRepository class to be instantiated and its instantiation (line 2)
is included in the sequence I1. Moreover, method setPackage() (line 8) is invoked on
the Qualifier class instance before CompilationUnitBuilder instantiation, and it is
added to the instantiation sequence I1.

An execution sequence includes all the method invocations on the class instance
of interest and captures the scenario of usage of this class.

In Figure 4.5, the execution sequences for the class CompilationUnitBuilder are
marked with E1 and E2. Both sequences correspond to the sets of statements that
belong to single test methods. Since the execution order between single test methods is
unknown we build execution sequences considering the sets of statements in different
test methods separately. The execution sequence E3 for the class Qualifier spans two
methods: scaffolding method setup() and test method testInnerClass(). Statements
in these methods are considered together to construct execution sequence, because
there is a known execution order between setup() and test() methods.

Similarly to instantiation sequences, execution sequences may include statements
not directly involved in method invocations, but required for the invocations. For
example, the execution sequence on class Message in Figure 4.7 includes method
invocations on ms object (lines 7, 8, and 12). These method invocations require other
data and corresponding statements are underlined in the figure, and belong to the
execution sequence E1. We identify these statements with dominance data flow analysis
as for the instantiation sequences.

Instantiation and execution sequences contain not only the statements involved in
object instantiations and method invocations, but also the context data: statements that
produce data values used in method invocations, the referenced inner classes and the
static fields. For instance, for the test case in Figure 4.8 we capture inner class Medium
referenced in testMediumCost1() test method as a context data. We use syntactic
analysis to extract corresponding data values and declarations, and we associate these
data with the corresponding sequences.

49 4.3 Extracting instantiation and execution sequences

1 public class MessageTest extends TestCase {

2 E1 private File f = new File(System.getProperty("java.io.tmpdir"), "message.txt");

3

4 public void testPrintStreamDoesNotGetClosed() {

5 Message ms = new Message();

6 E1 Project p = new Project();

7 E1 ms.setProject(p);

8 E1 ms.addText("hi, this is an email");

9 E1 FileOutputStream fis = null;

10 try {

11 E1 fis = new FileOutputStream(f);

12 E1 ms.print(new PrintStream(fis));

13 fis.write(120);

14 } catch (IOException ioe) {

15 fail("we should not have issues writing after having called Message.print");

16 } finally {

17 FileUtils.close(fis);

18 }

19 }

20 public void tearDown() {

21 if (f.exists()) {

22 FileUtils fu = FileUtils.getFileUtils();

23 fu.tryHardToDelete(f);

24 }

25 }

26 }

Figure 4.7. Execution sequence for class Message

Data flow analysis

We extract instantiation and execution sequences from existing test cases using dom-
inance data flow analysis. Our algorithms for data flow analysis statically identify
relevant statements for each system class that is used in test classes and aggregate these
statements in corresponding instantiation and execution sequences.

Based on our study of existing test cases (Section 3) we make a number of assump-
tions on test case structure that enable our data flow analysis and make it lightweight.
Our investigation of test cases indicates that the majority of test code is linear (Sec-
tion 3.3). Test code rarely contains loops or branching statements. This allows us
to exclude analysis of control dependence in the test code and only derive control
dependence imposed by the testing frameworks.

Our data flow analysis of test cases without control dependence is analogous to a
local analysis – analysis of single basic blocks of source code. However, the scope of
these analyses differs. Single basic blocks in source code are usually short, while data
flow analysis of test cases tackles longer control dependence-free blocks of code of a
size of test classes.

Our data flow analysis is intra-procedural despite the majority of test code being
organized in classes and test methods. This is because the majority of test cases exhibit

50 4.3 Extracting instantiation and execution sequences

1 public class MetricComputerTest extends TestCase {

2 private MetricComputerJavaDecorator computer;

3 private final ClassRepository repo = new JavaClassRepository();

4

5 protected void setUp() throws Exception {

6 super.setUp();

7 RegExpWhiteList regExpWhitelist = new RegExpWhiteList("java.");

8 regExpWhitelist.addPackage("javax.");

9 MetricComputer toDecorate = new MetricComputerBuilder().withWhitelist(regExpWhitelist

)

10 .withClassRepository(repo).build();

11 computer = new MetricComputerJavaDecorator(toDecorate, repo);

12 }

13 public void testMediumCost1() throws Exception {

14 MethodInfo method = repo.getClass(Medium.class.getCanonicalName())

15 .getMethod("int statiCost1()");

16 assertFalse(method.canOverride());

17 MethodCost cost = computer.compute(Medium.class, "int statiCost1()");

18 assertEquals(1l, cost.getTotalCost().getCyclomaticComplexityCost());

19 }

20 // inner class

21 public static class Medium {

22 public Medium() {

23 statiCost1();

24 cost2();

25 }

26 public static int statiCost1() {

27 int i = 0;

28 return i > 0 ? 1 : 2;

29 }

30 /*...*/

31 }

32 }

Figure 4.8. Test case with inner class

neither inter-class, nor inter-procedural dependencies and can be dealt with as separate
methods. Test cases that have inter-class and inter-procedural dependencies usually
depend on utility methods and external scaffolding. Such external code can often be
merged in the test code enabling intra-procedural analysis.

Our analysis suffers from the same limitations as classic data flow analysis. In
particular, it does not deal completely with data flow information that may derive from
side effects.

Algorithms To extract instantiation sequences we developed an algorithm ExtractIn-
stSeq shown in Figure 4.9. The algorithm statically identifies all variables used in a
constructor call instantiating a certain class. It recursively identifies a set of variables
necessary for the constructor invocation. For each variable in the set, the algorithm
captures sequences of constructor and method invocations that define or use the vari-

51 4.3 Extracting instantiation and execution sequences

able, considering the order of execution between test class fields, setup() and test()

methods imposed by testing framework.
To extract execution sequences we developed an algorithm ExtractExecSeq shown in

Figure 4.11. The algorithm identifies the constructor call instantiating a certain class
as the algorithm for extracting instantiation sequences, and identifies definitions and
uses of the variable defined by the constructor call. It recursively identifies variables
and parameters required for the successive method invocations in the same way as the
algorithm ExtractInstSeq identifies required constructor and method invocations for
instantiation sequences.

The interpretation of variable definitions and uses in the algorithms reflects the goal
of our analysis. The primary goal of algorithms ExtractInstSeq and ExtractExecSeq is to
extract sequences of constructor and method invocations relevant to class instantiation
and scenarios of class usage. In particular, ExtractInstSeq extracts minimal sequences
required to instantiate classes, and ExtractExecSeq extracts complete sequences of
method invocations on class instances.

We label de fvar an assignment to a variable var or method invocation on an object
pointed by variable var. We assume that method invocation of an object can modify
its state and is of interest to our analysis. Examples of such definitions are in lines 15
and 30 in Figure 4.10. We label usevar if an object pointed by variable var is used as a
parameter in constructor or method invocation. Line 32 in Figure 4.10 contains uses
of variables repository and qualifier. We do not capture side effects that may arise
from inter-procedural dependencies.

We demonstrate the algorithm ExtractInstSeq for extracting instantiation sequences
and the algorithm ExtractExecSeq for extracting execution sequences on the example
in Figure 4.10. Both algorithms are applied on a complete set of statements from a
given test class. The statements from original test class are merged in a single test
fragment in Figure 4.10 for demonstration purposes. These statements come from
setup(), cleanup() and test() methods of a test class and are considered together
because of the known order of execution between them.

Algorithm for extracting instantiation sequences The output of the algorithm Ex-
tractInstSeq shown in Figure 4.9 is a set of statements that directly or indirectly con-
tribute to the instantiation of a certain class. They include constructor and method calls
as well as auxiliary data.

The algorithm relies on several auxiliary procedures: getStatement(def) that
selects a statement for a variable definition, getParameterVariables(stmt) that re-
turns a set of variables used as parameters in a constructor of method invocation, and
getDefLocations(var) that computes all definition locations for a variable.

The algorithm starts with identifying the constructor invocation location for the
class of interest. Given the variable of a class of interest startVar, a procedure

52 4.3 Extracting instantiation and execution sequences

Input: star tVar
Output: OU T . Set of statements that contribute to instantiate star tVar

1: de fstar tVar ← getF irstDe f Location(star tVar)
2: star tStatement ← getStatement(de fstar tVar)
3: OU T ← OU T ∪ star tStatement
4: GEN ← getParameterVariables(star tStatement)
5: ANALY Z ED ← {}
6: for all var ∈ GEN do
7: DFA(var, de fstar tVar)
8: end for

9: procedure DFA(var, l imit)
10: ANALY Z ED ← ANALY Z ED ∪ var
11: DEFvar ← getDe f Locations(var)
12: for all de f ∈ DEFvar & precedence(de f , l imit) do
13: statement ← getStatement(de f)
14: OU T ← OU T ∪ statement
15: GEN ← getParameterVariables(statement) \ ANALY Z ED
16: for all var ∈ GEN do
17: DFA(var, l imit)
18: end for
19: end for
20: end procedure

Figure 4.9. Recursive algorithm ExtractInstSeq for extracting statements defining
variables used in an instantiation of a given class

getFirstDefLocation(startVar) searches for a location with a new expression that
invokes class constructor and defines the variable startVar. Consider the example in
Figure 4.10: for CompilationUnitBuilder class of interest, its constructor call defines
variable builder at line 32. The location marks the limit of the scope of the data flow
analysis, because statements that define any variable contributing to the instantiation
of the class of interest occur before the constructor invocation. This is controlled by
the procedure precedence(def, limit) that checks the partial order across definition
locations (line 12 of the algorithm in Figure 4.9).

Variables used as parameters to the constructor call constitute the initial set of objects
(GEN) that are needed to instantiate the class of interest. In the example, variables
repository and qualifier belong to this set. For each variable in the GEN set the
algorithm invokes the DFA() procedure that captures all definitions of this variable and
records in the OU T set corresponding statements where definitions occur. For instance,

53 4.3 Extracting instantiation and execution sequences

1 /**
2 * A fragment of a test case as seen in the data-flow analysis: test class instantiation,

3 * setup and test methods are merged in one procedure.

4 *
5 * Class of interest: CompilationUnitBuilder;

6 * startVar = builder (line 32);

7 * GEN={parent, repository, qualifier}

8 * OUT={15,17,19,28,30} // line numbers of statements in the OUT set.

9 * Statements on lines 34-38 do not belong to the OUT set, because they appear after first

10 * definition of startVar (line 32).

11 * Statements on lines 23-24, 26 are not in the OUT set, although they use variable parent,

12 * but they do not contribute to instantiate CompilationUnitBuilder - the variables

13 * they define are not used in the statements of interest.

14 */

15 ClassRepository parent = new JavaClassRepository();

16 // DEF={parent} USE={}

17 JavaSrcRepository repository = new JavaSrcRepository(parent, null);

18 // DEF={repository} USE={parent}

19 Qualifier qualifier = new Qualifier();

20 // DEF={qualifier} USE={}

21 CompilationUnitBuilder builder;

22 MetricComputerDecorator decoratedComputer;

23 MetricComputer toDecorate = new MetricComputerBuilder().

24 withClassRepository(parent).build();

25 // DEF={toDecorate} USE={parent}

26 decoratedComputer = new MetricComputerDecorator(toDecorate, parent);

27 // DEF={decoratedComputer} USE={toDecorate, parent}

28 ClassInfo myInfo = parent.getClass(My.class.getName())

29 // DEF={myInfo, parent} USE={}

30 qualifier.setPackage("pkg");

31 // DEF={qualifier} USE={}

32 builder = new CompilationUnitBuilder(repository, qualifier, "");

33 // DEF={builder} USE={repository, quialifier}

34 qualifier.addAlias("B", "pkg.A$B");

35 // DEF={qualifier} USE={}

36 Type type = JavaType.fromJava(My.class);

37 // DEF={type} USE={}

38 builder.startType(0, "A", type, new ArrayList<Type>());

39 // DEF={builder} USE={}

Figure 4.10. Intermetiate data and statements captured with the data flow analysis for
instantiation of class CompilationUnitBuilder

for the qualifier variable DFA() identifies the statements that define the variable in
lines 19 and 30, and for the repository variable DFA() identifies statement that defines
the variable in line 17. The DFA() procedure also captures all the variables used as
parameters in the identified statements. These variables are added to the GEN set and
are recursively analyzed in the corresponding DFA() execution. In other words, DFA() is
invoked recursively for each variable used in method or constructor calls that define the
variables required to instantiate the class of interest. For instance, variable repository

is defined in line 17 and variable parent is used in this statement. Thus, the algorithm
proceeds recursively by adding variable parent in the GEN set and analyzing it in the

54 4.3 Extracting instantiation and execution sequences

Input: star tVar
Output: OU T

1: de fstar tVar ← getDe f Location(star tVar)
2: OU T ← {}
3: ANALY Z ED ← {}
4: DFA-EXEC(star tVar, de fstar tVar)

5: procedure DFA-EXEC(var, lower Limit)
6: DEFvar ← getDe f Locations(var)
7: for all de f ∈ DEFvar & precedence(de f , lower Limit) do
8: statement ← getStatement(de f)
9: OU T ← OU T ∪ statement

10: GEN ← getParameterVariables(statement) \ ANALY Z ED
11: for all var ∈ GEN do
12: de fvar ← getDe f Location(var)
13: DFA(var, de fvar) . DFA() procedure in ExtractInstSeq in Figure 4.9
14: end for
15: end for
16: end procedure

Figure 4.11. Recursive algorithm ExtractExecSeq for extracting method invocation
statements on a given class

DFA() procedure. As a result, DFA() captures the statements in lines 15 and 28 for
variable parent.

The ExtractInstSeq algorithm applied to the example in Figure 4.10 for a class Com-
pilationUnitBuilder produces the output represented by a sequence of statements
OU T = {15, 17, 19, 28, 30} where each statement contributes to instantiate the builder
object.

Algorithm for extracting execution sequences The algorithm ExtractExecSeq shown
in Figure 4.11 extracts execution sequences for a given class. ExtractExecSeq captures
all the statements that follow the instantiation of a class of interest and define the
instance of the class. For each statement that defines the class instance the algorithm
also captures all the statements that contribute to instantiate and define their parameters
using the recursive DFA() procedure of ExtractInstSeq algorithm. The algorithm relies
on the same auxiliary procedures as ExtractInstSeq algorithm.

Consider for example class CompilationUnitBuilder in Figure 4.10. It is instanti-
ated with the constructor call at line 32. The statement at line 38 follows Compilatio-
nUnitBuilder instantiation and defines the instance of the class with the startType()

55 4.4 Generating test cases

method call. In its turn method startType() uses type object among its parameters.
The algorithm adds type variable to the GEN set and invokes the DFA() procedure on
it. This results in the statement on line 36 added to the resulting execution sequence
OU T = { 36, 38}.

The complexity of the algorithms presented in this section is of the same order,
O(n · log(n)) in the worst case.

As a result of this phase, for each class of the system we capture instantiation and
execution sequences. We augment the system ORD with these sequences and with the
corresponding context data.

4.4 Generating test cases

In the last phase of the approach we identify sets of dependent classes from the ORD
generated in the first phase, and for each set of classes we suitably combine the
sequences identified in the second phase to generate new test cases. This is an iterative
process articulated in two steps.

Step 1

We first identify dependent classes we want to integrate using ORD. Each node in
ORD that has outgoing arcs represents a class that directly depends on other classes
for being constructed (a corresponding class constructor manifests its dependencies
through constructor parameters).

Using ORD we can identify directly related classes and classes related through the
intermediary classes, when an intersection of pairs of transitively dependent sets of
classes is non-empty. For instance, in ORD in Figure 4.12 classes A and B are directly
related, while classes 〈A, E〉 are related through class subB, and classes 〈B, E〉, 〈A, E〉,
and 〈subB, E〉 are related through class C . Both direct and indirect class relations shall
be tested to stress possible interactions between dependent classes.

In our study of existing test cases (Section 3) we have observed that unit test cases
mainly exercise direct class relations. They test class interactions, where one class
changes its state, while other dependent classes represent test scaffolding and rarely
change their state. At the same time, unit test cases do not test many potential class
interactions involving multiple state transitions for the sets of directly dependent classes,
as well as for sets of classes related through the intermediary ones. Our approach
focusses on exercising direct class dependencies, and can be easily extended to deal
with classes related through the intermediary ones.

To select directly related classes we traverse the ORD and select incident pairs of
nodes. Consider, for example, the ORD in Figure 4.12. Starting from the class A, the first

56 4.4 Generating test cases

A

E

C

D

subBB

Figure 4.12. An example of ORD

pair of dependent classes is 〈A, B〉, where A requires and instance of B to be constructed
(alternatively, A requires an instance of subB, where subB is a subclass of B).

We then integrate directly related classes by suitably combining their instantiation
sequences and generating a new instantiation sequence. We start with the instantiation
sequences of a class at the top of the dependency hierarchy in the selected subset of
dependent classes, and we incrementally add instantiation sequences for the dependent
classes in the order of occurrence in the original test cases.

For example, to integrate classes A and B we first select any of their instantiation
sequences excerpted from test cases. We do not use A’s instantiation sequence directly
but we modify it and provide it with the new instance of B instantiated from the B’s
selected sequence. To that end we substitute the original instance of class B in the
A’s sequence invoking A’s constructor and providing it with the new instance of B.
Instantiating dependent class from the existing instantiation sequence allows us to
obtain a correctly instantiated object that can instantiate auxiliary classes. As seen from
the ORD, B depends on C and B’s instantiation sequence should contain instantiation
of class C .

Simple unit test cases tend to use minimal initialization of classes, often with null
references instead of objects, and may not fully instantiate dependent classes. We adapt
instantiation sequences and substitute class instances used in original sequences to the
instances of the dependent classes that have a compatible type. This way we create a
new instantiation sequence that instantiates and wires selected set of dependent classes,
and we explore new, possibly untested combinations.

57 4.4 Generating test cases

Step 2

In the first step we integrate clusters of classes by merging instantiation sequences. In
this step we complete the test cases by adding execution sequences. We iteratively com-
bine the execution sequences of the considered classes to trigger different interactions
between collaborating classes. Class interactions can either follow the initialization
of collaborating classes or take place during the initialization. Thus, we merge the
execution sequences of the classes involved in the interactions both after the instantia-
tion sequence and interleaved with it, following the data precedence relation among
sequences that we infer in the former phases.

Precedence relations Sequences can be combined differently depending on the possi-
ble orders among sequences. We identify three types of arrangements of sequences: (1)
based on the instantiation order of dependent classes; (2) based on the order between
sequences of a certain class; (3) based on the order across sets of sequences appended
previously.

1. Arranging execution sequences following the class instantiation order, while
sequences may interleave instantiation sequences:

// Legend:

// A - instantiation sequence for class A

// a1 - execution sequence for class A

ABC a1 b1 c1 // follow instantiation order

A a1 B b1 C c1 // follow instantiation order

A a1 a2 B b1 b2 C c1 c2 ... // follow instantiation order; sequences between

instantiations

A a1 B b1 C c1 a2 b2 c2 ... // follow instantiation order; sequences after all

instantiations

ABC c1 b1 a1 // opposite to instantiation order

We observed in existing test cases that the most common order of method invoca-
tions corresponds to and follows the order of class instantiation. It represents the
case when the class instantiated last depends on the states of the objects used for
its instantiation, moreover it requires certain states of these objects for method
invocation. In this case, the classes instantiated first are also subjects to method
invocations in the order of class instantiation.

2. Arranging sequences based on the order between sequences of a certain class:

ABC a1 a2 b1 b2 c1 c2 ... // for each class a new sequence is after the previous one

ABC c1 c2 b1 b2 a1 a2 ... // for each class a new sequence is after the previous one

ABC a2 a1 b2 b1 c2 c1 ... // for each class a new sequence is before the previous one

ABC c2 c1 b2 b1 a2 a1 ... // for each class a new sequence is before the previous one

This arrangement aims to maximize the length of sequences for each dependent
class, when sequences can be iteratively appended extending sequences of a given
class already in the test.

58 4.4 Generating test cases

3. Arranging sequences based on the order between sets of sequences:

ABC a1 b1 c1 a2 b2 c2 ... // set ’2’ is after the previously added set ’1’

ABC c1 b1 a1 c2 b2 a2 ... // set ’2’ is after the previously added set ’1’

ABC a2 b2 c2 a1 b1 c1 ... // set ’2’ is before the previously added set ’1’

ABC c2 b2 a2 c1 b1 a1 ... // set ’2’ is before the previously added set ’1’

In this case the order is determined between sets of sequences and not between
individual sequences. This arrangement aims to alternate groups of sequences,
where each group corresponds to a certain combination of possible class interac-
tions for a set of dependent classes.

Different arrangements of executions sequences allow to construct interleaving
combinations of states for dependent classes that aim to highlight interaction faults.

Data relations Additionally to the integration of classes through instantiation se-
quences described in Step 1, we aid further class integration and interactions by
exploiting data relations across execution sequences: we reuse auxiliary objects and
data across sequences in method and constructor parameters.

Initially, the method parameters in the sequences in the generated test cases use
objects and data observed in the corresponding original test cases. In our approach
we use parameter objects and data of matching types to integrate new classes in the
generated test case or to integrate parts of the generated test case. To that end we
substitute actual parameters of method invocations for class instances of compatible
type observed in the preceding method invocations of previously appended sequences.

Integration strategy

We develop an integration strategy that generates test cases with different order of
execution sequences to explore the maximal number of the possible combinations of
class states and transitions for dependent classes. We maximize the combination of
class states, because integration faults may be hidden by the state-dependent behavior.
New combinations of classes aim to discover dynamic mismatches, when polymorphic
calls may be dynamically bound to incompatible methods causing integration faults.
We maximize the length of the execution sequences, because long execution sequences
were shown to be more effective in revealing integration faults [MPP07].

Our definition of integration strategy differs from the integration test order strategies
that are commonly used in integration testing [BLW03]. These strategies generate
test order trying to minimize stubbing of the untested components. In contrast, our
integration strategy aims to explore possible class combinations and interactions through
different combinations of sequences.

In a nutshell, our integration strategy works as follows. For each pair of classes c j

and ck such that ck depends on c j and is instantiated after c j, the execution sequence
of ec j

for the class c j can be appended after the instantiation of c j and before the

59 4.4 Generating test cases

instantiation of ck (seeking class interactions during the instantiation of the class ck),
or after the instantiation of ck and before or after the eck

execution sequence (seeking
class interactions for the two combinations of states for instantiated classes c j and ck).

We have developed and verified integration strategy that represents our experience
and intuition towards the causes and effects of class interactions for generating complex
test cases.

The intuition for our integration strategy comes from the observation of many
existing unit test cases. We have observed that classes instantiated last depend on
the state of the classes they use for instantiation. Thus, in this strategy we append
sequences in the order of class instantiation:

ABC a1 b1 c1 ...

The execution sequences observed in unit test cases tend to be quite short, and
unit test cases usually test simple behaviors. Thus, we assume that each execution
sequence corresponds to a single state transition in a class. To better test the different
combinations of class state transitions we conjecture that state changes can be differently
distributed between interacting classes when sets of sequences are appended one after
another or when sequences intersect. In the integration strategy we append set of
sequences after the previously appended set on each iteration up to the predefined
limit:

ABC a1 b1 c1 a2 b2 c2 ...

We exploit data relations within the test case and we integrate new objects in the
sequences by substituting system classes passed as method parameters in the execution
sequences. We select and add instantiation sequences for classes of types matching the
parameters in method interfaces and substitute actual method parameters with the new
class instances. We exploit data relations and we reuse auxiliary objects and data across
sequences.

We extend sequences only for the initial set of integrated classes thus focussing on
their interactions. We do not append nor extend sequences on the class instances used
as parameters for the method calls on the integrated classes. We iteratively select and
combine execution sequences, and for each iteration we take into account the constrains
that derive from the sequences already appended and their relative positions. Once we
produce new longer test cases, we can use these test cases as input to the process to
produce even more complex test cases.

Our approach automates the combination of instantiation and execution sequences,
but does not deal with assertions yet. Assertions in unit test cases are usually partial
comparison-based oracles. Only a small fraction of these assertions can be reused in
generated test cases without adaptation. Additional heuristics are necessary to enable
the adaptation and import of assertions taking into account state-dependent behavior

60 4.5 Example

of classes. In our experiments to reveal failures, we rely on exceptions thrown during
the executions.

4.5 Example

We present the core idea of our approach through a working example, a simple inte-
gration fault in JFreeChart2, a professional chart generation library. We show that the
fault depends on the interaction between several modules, and as such can be hardly
detected with simple test cases that check the behavior of single units. In fact, non of
the unit test cases provided with JFreeChart exercises the faulty behavior nor detects the
fault, despite mature test suite and continous project support and testing. We illustrate
the relations between an integration test case that reveals the fault and the unit test
cases for the involved modules, and use the example to illustrate different phases of the
approach.

The JFreeChart library provides functionality to create charts with multiple compos-
ite titles that can be placed at the top, bottom, left or right of the chart. Composite title
structure follows Composite design pattern as shown in a fragment of JFreeChart class
diagram in Figure 4.4. Titles can be composed of a number of blocks that represent
arbitrary items that can be drawn. To hold a collection of blocks CompositeTitle class
uses an instance of a container class BlockContainer that aggregates Block objects.
To correctly position each Block object within a composite title BlockContainer uses
different Arrangement classes.

The described functionality of JFreeChart conceals integration problem that is related
to the arrangement of the elements in the composite chart title. Positioning of the
blocks of CompositeTitle using ColumnArrangement triggers exceptional condition:
invocation of an arrange() method of class CompositeTitle fails with an uncaught
exception if CompositeTitle contains BlockContainer with null objects of class
Block. This behavior contradicts the specification for the class BlockContainer that
permits null objects of class Block.

The integration fault originates in the ColumnArrangement class that fails to handle
null objects, while such objects are permitted in the classes CompositeTitle and
BlockContainer that interact with the ColumnArrangement.

Simple test cases Figures 4.13 and 4.14 show the excerpt of some unit test cases for
the BlockContainer and CompositeTitle components. These test cases exercise short
sequences of method invocations on individual classes aiming to check the behavior of
the single classes. They do not detect the described integration fault, because they do
not test class interactions.

2http://jfree.org/

61 4.5 Example

1 public void testEquals() {

2 BlockContainer c1 = new BlockContainer(new FlowArrangement());

3 BlockContainer c2 = new BlockContainer(new FlowArrangement());

4 assertTrue(c1.equals(c2));

5 assertTrue(c2.equals(c2));

6 c1.setArrangement(new ColumnArrangement());

7 assertFalse(c1.equals(c2));

8 c2.setArrangement(new ColumnArrangement());

9 assertTrue(c1.equals(c2));

10 c1.add(new EmptyBlock(1.2, 3.4));

11 assertFalse(c1.equals(c2));

12 c2.add(new EmptyBlock(1.2, 3.4));

13 assertTrue(c1.equals(c2));

14 }

1 public void testCloningBlockContainer() {

2 BlockContainer c1 = new BlockContainer(new FlowArrangement());

3 c1.add(null);

4 BlockContainer c2 = null;

5 try {

6 c2 = (BlockContainer) c1.clone();

7 } catch (CloneNotSupportedException e) {

8 fail("Failed to clone.");

9 }

10 assertTrue(c1 != c2);

11 assertTrue(c1.getClass() == c2.getClass());

12 assertTrue(c1.equals(c2));

13 }

Figure 4.13. Unit test cases for class BlockContainer

In particular, the two test cases in Figure 4.13 exercise the BlockContainer func-
tionality to set arrangement and add new blocks to the container and check the equality
of objects (the code corresponding to these method invocations is underlined in the
figures), but they do not check the interactions with the different Arrangement classes.
These unit test cases focus on the effects of the method invocations in the scope of the
class BlockContainer.

Similarly, the unit test cases for the CompositeTitle class shown in Figure 4.14
do not check the interactions between the CompositeTitle, BlockContainer and
Arrangement classes, although they instantiate and integrate them. None of the 2219
unit test cases distributed with JFreeChart reveals the integration fault illustrated at the
beginning of the section.

A complex test case Figure 4.15 shows a more complex test case generated with
our approach for JFreeChart. This test case exercises interactions between the classes
CompositeTitle, BlockContainer and ColumnArrangement, and reveals the fault.
The test case integrates CompositeTitle and BlockContainer classes. It then adds
different Block objects to the container and sets the ColumnArrangement. The incorrect

62 4.5 Example

1 public void testHashcode() {

2 CompositeTitle t1 = new CompositeTitle(new BlockContainer());

3 t1.getContainer().add(new TextTitle("T1"));

4 t1.setBackgroundPaint(new GradientPaint(1.0f, 2.0f, Color.red, 3.0f, 4.0f,

5 Color.yellow));

6 CompositeTitle t2 = new CompositeTitle(new BlockContainer());

7 t2.getContainer().add(new TextTitle("T1"));

8 assertTrue(t1.equals(t2));

9 int h1 = t1.hashCode();

10 int h2 = t2.hashCode();

11 assertEquals(h1, h2);

12 }

1 public void testArrange(){

2 BlockContainer container = new BlockContainer(new GridArrangement(2, 3));

3 CompositeTitle title = new CompositeTitle(container);

4 Size2D s = title.arrange(null, new RectangleConstraint(200, 100));

5 assertEquals(200.0, s.getWidth(), EPSILON);

6 assertEquals(100.0, s.getHeight(), EPSILON);

7 }

Figure 4.14. Unit test cases for class CompositeTitle

implementation of ColumnArrangement is revealed through the interactions between
the classes involved in the test. CompositeTitle invokes arrange() method. In this
method an instance of the ColumnArrangement class accesses the blocks stored in
BlockContainer and fails while handling null Block object.

Procedure

We now illustrate our approach with the JFreeChart working example introduced in the
previous section, by presenting the results of the different phases when the approach
is applied to the classes BlockContainer and CompositeTitle, and to the simple test
cases presented in Figures 4.13 and 4.14.

Phase 1. Identifying dependencies between collaborating classes: Figure 4.2 shows
an excerpt of the ORD for JFreeChart. The excerpt is limited to the relations that we
need for the example.

The classes of JFreeChart are integrated through dependency injection, and manifest
their dependencies in the constructor signatures. The class CompositeTitle depends
on the class BlockContainer. The class BlockContainer directly depends on the
classes implementing the Arrangement interface.

Phase 2. Identifying instantiation and execution sequences in existing test cases:
The instantiation sequences of JFreeChart for BlockContainer include iBlockContainer1

–

63 4.5 Example

1 // Automatically generated test case

2 public void testCompositeTitle837() throws Exception {

3 // integrate dependent classes CompositeTitle and BlockContainer

4 BlockContainer var1739 = BlockContainer(new GridArrangement(2, 3));

5 CompositeTitle var1740 = new CompositeTitle(var1739);

6

7 // first sequence for BlockContainer

8 BlockContainer var1731 = new BlockContainer(new FlowArrangement());

9 var1739.equals(var1731);

10 var1739.setArrangement(new ColumnArrangement()); // ColumnArrangement is faulty and

cannot deal with nulls

11 var1739.add(new EmptyBlock(1.2, 3.4));

12 var1739.equals(var1731);

13

14 // first sequence for CompositeTitle

15 var1740.getContainer();

16 var1740.hashCode();

17

18 // second sequence for BlockContainer

19 var1739.add(null); //null Block is permitted in the specification of BlockContainer.add()

20 var1739.clone();

21 var1739.getClass();

22 var1739.equals(var1731); // substitution across sequences: used object from the first

sequence

23

24 // second sequence for CompositeTitle

25 var1740.arrange(null, new RectangleConstraint(200, 100)); // NullPointerException in

ColumnArrangement

26 // failure in CompositeTitle.arrange() is caused by null Block that was added to

BlockContainer in line 19.

27 // fault is located in ColumnArrangement class

28 }

Figure 4.15. Integration test case exposing integration fault in class ColumnArrange-
ment through interaction of classes BlockContainer and CompositeTitle

iBlockContainer3
and correspond to constructor invocations observed in test cases in

Figures 4.13 and 4.14:

// i_BlockContainer_1

BlockContainer c1 = new BlockContainer(new FlowArrangement());

// i_BlockContainer_2

BlockContainer container = new BlockContainer(new GridArrangement(2, 3));

// i_BlockContainer_3

new BlockContainer()

Instantiation sequences for the class CompositeTitle include iComposi teT i t le1
and

iComposi teT i t le2
:

//i_CompositeTitle_1

CompositeTitle t1 = new CompositeTitle(new BlockContainer());

64 4.5 Example

//i_CompositeTitle_2

BlockContainer container = new BlockContainer(new GridArrangement(2, 3));

CompositeTitle title = new CompositeTitle(container);

The execution sequences for BlockContainer correspond to the sequences of
method invocations on c1 and c2 objects observed in the test cases shown in Fig-
ure 4.13. We can identify four execution sequences, eBlockContainer1

– eBlockContainer4
:

// e_BlockContainer_1

BlockContainer c2 = new BlockContainer(new FlowArrangement());

c1.equals(c2);

c1.setArrangement(new ColumnArrangement());

c1.equals(c2);

c1.equals(c2);

c1.add(new EmptyBlock(1.2, 3.4));

c1.equals(c2);

c1.equals(c2);

// e_BlockContainer_2

c2.equals(c2);

c2.setArrangement(new ColumnArrangement());

c2.add(new EmptyBlock(1.2, 3.4));

// e_BlockContainer_3

BlockContainer c2 = null;

c1.add(null);

c1.clone();

c1.getClass();

c1.equals(c2);

// e_BlockContainer_4

BlockContainer c2 = null;

c2.getClass();

The execution sequences for the class CompositeTitle correspond to the sequence
of method invocations on the title, t1, t2 objects observed in test cases shown in
Figures 4.14:

// e_CompositeTitle_1

title.arrange(null, new RectangleConstraint(200, 100));

// e_CompositeTitle_2

t1.getContainer();

t1.setBackgroundPaint(new GradientPaint(1.0f, 2.0f, Color.red, 3.0f, 4.0f, Color.yellow));

CompositeTitle t2 = new CompositeTitle(new BlockContainer());

t2.getContainer().add(new TextTitle("T1"));

t1.equals(t2);

t1.hashCode();

// e_CompositeTitle_3

t2.getContainer();

t2.hashCode();

65 4.5 Example

We also identify data values, inner classes, static field information, and auxiliary
objects used in instantiation and execution sequences:

// context data

new FlowArrangement()

new ColumnArrangement()

new EmptyBlock(1.2, 3.4))

new GridArrangement(2, 3)

new RectangleConstraint(200, 100)

EPSILON

new TextTitle("T1")

new GradientPaint(1.0f, 2.0f, Color.red, 3.0f, 4.0f, Color.yellow)

Phase 3. Combining the execution sequences: The integration strategy works in
two steps. We first integrate the classes involved in the new test case by merging the
corresponding instantiation sequences (step 1), and then incrementally add execution
sequences to test complex object interactions (step 2). Here we illustrate the approach
with two iterations of step 2.

Step 1: Integrate dependent classes.
We integrate the classes BlockContainer and CompositeTitle from the fragment

of dependencies identified in Phase 1.
The dependency information computed in the first phase (class CompositeTitle

depends on class BlockContainer) dictates the order of integration of the initialization
sequences: 〈iBlockContainer2

, iComposi teT i t le2
〉. The resulting instantiation sequence is:

BlockContainer var1739 = new BlockContainer(new GridArrangement(2, 3))

CompositeTitle var1740 = new CompositeTitle(var1739);

Step 2, Iteration 1: Incrementally extend the test case by integrating execution sequences
for the involved classes.

We randomly select an execution sequence for each class involved in the test case,
and we integrate them according to the dependency between the classes. In this first
step, we select eBlockContainer1

and eComposi teT i t le3
. Since class CompositeTitle requires

class BlockContainer, we first append the sequence eBlockContainer1
to change the state

of the BlockContainer and possibly affect the state of the CompositeTitle, and then
we append the sequence eComposi teT i t le3

to invoke the methods of CompositeTitle in
the new state.

The invocations of methods in both sequences require objects as parameters. While
extending the test case with the new sequences, we need to add also the auxiliary
objects required by the sequences.

66 4.5 Example

// test case extended with e_BlockContainer_1

BlockContainer var1731 = new BlockContainer(new FlowArrangement());

var1739.equals(var1731);

var1739.setArrangement(new ColumnArrangement());

var1739.equals(var1731);

// test case extended with e_CompositeTitle_3

var1740.getContainer();

var1740.hashCode();

Step 2, Iteration 2: Incrementally extend the test case by integrating additional
execution sequences.

We can further extend the test case by appending additional execution sequences.
We obtain the following test case by incrementally appending the sequences eBlockContainer3

and eComposi teT i t le1
:

We add the eComposi teT i t le1
sequence after eBlockContainer3

, and after previously ap-
pended sequences, and thus we can reuse the objects with matching types across
sequences. In eBlockContainer3

, the object of type BlockContainer is used as a parameter
for method equals() and is substituted for the one from the sequence eBlockContainer1

.

// final test case incrementally extended with e_BlockContainer_3 and e_CompositeTitle_1

public void testGenerated(){

BlockContainer var1739 = new BlockContainer(new GridArrangement(2, 3))

CompositeTitle var1740 = new CompositeTitle(var1739);

BlockContainer var1731 = new BlockContainer(new FlowArrangement());

var1739.equals(var1731);

var1739.setArrangement(new ColumnArrangement());

var1739.equals(var1731);

var1740.getContainer();

var1740.hashCode();

var1739.add(null);

var1739.getClass();

var1739.equals(var1731);

var1740.arrange(null, new RectangleConstraint(200, 100));

}

The test case that we generate automatically reveals the fault presented in Sec-
tion 4.5 and illustrated in Figure 4.15.

This example demonstrates how information captured in existing simple test cases
can be reused and combined to create new test cases. Applying proposed approach
one can generate complex test cases, that can potentially reveal integration faults in
interacting sets of classes.

Chapter 5

Evaluation

To evaluate our approach we developed a prototype Fusion. We applied
Fusion on open-source projects to evaluate the feasibility, the usefulness and
the effectiveness of the approach. In this chapter we describe the prototype,
report the results of our experiments and of the comparison of our approach
with state of the art test case generation techniques. The results show that
our approach generates new complex test cases and detects interaction faults
differently from the state of the art techniques.

The research hypothesis of this thesis stated in Chapter 1 is that “test cases contain
important and meaningful information; this information can be automatically captured
and exploited to construct new more complex test cases.”

In Chapter 3 we have provided evidence that test cases contain important informa-
tion and we have shown that this information can be captured and exploited. In this
chapter we validate the last part of the research hypothesis that important information
in existing test cases can be effectively reused to construct more complex and useful
test cases automatically.

In our evaluation we address the following research questions:

Research Question 1: Can our approach generate new test cases from the information
available in the code and the existing test cases?

Research Question 2: How useful are the generated test cases, i.e., can they reveal
faults that are not detected by the original test cases, and, if so, what kinds of
faults can be detected?

Research Question 3: Is our approach more effective than existing approaches to
automatically generate test cases, i.e., can the generated test cases detect faults
not revealed by the test cases generated with other automated techniques?

The first research question (RQ1) explores the feasibility of generating new test cases
from the information in the source code and the existing test cases. RQ1 evaluates the

67

68 5.1 Prototype implementation Fusion

ability of the approach presented in Chapter 4 to generate valid test cases automatically.
RQ1 also explores the applicability of the approach by indirectly answering a question
whether there is sufficient information in existing test cases to generate new and valid
test cases. To answer RQ1 we quantitatively assess the amount of test cases that can be
generated exploiting the information in the source code and original test cases.

The second research question (RQ2) explores the usefulness of generated test cases.
The ultimate usefulness of a test case is its ability to reveal faults. We directly measure
the fault-detection capability of test cases by executing them and classifying the detected
failures and corresponding faults. We use original test cases as a baseline to measure
whether our approach detects known or new faults.

In the third research question (RQ3) we assess the effectiveness of the approach.
Given that our approach generates useful test cases (RQ2), we show its effectiveness by
comparing generated test cases and corresponding faults with the test cases produced
with the state of the art test generation techniques. Our approach is effective if it can
detect new faults not detected by the state of the art approaches.

To address the stated research questions we evaluated our approach experimentally
by means of a prototype implementation Fusion and we applied it on a number of open
source projects with available test suites to generate new test cases.

In the next section we describe implementation details of the prototype. In Sec-
tion 5.2 we present experimental setup and experimental procedure followed by discus-
sion of the experiments and experimental results.

5.1 Prototype implementation Fusion

The prototype Fusion implements the approach to test case generation described in
Chapter 4. Fusion works on software projects in Java and test cases in JUnit format1.
The generation process is fully automated. Fusion automatically analyzes the software
project to extract class dependencies. For all the classes in the project Fusion analyzes
the corresponding test cases to extract the relevant test case fragments. It then combines
these fragments according to the integration strategy, and produces valid combinations
as new executable test cases in JUnit format.

Fusion is an Eclipse Plug-in developed in Java using Eclipse JDT2. Figure 5.1 shows
the high-level architecture of the prototype. The prototype relies on Eclipse JDT services
that require software projects to be configured without compilation errors and missing
external dependencies. Software projects shall be manually configured by the user to
enable analysis and test case generation.

The Eclipse UI component of Fusion handles interactions with the user. Fusion
extends the Eclipse interface by adding a main menu item in Eclipse IDE. From this

1Fusion supports the versions JUnit3 and JUnit4
2www.eclipse.org/jdt/ - Eclipse Java Development Tools

www.eclipse.org/jdt/

69 5.1 Prototype implementation Fusion

Eclipse
UI

Source
Code

Analyzer

Test Code
Analyzer Test Code

Synthesizer

Test Runner Test Repair*

Dependence and
Sequence Info Storage

(1)

(2)
(3)

(4)

(5)

Figure 5.1. High-level architecture of Fusion

menu one can activate project analysis and test case generation processes. Upon
completion Eclipse UI delivers test generation and test execution reports to the user,
while Eclipse project explorer indicates the folders with generated test cases.

The Source Code Analyzer component analyzes system source code to capture class
hierarchy information and dependencies between the classes of the system. The Source
Code Analyzer relies on the JDT interfaces org.eclipse.jdt.core.dom.ASTParser

and org.eclipse.jdt.core.IJavaProject to extract this information. It statically
analyzes class constructor declarations, extracts class references from their formal
parameters by parsing Abstract Syntax Trees (AST) of the system classes.

The Source Code Analyzer aggregates the results of the analysis in a directed de-
pendence graph that it stores in a Dependence and Sequence Info Storage component.
Graph storage and traversal mechanisms use the JGraphT graph manipulation library3.
Dependence graph represents Object Relation Diagram (ORD) of the system introduced
in Section 4.2. The dependence graph records references to the public constructors
of the system classes as its nodes, and dependences between these constructors as its
directed edges.

The Test Code Analyzer component identifies public constructor invocations in test
cases using the Eclipse Search Engine (org.eclipse.jdt.core.search.SearchEngine
interface). The Test Code Analyzer searches for constructor references using the con-
structor signatures stored in the Dependence and Sequence Info Storage component.

The Test Code Analyzer implements the data flow analysis algorithms introduced
in Section 4.3. For each JUnit test class with detected system class constructors the

3www.jgrapht.org

www.jgrapht.org

70 5.1 Prototype implementation Fusion

component applies data flow analysis to identify the test case fragments relevant to class
instantiation or class usage. Each fragment is then associated with the corresponding
node of the ORD and stored in the Dependence and Sequence Info Storage.

The data flow analysis for extracting relevant test case fragments is implemented
on top of the Eclipse interfaces for AST representation with Bindings (org.eclipse.
jdt.core.dom.AST and org.eclipse.jdt.core.dom.IBinding interfaces). Bindings
provide contextual information and alias resolution. Bindings contain resolved informa-
tion about type, method or variable references that allows to identify these references
uniquely.

Data flow analysis is based on a recursive traversal of test class AST. To collect an
instantiation sequence for a given constructor invocation location, the Test Code Analyzer
statically traverses AST and collects statements that operate on variables that contribute
directly or transitively to the actual arguments in constructor invocation. To collect an
execution sequence Test Code Analyzer records sequences of statements that operate on
variable instantiated in a given constructor call. For method invocations on the variable
of interest Test Code Analyzer records their actual arguments and captures statements
that operate on variables that contribute to the arguments directly or transitively.

Each set of statements in instantiation and execution sequences is captured as an
AST subtree that can be replicated and manipulated. The Test Code Analyzer augments
the nodes of the ORD in the Dependence and Sequence Info Storage with references to
the corresponding instantiation and execution sequences, that is, to the corresponding
AST subtrees.

Test Code Synthesizer implements the integration strategy with the incremental
pairwise combination of classes described in Section 4.4 and combines captured test
case fragments into new JUnit test cases. Test cases are composed into individual JUnit
test methods in JUnit test classes for each system class. The Test Code Synthesizer uses
Eclipse AST manipulation mechanism to prepare the test case skeletons and fill them by
creating new code entities (for instance, using method AST.newMethodDeclaration())
or by copying existing subtrees with ASTNode.copySubtree() methods.

The Test Code Synthesizer generates new test cases for all the system classes for
which the Source Code Analyzer allocated the corresponding nodes in the ORD. The
Test Code Synthesizer traverses the ORD and, for each node, identifies pairs of directly
dependent classes and corresponding instantiation and execution sequences. Sequences
are selected pseudo-randomly from all the sequences in ORD related to the constructors
of matching type.

Based on the direction of dependency between edges in the ORD, the Test Code
Synthesizer integrates instantiation sequences of the dependent classes. The classes
are integrated by substituting instances in the original code fragments with instances
of the dependent classes. Then the Test Code Synthesizer adds selected execution
sequences of dependent classes in a number of iterations with practically determined
limit. Execution sequences of subordinate classes are appended before execution

71 5.2 Experimental setup

sequences of a predominant class. Auxiliary class instances of matching types used in
method invocation statements are reused across sequences through object substitution.
The Test Code Synthesizer automatically resolves external class dependencies, naming
conflicts and import declaration conflicts.

The Test Runner component compiles the generated test cases, optionally resolves
compilation errors relying on the Test Repair component, executes the test cases, and
produces reports. Test Runner uses native Eclipse JUnitTestRunner (org.eclipse.
jdt.junit.JUnitCore interface) to produce test execution report and classify passing
and failing test cases. For test repair it uses the special Eclipse compilation error
marker mechanism (interface org.eclipse.jdt.core.IJavaModelMarker) to relate
compilation errors to source code locations. Should compilation errors occur, Test
Runner filters out non-compiling test cases, and automatically repairs errors related to
conflicting class imports in the Test Repair component.

5.2 Experimental setup

Case study subjects

To evaluate our approach we selected four case studies from distinct program domains
with available test suites. All subjects are open-source projects with publicly available
version control and bug tracking repositories. All projects contain manually written test
suites and are actively supported by software developers.

We selected four subject programs developed in Java: TestabilityExplorer4, a source
code analyzer, JGraphT5, a library that supports graph theory objects and algorithms,
Apache Ant6, a Java library and a state of the art build tool, and JFreeChart7, a profes-
sional chart generation library.

Program (version) LOC
unit test

cases, LOC
test coverage

(line - branch)

TestabilityExplorer (1.3.2) 8214 5596 81% - 66%
JGraphT (0.8.3) 12207 5637 70% - 63%
Apache Ant (1.8.4) 104307 24384 48% - 42%
JFreeChart (1.0.14) 93460 49644 56% - 46%

Table 5.1. Subject programs with unit test cases

Table 5.1 presents some details about the complexity of the case studies: number
of lines of source code (LOC), number of lines of test source code (LOC), statement

4http://code.google.com/p/testability-explorer/
5http://jgrapht.org/
6http://ant.apache.org/
7http://jfree.org/

http://code.google.com/p/testability-explorer/
http://jgrapht.org/
http://ant.apache.org/
http://jfree.org/

72 5.3 Applicability and feasibility

and branch coverage metrics for the available test suites. These data are collected with
Google CodePro AnalytiX and Cobertura8 Eclipse plugins.

Case studies are small to medium size applications from 8 KLOC to 105 KLOC. All
case studies come with mature test suites of medium to high test coverage. Most of the
subjects have been used in a number of research papers as case studies.

Evaluation procedure

We applied our approach on each case study to generate new test cases from the test
cases available with the distribution of the applications. We executed both the original
and the new test cases. Then we inspected the generated test cases and the revealed
faults both to check whether the generated test cases find new faults and to classify the
type of faults revealed with the new test cases.

We compared the test cases generated with Fusion with the test cases generated with
state of the art test generation tools that work with Java programs. In particular we com-
pared our results with the results obtained with Palus [ZSBE11] and Randoop [PLEB07]
on the same four case studies.

We executed the test cases generated with the different approaches and inspected
the corresponding faults to measure the effectiveness of our approach compared with
the selected approaches. We did not compare Fusion with other approaches, and in
particular with MSeqGen [TXT+09b] and Seeker [TXT+11], because they work only
with .NET programs.

We performed our experiments on two configurations: a Desktop configuration
consisting of a 2.53 GHz Intel Core i5 Processor with 4GB of RAM running Mac OS X
Lion 10.7.4 using Java 6, and a Server configuration consisting of a 16 Core machine
with 2.53GHz Intel Xeon Processors with 16GB of RAM running Ubuntu 12.04.1 LTS.
We used Desktop configuration to run all the selected tools. In case of Palus we used
Server configuration to run resource-intensive analysis.

5.3 Applicability and feasibility

To answer RQ1, we ran our prototype on the subject programs. Table 5.2 shows the
number of test cases that we generated with Fusion and the execution time of the
prototype on the Desktop configuration. We can see that the Fusion execution time is
quite small with an average of about 8 minutes to analyze an application, and that
it generates many new test cases, with an average of 671 test cases per program.
Figure 4.15 in Section 4.5 shows an example of a test case automatically generated
with Fusion for JFreeChart.

8http://cobertura.sourceforge.net/

http://cobertura.sourceforge.net/

73 5.4 Usefulness

Program No. of Generated test cases Execution time (min.)

TestabilityExplorer 420 1
JGraphT 375 1
Apache Ant 540 6
JFreeChart 1350 24

Table 5.2. Test cases generated with Fusion and execution time on the Desktop
configuration

About 60% of the generated test cases compile and execute immediately, while the
rest must be slightly modified to become executable. The execution problems of the
generated test cases do not depend on the approach, but are due to the limitations of
the current prototype. Most of the modifications required to fix the test cases can be
avoided with minor modifications of the prototype currently under implementation.

We can then answer positively to the research question RQ1: our approach generates
many new executable test cases from the information available in the code and the
existing test cases.

5.4 Usefulness

To answer the second research question RQ2, we executed both the original and the
generated test cases, and we inspected the revealed faults. Not surprisingly, the original
test suites do not reveal faults in the programs, since the case studies are stable programs.
The test cases generated with our approach detected 10 new faults, out of which 6 faults
are integration faults that involve from 2 to 4 classes. Strictly speaking, the other 4
faults are unit faults, since they involve only one class, but represent corner cases hard
to detect even with good unit test cases and that were not detected by the original test
suites.

We have contacted the application developers, who confirmed that we found new
faults. The last column of Table 5.3 shows the faults revealed by the generated test
cases and the false positives, i.e., test cases that raise exceptions that are considered
correct by the developers.

Most of the test cases that resulted in false positives were valid sequences of method
invocations leading to the situations anticipated by developers that raise checked
exceptions.

Figure 5.2 shows an example of a test case generated with Fusion that detects unit
fault. The test case detected a corner case unit fault in JGraphT: A second call to a public
method generateGraph() triggers runtime exception. The fault is located in the scope
of one class GraphReader. Its method generateGraph() invokes a private method
readNodeCount() to allocate memory for the vertices for the graph. The internal
procedure in the method readNodeCount() parses input with a graph description to

74 5.4 Usefulness

1 public void testGraphReader205() throws Exception {

2 String var761 = "p 3\ne 1 2 .5\ne 1 3 7\n";

3 GraphReader<Integer, DefaultWeightedEdge> var762 = new GraphReader<Integer,

DefaultWeightedEdge>(

4 new StringReader(var761), 1);

5 Graph<Integer, DefaultWeightedEdge> var763 = new SimpleWeightedGraph<Integer,

DefaultWeightedEdge>(

6 DefaultWeightedEdge.class);

7 VertexFactory<Integer> var764 = new IntVertexFactory();

8 var762.generateGraph(var763, var764, null);

9 var762.generateGraph(var763, var764, null); // fails with runtime exception

10 }

Figure 5.2. Test case generated with Fusion for JGraphT that detects corner case unit
fault

allocate the memory. This procedure accesses a memory location with null reference
and fails with runtime exception. The fault is related to the fact that readNodeCount()
method does not check memory allocation and fails due to the state-dependent behavior
of the underlying input reader.

Most of the integration faults were found by the test cases of two categories. The
first category of test cases are cases that contain sequences of method invocations longer
than average sequences in original test cases. These test cases detected untested class
interactions resulting from specific combinations of method invocations.

An example of such test case for JGraphT is shown in Figure 5.3. Detected inte-
gration fault affects general graph behavior and depends on integration of two classes
ListenableDirectedGraph and DirectedNeighborIndex. In the test case a graph
ListenableDirectedGraph is associated with a listener DirectedNeighborIndex that
is associated with another graph. The failure happens when test case adds a new edge
in the ListenableDirectedGraph. Method addEdge() raises unexpected exception
IllegalArgumentException “no such vertex in graph”, although the vertex exists. In
this situation the graph behavior should not change according to its specification. The
fault depends on the fact that method addGraphListener() of the class ListenableDi-
rectedGraph does not check whether added listener is already associated with another
graph. Specific combination of class instantiations and method invocations in this test
case allows to reveal the fault.

The second category of test cases contains short sequences of method invocations (2-
4 invocations) with specific combinations of class instantiation and method parameter
values. These test cases detected untested combinations of class aggregations that
exposed failures with few method invocations.

Figure 5.4 shows an example of such a short test case generated with Fusion for
TestabilityExplorer. The integration problem involves three classes. Class LocalField

75 5.4 Usefulness

1 public void testListenableDirectedGraph85() throws Exception {

2 ListenableDirectedGraph<String, DefaultEdge> var310 = new ListenableDirectedGraph<String,

DefaultEdge>(DefaultEdge.class);

3 String var311 = "v1";

4 var310.addVertex(var311);

5 String var313 = "v2";

6 var310.addVertex(var313);

7 var310.addEdge(var311, var313);

8 ListenableDirectedGraph<String, DefaultEdge> var312 = new ListenableDirectedGraph<String,

DefaultEdge>(DefaultEdge.class);

9 var312.addVertex(var311);

10 var312.addVertex(var313);

11 var312.addEdge(var311, var313);

12 DirectedNeighborIndex<String, DefaultEdge> var314 = new DirectedNeighborIndex<String,

DefaultEdge>(var312);

13 var310.addGraphListener(var314);

14 String var315 = "v3";

15 var310.addVertex(var315);

16 var310.addEdge(var315, var311); // fails with runtime exception

17 var310.removeEdge(var315, var311);

18 var310.removeVertex(var313);

19 }

Figure 5.3. Test case generated with Fusion for JGraphT that detects integration fault

1 public void testLocalField54() throws Exception {

2 FieldInfo var111 = new FieldInfo(null, "field", null, true, true, false);

3 LocalField var112 = new LocalField(null, var111);

4 var112.getDescription(); // fails with runtime exception

5 var112.computeHashCode();

6 }

Figure 5.4. Test case generated with Fusion for TestabilityExplorer that detects integra-
tion fault

integrates classes Variable and FieldInfo. LocalField also extends Variable and
inherits its methods including method getType(). LocalField’s constructor invokes
method getType() of class FieldInfo for initialization. Neither LocalField nor
FieldInfo check for null type parameter and upon getDescription() method invo-
cation runtime exception occurs. The test case detected the fault for a new combination
of constructor-method invocations with valid inputs that is not present in original test
cases.

We can then answer the second research question RQ2: the generated test cases find
new faults that are not detected with the unit test cases available for the applications,
since they represent either interaction faults or rare corner cases.

76 5.5 Effectiveness

5.5 Effectiveness

To answer RQ3, we generated test cases with Palus and Randoop for the same case
studies, and compared the faults revealed with the different suites. Table 5.3 summarizes
the results.

Program
Randoop Palus Fusion

r.f. c.v. f.p. r.f. c.v. f.p. r.f. c.v. f.p.

TestabilityExplorer 1 1 2 0 0 80 3 1 1
JGraphT 2 3 9 1 1 1 3 0 4
Apache Ant 3 6 128 0 0 94 1 0 7
JFreeChart 4 19 17 0 2 34 3 2 46

Total 10 29 156 1 3 209 10 3 58

Table 5.3. Faults found with Fusion, Randoop and Palus (r.f.: real faults; c.v.: implicit
contract violations; f.p.: false positives)

Both Palus and Randoop generate unit test cases with new execution sequences.
Randoop implements a feedback-directed random test generation loop, and generates
new test cases from the code of the system under test. Randoop generates class
instantiation and method call sequences randomly, and selects valid sequences after
executing and filtering them. Although Randoop is primary considered as a unit testing
tool, it is not limited to generation of simple test cases. Some of the sequences produced
by Randoop can be rather long (more than 20 method invocations) and may integrate
several classes.

Palus builds on Randoop and guides random test generation using both a call se-
quence model inferred from sample executions of the system, and a method dependence
information that derive from accesses to the common class fields. Palus combines static
and dynamic automated test generation approach. It uses dynamic analysis to infer a
call sequence model from a system execution, it then uses static analysis to identify
intra-class method dependences that derive from accesses to common fields. Palus
extends captured sequences with new calls to methods whose invocation depends on
methods already in the traces, and generates test cases from the extended sequences by
means of directed random test generation.

Both Randoop and Palus detect violations of implicit programming rules (for instance,
the symmetry property of equality: o.equals(o) == true) and signal exceptions. In
our comparison we consider these classes of notifications separately. Implicit contract
violations represent minor faults that developers commonly overlook, but the faults are
easily preventable. On the other hand, exceptional conditions can be related both to
major faults caused by unexpected system behavior and to minor faults. Such minor
faults arise from violations of implicit class contracts, for instance, when methods access
uninitialized class fields and raise exceptions.

77 5.5 Effectiveness

In our comparison we distinguish three types of faults. We consider both types
of minor faults as implicit contract violations. We consider exceptional conditions
not related to implicit class contracts either as real faults or as false positives, if the
exceptional conditions are anticipated by developers.

We ran Randoop on each subject multiple times with a time limit of 100 seconds per
subject on the Desktop configuration and we averaged the results. Randoop found more
faults than Fusion, but most of the faults found by Randoop are unit faults that concern
with class methods accessing uninitialized class fields and violation of the equals()

method contract, while the faults found by Fusion are integration faults or subtle corner
cases. Randoop did not find any of the faults detected by Fusion. Moreover, 2 faults
found by Fusion were captured in the regression assertions of Randoop test cases as
valid behaviors.

Palus requires sample executions of the system to infer its call sequence model.
For the subject libraries (JGraphT and JFreeChart) we used their test suites as sample
executions. For the subject applications (TestabilityExplorer and Apache Ant) we executed
them invoking their main functionality. We ran the complete code analysis and reporting
functionality of TestabilityExplorer and a complete application build with test execution
of Apache Ant.

Palus does not scale well when analyzing sample executions for large number of
classes and class instances, as well as for processing large collected models (>1GB).
Palus was inconclusive both on the Desktop and on the Server configurations for all
programs: collecting a model for 200 classes using unit test cases as sample executions
fails due to insufficient JVM heap space after many execution hours.

To overcome scalability problems in the experiments with Palus we produced the call
sequence models for reduced sets of classes that include classes for which our prototype
detected faults.

Palus found two faults in JGraphT, one of which was also reported by Randoop
while the other is a new relevant fault. Palus found two faults in JFreeChart, both of
which are equals() contract violations. The two faults caused 10,392 executions to
fail. Palus did not find any fault for TestabilityExplorer and Apache Ant. None of the test
cases generated by Palus detected any fault revealed by Fusion.

All test suites generated some false positives. The total amount of false positives for
the different test suites is comparable.

We can then answer the third research question RQ3: Fusion finds different faults
than stat of the art random-based testing approaches and produces a comparable
number of false positives.

78 5.6 Discussion

5.6 Discussion

Differently from other approaches, our approach aims to generate integration test cases
that exercise complex class interactions. This is why we can find different faults than
the ones found with Randoop and Palus.

It is difficult for Randoop to create valid sequences of class instantiations using its
randomized algorithm. For this reason Randoop is more likely to produce simple class
instantiations, and, for classes that require complex instantiation, Randoop triggers error-
handling procedures in class instantiations as happened for Apache Ant. In contrast, our
approach reuses and combines existing valid instantiation sequences and is more likely
to generate valid class instantiations.

We also noticed that the scope and applicability of our approach and Palus are
different. Palus is more likely to generate valid class instantiations from the information
obtained in sample executions, but for relatively big models, it is likely to miss the
sequences of method invocations that only appear in a very small portion of the model,
due to the randomized selection of methods. Our approach uses all observed method
invocations, and thus better explores complex and unusual combinations.

Limitations and threats to validity

Although this empirical evaluation provides evidence of the usefulness and effectiveness
of the approach developed in this research, there are several limitations and threats to
the validity of the empirical results that should be considered in their interpretation.

Fusion generates test cases by reusing existing test cases. This is why availability
and quality of original test cases directly affects the effectiveness of the approach.
For instance, our approach may integrate several classes. If original test cases do not
exercise methods of some class, then no execution sequences will be captured for that
class and, consequently, generated test cases will not be able to change the state of this
class by calling its methods. Despite integration of classes, there may be no mutual state
transitions for the integrated classes and problematic interactions may not be triggered.

Figure 5.5 shows an example of such situation. Test case in the figure integrates
four classes, however, there are no execution sequences for these classes in original test
suites. Therefore, Fusion adds no sequences to the generated test case that, consequently,
does not check possible class interactions, only the integration of classes.

Our approach can not guarantee to report all integration faults available in software.
It is an optimistic technique and no finite number of tests can guarantee correctness of
software [PY07]. Although our approach cannot report all possible integration faults, it
can reveal faults different from other approaches. Our evaluation results show that our
approach detects faults that are missed by good original test suites and by test suites
generated with the state of the art test generation tools.

79 5.6 Discussion

1 public void testDateTickUnit83() throws Exception {

2 SimpleDateFormat var327 = new SimpleDateFormat("d-MMM-yyyy", Locale.UK);

3 TimeZone var328 = TimeZone.getTimeZone("GMT");

4 GregorianCalendar var329 = new GregorianCalendar(var328, Locale.UK);

5 var327.setCalendar(var329);

6 DateTickUnit var330 = new DateTickUnit(DateTickUnit.MONTH, 1, var327);

7 }

Figure 5.5. Test case generated with Fusion for JFreeChart

We evaluate the effectiveness of the approach by comparing the types and the
number of faults found by test cases generated with our approach and state of the art
techniques. The quantitative measure based on numbers of faults alone represents a
threat to construct validity as it does not account for the severity and importance of the
discovered faults. Moreover, this measure does not allow to draw statistically significant
conclusions from the obtained experimental data. We draw our conclusions about the
effectiveness of the approach from the qualitative measure that takes into account the
types of the detected faults, including implicit contract violations, unit faults, corner
cases of unit faults, and integration faults.

Our results agree with the state of the practice in fault detection of integration faults.
On average, fault detection rate for integration faults is an order of magnitude lower
than that of unit test cases. We manually analysed fault repositories for the projects
used in our evaluation (Table 5.1). Our inspection indicates an average fault detection
rate of one integration fault per forty unit faults. Taking into account the size and the
complexity of the case studies, together with the amount and severity of the integration
faults found by our approach (Table 5.3), we conclude that our approach is effective.

To improve the statistical significance of the experimental results one may turn to
fault seeding techniques and mutation testing in particular. These techniques allow to
evaluate the effectiveness of the approach with the following assumption: effective test
suites that detect simple syntactic faults can detect more complex real faults [Mor90].
For the technique to be effective, a large number of mutants must be automatically
derived in a systematic way.

Application of mutation testing for evaluation of our approach requires specification
of fault models of unit and integration faults. Models of unit faults exist and include
mutation operators used to implement the fault model, mutant generation techniques,
equivalent-mutant detection, and mutant-killing determination approaches [FZ12]. To
the best of our knowledge, there are no models of integration faults. Such models are
to be developed and evaluated by future research.

The approach generates some false positives because it explores new combinations
of method invocation that may trigger not only real faults, but also false positives. Our
technique partially mitigates this problem because it reuses existing valid instantiation
and execution sequences. This way it avoids generation of a large amount of false

80 5.6 Discussion

positives related to violations of class instantiation protocols. Such violations are a
common problem for automated test generation techniques that our technique mitigates.
Additional sources of information may improve the soundness of the technique by
providing information for construction of test oracles for class integration and potentially
reduce the amount of false positives.

The cost of the approach for automatic test case generation includes machine time
and computational resources for test case generation and execution, and human time for
inspection of test results. Fusion runtime data reported in Section 5.3 is not sufficient to
claim the efficiency and cost-effectiveness of the approach. It supports the feasibility and
the applicability claims. However, nowadays computational resources can be obtained
at a reasonable cost and do not impede the adoption of test case generation approach,
provided the practical benefits of the approach are delivered.

Inspection of test results impacts on the cost-effectiveness of the approach. Failures
reported by the prototype need to be inspected and confirmed by developers. Developers
need to analyze the test report and trace failing test execution from the manifestation
of the fault to its root cause. Manual examination of the false positives is a difficult task
that involves deep understanding of automatically generated test cases and the system
under test. A cost of manual assessment of false positives is thus linear to the size of the
generated test suite. This cost can be contrasted with the cost of manually generating
complex test cases with test oracles. This cost is a function of a complexity and size of a
system under test. The larger and more complex the system is, the larger integration
test suites are required for testing that increases the overall testing cost.

Given that our technique produces a moderate amount of false positives we think
that the inspection effort does not diminish the usefulness of the technique. The
evaluation of the usefulness of our approach does not take into account a developer
effort for inspection of test execution results. This issue must be explored with human
studies.

A threat to construct validity concerns the prototype implementation. To verify that
the prototype generates test cases that corroborate the expected output of the approach,
we have manually generated some test cases with our approach and we compared them
with the samples of test code generated with Fusion. As we mentioned in Section 5.3,
some generated test cases shall be slightly modified to become executable. The execution
problems are related to the initial assumptions on test case structure implemented in
the prototype. The prototype has limited functionality for processing test cases for
nested classes, as well as for processing testing classes organized hierarchically. The
future versions of the prototype will incorporate code transformations and refactorings
for processing complex test class structures.

One threat to external validity relates to the degree to which the subject applications
used in our experiment are representative of the state of the practice. The selected
case studies belong to distinct program domains, contain mature manually written test
suites, and are actively supported by software developers.

81 5.6 Discussion

We cannot claim that results generalize to other programs or to systems from
domains other than those covered in the study. In particular, no generalization can be
made as to the effectiveness of our approach. The results of experimental evaluation for
object-oriented open source software may not be generalizable for industrial systems
that employ different testing standards and procedures. Likewise, results may not be
generalizable to systems using special integration frameworks. However, a variety of
faults were discovered in this research and thus, the selected subject applications are
useful for exploring and verifying the presented approach.

A threat to validity is related to the comparison with other approaches. We compared
our technique with two state of the art test generation tools. To the best of our
knowledge, Randoop and Palus are the best publicly available test generation tools for
Java.

82 5.6 Discussion

Chapter 6

Conclusions

Test case generation and maintenance are laborious and expensive activities, and soft-
ware projects produce large amounts of test cases both manually and automatically. To
improve software quality, developers design test cases of different kind and granularity
aiming to prevent, detect, and remove different types of faults. The development effort
and cost grow with the complexity of the test cases. Complex integration and system
test cases are usually more expensive to develop, and harder to generate and maintain
than simple unit test cases.

This thesis tackles the problem of generating complex test cases by introducing
an approach that exploits the information in unit test cases to generate integration
test cases automatically. The idea behind the approach stems from the empirical
investigation of many test cases from different software systems. We studied the
structure and the complexity of test cases of different granularity. We identified and
described the phenomenon of implicit reuse of test cases, where complex test cases
share code fragments with simple test cases. The investigation results inspired our
approach to test case generation that leverages test cases produced by software projects
to automatically generate new test cases.

We designed and implemented the approach focussing on unit and integration
test cases. The approach requires only the source code and some unit test cases, and
uses classic analysis techniques to extract the information required to build integration
test cases. It analyzes system dependencies and identifies fragments of meaningful
information in test cases. By aggregating the identified test case fragments for clusters
of dependent classes, the approach automatically generates integration test cases that
aim to reveal interaction faults.

We implemented the approach in a prototype Fusion and demonstrated the effec-
tiveness of the approach on a number of popular open-source projects. We evaluated
the applicability and the usefulness of our approach by examining the amount of test
cases that our approach can generate and inspecting the types of revealed faults. We
evaluated the effectiveness of the approach by comparing the fault-detection capabilities

83

84 6.1 Contributions

of the test suites generated with our approach with the test suites generated with the
state of the art test generation techniques Palus and Randoop. The experimental data
show that our approach generates test cases that can find faults that depend both
on subtle interaction and corner cases of unit faults even in well tested applications,
differently from the state of the art approaches that tend to find different and usually
less relevant faults.

6.1 Contributions

The first contribution of this dissertation is the study of the test case structure and of
the relations between test cases of different granularity. This dissertation empirically
investigates the phenomenon of testing reuse and proposes to exploit the interrelation
between test cases of different granularity for generating test cases.

The second contribution of this dissertation is the definition of an approach for
automatically generating complex test cases by identifying and composing reusable
fragments of simpler test cases.

In the following we summarize some aspects of the two major contributions:

Analysis and classification of test cases of different granularity We empirically in-
vestigated test suites from a number of open-source projects, and analyzed the
test case structure and complexity. We show that current taxonomies of test cases
do not aid automatically differentiating test cases. As a result of the investigation
we defined a set of complexity indicators that allow to automatically differentiate
test cases of different granularity.

Investigation of testing reuse We empirically investigated the phenomenon of reuse
and information sharing in real-world test suites. We measured the amount
of reuse between simple and complex test cases, and analyzed the kinds of
information shared among test cases. We found that informal testing reuse is a
common practice of software developers who consult and reuse information from
test cases to build new ones.

Analysis of class dependencies We developed a technique for analyzing and repre-
senting system dependencies to indicate clusters of dependent classes to be
integrated and tested together. We extract system dependencies based on the
information from the system source code. We record the dependencies in the
form of a modified object relation diagram that indicates class dependencies and
class instantiation orders, and takes into account polymorphic class relations.

Analysis of test case fragments We developed a technique based on data flow analysis
of test cases to extract relevant fragments of test case. We proposed a technique
to extract test case fragments related to the instantiation of classes (instantiation

85 6.2 Future directions

sequences) and test case fragments related to the different scenarios of class
usage (execution sequences). The technique extracts meaningful and reusable
test case fragments.

Integration strategy We developed an integration strategy that explores combinations
of test case fragments to generate new test cases. The strategy defines the order
of assembly of test case fragments and class integration through data relations.
For clusters of dependent classes, the strategy enables the incremental generation
of test cases of increasing complexity.

Prototype implementation We implemented our approach in a prototype Fusion. The
prototype implements the techniques for extracting class dependencies and test
case fragments, and proposes some integration strategies to generate new integra-
tion test cases. We used the prototype to experimentally evaluate the effectiveness
of our approach on real-world software projects.

Evaluation of the approach We evaluated our approach on four open-source projects
from different program domains. Our prototype generated new test cases for
all the case studies. It detected previously unknown faults of two categories:
integration faults and unit faults that depend on corner cases. The comparison
of our approach with state of the art test generation techniques showed that our
approach is effective: It detects relevant integration faults and is complementary
to the other techniques that detect less relevant unit faults and violations of
implicit contracts.

6.2 Future directions

The work presented in this dissertation opens a number of research directions. Our
future research plans include:

Automated generation of oracles Test cases of different granularity have common
structure and are composed of three main parts: test initialization, test execution
and oracle. In this dissertation we focused on test initialization and test execution,
leaving open the problem of automatically generating effective oracles from the
information available in the original test cases. We believe that we can augment
generated test cases with test oracles to improve the effectiveness of our approach
and aid precise fault detection while reducing the amount of false positives.

This issue is opened by our research results. Our investigation of test case structure
discovered some relations between oracles in simple and complex test cases. Some
oracles are equivalent, while others require adaptation for the context of new
test cases. In our future work we aim to define patterns of reuse of oracles and
develop a technique for automatic import and adaptation of oracles for test case
generation.

86 6.2 Future directions

Application to test cases of other granularity This thesis proposes a technique to
generate complex test cases from simple ones, and shows experimentally that the
approach works for generating integration test cases from unit ones. However,
our approach is general and incremental, and it is not limited to single iterations
of test case generation process.

We plan to experiment with incremental generation of test cases of increasing
complexity from the test cases generated with our approach. This experimentation
will verify our intuition that providing input test cases generated on previous
iterations can yield more complex and useful test cases.

Prototype extension The prototype implementation Fusion helped us to evaluate our
approach on open source software systems. It enables the automatic analysis of
software projects and the automatic generation of new test cases. The prototype
has many limitations, and we are working on a new more robust version that will
help us to generate more complex test cases and will be extended for the analysis
of oracle information.

Bibliography

[ABC+13] Saswat Anand, Edmund Burke, Tsong Yueh Chen, John Clark, Myra B.
Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and
Phil McMinn. An orchestrated survey on automated software test case
generation. Journal of Systems and Software, 2013. to appear.

[ADTP10] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test
generation for effective fault localization. In Proc. 19th Int. Symp. on SW
testing and analysis, pages 49–60. ACM, 2010.

[AEK+06] Shay Artzi, Michael D. Ernst, Adam Kieżun, Carlos Pacheco, and Jeff H.
Perkins. Finding the needles in the haystack: Generating legal test inputs
for object-oriented programs. In 1st Workshop on Model-Based Testing and
Object-Oriented Systems (M-TOOS), October 23, 2006.

[AH11] N. Alshahwan and M. Harman. Automated web application testing using
search based software engineering. In Proc. 26th IEEE/ACM International
Conference on Automated Software Engineering, pages 3–12, 2011.

[AML11] J.H. Andrews, T. Menzies, and F.C.H. Li. Genetic algorithms for randomized
unit testing. IEEE Transactions on Software Engineering, 37(1):80–94, 2011.

[BBDP11] Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzè. En-
hancing structural software coverage by incrementally computing branch
executability. Software Quality Control, 19:725–751, December 2011.

[BDP13] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Enhancing symbolic
execution with built-in term rewriting and constrained lazy initialization.
In Proc. 9th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2013.

[Bec00] Kent Beck. Extreme Programming Explained. Addison-Wesley, 2000.

[Bec02] Kent Beck. Test-Driven Development By Example. Addison Wesley, 2002.

87

88 Bibliography

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of SW Eng., pages 85–103, 2007.

[BHH+11] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, and
T. Vos. Symbolic search-based testing. In Proc. 26th IEEE/ACM International
Conference on Automated Software Engineering, pages 53–62, 2011.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-Based Testing of Reactive Systems: Advanced
Lectures. Springer, 2005.

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. In Proc. of the Int. Symp. on
SW Testing and Analysis, pages 123–133, 2002.

[BLW03] Lionel C. Briand, Yvan Labiche, and Yihong Wang. An investigation of
graph-based class integration test order strategies. IEEE Trans. SW Eng.,
29(7):594–607, 2003.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter
Kniesel. Towards a taxonomy of software change. J. Softw. Maint. Evol.,
17(5):309–332, September 2005.

[BPdM09] C. Bertolini, G. Peres, M. d’Amorim, and A. Mota. An empirical evaluation
of automated black box testing techniques for crashing guis. In Int. Conf.
SW Testing Verification and Validation, pages 21–30, 2009.

[CCR10] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing
and testability of software product lines. In Proceedings of the 14th interna-
tional conference on Software product lines: going beyond, SPLC’10, pages
241–255, Berlin, Heidelberg, 2010. Springer-Verlag.

[CGS13] Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. Systematic
testing for detecting concurrency errors in erlang programs. In Proc. of 6th
IEEE Int. Conf. on Software Testing, Verification and Validation (ICST), 2013.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. Adaptive
random testing: The art of test case diversity. J. Syst. Softw., 83(1):60–66,
January 2010.

[CLOM07] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Experi-
mental assessment of random testing for object-oriented software. In Proc.
Int. Symp. on Software Testing and Analysis 2007 (ISSTA’07), pages 84–94.
ACM, 2007.

89 Bibliography

[CLOM08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo:
adaptive random testing for object-oriented software. In Proc. 30th Int.
Conf. on Software engineering, pages 71–80. ACM, 2008.

[CMWE04] T.Y. Chen, R. Merkel, P. K. Wong, and G. Eddy. Adaptive random testing
through dynamic partitioning. In In Proc. 4th International Conference on
Quality Software, pages 79–86, 2004.

[CPDGP01] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé.
Using symbolic execution for verifying safety-critical systems. In Proc. 8th
European SW Eng. Conf. held jointly with 9th ACM SIGSOFT Int. Symp. on
Foundations of SW Eng., ESEC/FSE-9, pages 142–151, 2001.

[CS04] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robust-
ness tester for java. Softw. Pract. Exper., 34(11):1025–1050, September
2004.

[DF94] Roong-Ko Doong and Phyllis G. Frankl. The astoot approach to testing
object-oriented programs. ACM Trans. Softw. Eng. Methodol., 3:101–130,
April 1994.

[DGM10] Brett Daniel, Tihomir Gvero, and Darko Marinov. On test repair using
symbolic execution. In ISSTA ’10: Int. Symp. on SW Testing and Analysis,
pages 207–218, 2010.

[DK06] Christian Denger and Ronny Kolb. Testing and inspecting reusable product
line components: first empirical results. In Proc. ACM/IEEE Int. Symp. on
Empirical SW Eng., pages 184–193, 2006.

[dPX+06] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and Michael D.
Ernst. An empirical comparison of automated generation and classification
techniques for object-oriented unit testing. Int. Conf. on Automated Software
Engineering, 0:59–68, 2006.

[ECDD06] Sebastian Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil.
Carving differential unit test cases from system test cases. In SIGSOFT
’06/FSE-14: Proc. 14th ACM SIGSOFT Int. Symp. on Foundations of software
engineering, pages 253–264. ACM, 2006.

[ECDJ09] S. Elbaum, Hui Nee Chin, M.B. Dwyer, and M. Jorde. Carving and replaying
differential unit test cases from system test cases. IEEE Trans. SW Eng.,
35(1):29–45, 2009.

[FA11] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite genera-
tion for object-oriented software. In Proc. of the 19th ACM SIGSOFT Symp.

90 Bibliography

and the 13th European Conf. on Foundations of SW Eng., pages 416–419,
2011.

[FA12] Gordon Fraser and Andrea Arcuri. The seed is strong: Seeding strategies
in search-based software testing. Proc. of the IEEE 5th Int. Conf. on SW
Testing, Verification and Validation, 0:121–130, 2012.

[FZ11a] G. Fraser and A. Zeller. Exploiting common object usage in test case
generation. In In Proc. of the IEEE 4th Int. Conf. on SW Testing, Verification
and Validation, pages 80–89, 2011.

[FZ11b] Gordon Fraser and Andreas Zeller. Generating parameterized unit tests.
In Proc. Int. Symp. on Software Testing and Analysis, pages 364–374, 2011.

[FZ12] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292, 2012.

[GGJ+10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor
Kuncak, and Darko Marinov. Test generation through programming in
UDITA. In Proc. 32nd Int. Conf. on Software Engineering, pages 225–234.
ACM, 2010.

[GGSV02] Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes.
Generating finite state machines from abstract state machines. In Proc.
2002 ACM SIGSOFT Int. Symp. on Software testing and analysis, pages
112–122. ACM, 2002.

[GHK+01] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and Gregg
Rothermel. An empirical study of regression test selection techniques. ACM
Trans. Softw. Eng. Methodol., 10(2):184–208, April 2001.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed auto-
mated random testing. In Proc. 2005 ACM SIGPLAN Conf. on Programming
language design and implementation, pages 213–223. ACM, 2005.

[GOC06] Leonard Gallagher, Jeff Offutt, and Anthony Cincotta. Integration testing
of object-oriented components using finite state machines. Softw. Test. Verif.
Reliab., 16(4):215–266, December 2006.

[GvDS13] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Automated
detection of test fixture strategies and smells. In Proc. of 6th IEEE Int. Conf.
on Software Testing, Verification and Validation (ICST), 2013.

[Har00] Mary Jean Harrold. Testing: a roadmap. In Proc. of the Conf. on The Future
of SW Engineering, pages 61–72, 2000.

91 Bibliography

[Har07] Mark Harman. The current state and future of search based software
engineering. In 2007 Future of Software Engineering, FOSE ’07, pages
342–357. IEEE Computer Society, 2007.

[Has08] A.E. Hassan. The road ahead for mining software repositories. In Frontiers
of Software Maintenance, pages 48–57, 2008.

[HBB+09] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland,
John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh
Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy
Vilkomir, Martin R. Woodward, and Hussein Zedan. Using formal spec-
ifications to support testing. ACM Comput. Surv., 41(2):1–76, February
2009.

[HKU02] Robert M. Hierons, T.-H. Kim, and Hasan Ural. Expanding an extended
finite state machine to aid testability. In COMPSAC ’02: Proc. 26th Int.
Computer Software and Applications Conf. on Prolonging Software Life:
Development and Redevelopment, pages 334–342. IEEE Computer Society,
2002.

[HM10] M. Harman and P. McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering, 36(2):226–247, 2010.

[HMZ12] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based
software engineering: Trends, techniques and applications. ACM Comput.
Surv., 45(1):11:1–11:61, December 2012.

[HO08] M.J. Harrold and A. Orso. Retesting software during development and
maintenance. In Frontiers of Software Maintenance, pages 99–108, 2008.

[HX10] Ahmed E. Hassan and Tao Xie. Software intelligence: the future of mining
software engineering data. In Proc. FSE/SDP WS on Future of SW Eng.
research, pages 161–166, 2010.

[JED08] Matthew Jorde, Sebastian G. Elbaum, and Matthew B. Dwyer. Increasing
test granularity by aggregating unit tests. In Proc. of the 23rd IEEE/ACM
Int. Conf. on Automated SW Eng., pages 9–18, 2008.

[KCM07] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. J. Softw. Maint. Evol., 19(2):77–131, March 2007.

[KHS11] Abdul Salam Kalaji, Robert Mark Hierons, and Stephen Swift. An integrated
search-based approach for automatic testing from extended finite state

92 Bibliography

machine (efsm) models. Inf. Softw. Technol., 53(12):1297–1318, December
2011.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[KKR12] Moonzoo Kim, Yunho Kim, and G. Rothermel. A scalable distributed con-
colic testing approach: An empirical evaluation. In Proc. 5th International
Conference on Software Testing, Verification and Validation, pages 340–349,
2012.

[KM06] Ronny Kolb and Dirk Muthig. Making testing product lines more efficient
by improving the testability of product line architectures. In ROSATEA ’06:
Proc. ISSTA 2006 workshop on Role of software architecture for testing and
analysis, pages 22–27. ACM, 2006.

[KR11] David Kawrykow and Martin P. Robillard. Non-essential changes in version
histories. In Proc. 33rd ACM/IEEE Int. Conf. on SW Eng., pages 351–360,
2011.

[KRH+08] Adrian Kuhn, Bart Rompaey, Lea Haensenberger, Oscar Nierstrasz, Serge
Demeyer, Markus Gaelli, and Koenraad Leemput. Jexample: Exploiting de-
pendencies between tests to improve defect localization. In Agile Processes
in Software Engineering and Extreme Programming, volume 9 of Lecture
Notes in Business Information Processing, pages 73–82. Springer Berlin
Heidelberg, 2008.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
June 1992.

[LHG13] Kiran Lakhotia, Mark Harman, and Hamilton Gross. Austin: An open
source tool for search based software testing of c programs. Inf. Softw.
Technol., 55(1):112–125, January 2013.

[LW90] H.K.N. Leung and L. White. A study of integration testing and software
regression at the integration level. In Proc. Conf. on Software Maintenance,
pages 290–301, 1990.

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engi-
neering, SE-2(4):308–320, 1976.

[McM04] Phil McMinn. Search-based software test data generation: a survey:
Research articles. Softw. Test. Verif. Reliab., 14(2):105–156, June 2004.

[MHBT06] Phil McMinn, Mark Harman, David Binkley, and Paolo Tonella. The species
per path approach to searchbased test data generation. In Proc. Int. Symp.
on Software Testing and Analysis, ISSTA ’06, pages 13–24, 2006.

93 Bibliography

[MMS01] C.C. Michael, G. Mcgraw, and M.A. Schatz. Generating software test data
by evolution. IEEE Transactions on Software Engineering, 27(12):1085–
1110, 2001.

[MOP02] Vincenzo Martena, Alessandro Orso, and Mauro Pezzè. Interclass testing
of object oriented software. IEEE Int. Conf. on Engineering of Complex
Computer Systems, 0:135, 2002.

[Mor90] L.J. Morell. A theory of fault-based testing. IEEE Transactions on Software
Engineering, 16(8):844–857, 1990.

[MPP07] Leonardo Mariani, Sofia Papagiannakis, and Mauro Pezzè. Compatibility
and regression testing of COTS-component-based software. In Proc. of the
29th Int. Conf. on SW Eng., pages 85–95, 2007.

[MPP12] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. Supporting test
suite evolution through test case adaptation. In Proc. of the Fifth Int. Conf.
on SW Testing, Verification and Validation, pages 231–240, 2012.

[MPRS11] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Autoblacktest: a tool
for automatic black-box testing. In Proc. 33rd International Conference on
Software Engineering, pages 1013–1015, 2011.

[MPRS12] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro.
Autoblacktest: Automatic black-box testing of interactive applications.
In Proc. International Conference on Software Testing, Verification, and
Validation, volume 0, pages 81–90. IEEE Computer Society, 2012.

[MSK09] C. Murphy, K. Shen, and G. Kaiser. Automatic system testing of programs
without test oracles. In Proc. of the Int. Symp. on SW Testing and Analysis,
pages 189–200, 2009.

[Par78] David L. Parnas. Designing software for ease of extension and contraction.
In Proce. 3rd Int. Conf. on SW Eng., ICSE ’78, pages 264–277. IEEE Press,
1978.

[PG12] Michael Pradel and Thomas R. Gross. Leveraging test generation and
specification mining for automated bug detection without false positives.
In Proc. of the 35th Int. Conf. on SW Eng., pages 288–298, 2012.

[PLB08] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding errors in
.net with feedback-directed random testing. In Proc. Int. Symp. on Software
Testing and Analysis, ISSTA ’08, pages 87–96, 2008.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proc. of the 29th Int. Conf.
on SW Eng., pages 75–84, 2007.

94 Bibliography

[PM06] Klaus Pohl and Andreas Metzger. Software product line testing. Commun.
ACM, 49(12):78–81, December 2006.

[PV09] Corina S. Păsăreanu and Willem Visser. A survey of new trends in symbolic
execution for software testing and analysis. Int. J. Softw. Tools Technol.
Transf., 11(4):339–353, October 2009.

[PY07] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process,
Principles, and Techniques. John Wiley & Sons, Inc, 2007.

[QODL10] A. Qusef, R. Oliveto, and A. De Lucia. Recovering traceability links between
unit tests and classes under test: An improved method. In IEEE Int. Conf.
on SW Maintenance, pages 1–10, 2010.

[QRL10] Dawei Qi, Abhik Roychoudhury, and Zhenkai Liang. Test generation to
expose changes in evolving programs. In Proc. of the IEEE/ACM Int. Conf.
on Automated SW Eng., pages 397–406, 2010.

[REP+11] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine, and
Nuo Li. Scaling up automated test generation: Automatically generating
maintainable regression unit tests for programs. In Proc. 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 23–32,
2011.

[RH96] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selec-
tion techniques. IEEE Trans. Softw. Eng., 22(8):529–551, August 1996.

[RH97] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test
selection technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210,
April 1997.

[RMP07] Sacha Reis, Andreas Metzger, and Klaus Pohl. Integration testing in soft-
ware product line engineering: A model-based technique. In Matthew
Dwyer and Antónia Lopes, editors, Fundamental Approaches to Software
Engineering, volume 4422, pages 321–335. Springer Berlin / Heidelberg,
2007.

[RST+04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley.
Chianti: a tool for change impact analysis of java programs. In Proc. 19th
ACM SIGPLAN Conf. on Object-oriented programming, systems, languages,
and applications, pages 432–448, 2004.

[SB02] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall, 2002.

95 Bibliography

[SC96] Phil Stocks and David Carrington. A framework for specification-based
testing. IEEE Trans. on Software Engineering, 22:777–793, 1996.

[SHO10] R. Santelices, M.J. Harrold, and A. Orso. Precisely detecting runtime
change interactions for evolving software. In Proc. 3rd Int. Conf. on SW
Testing, Verification and Validation, pages 429 –438, 2010.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing
engine for c. In Proc. 10th European SW Eng. conference held jointly with
13th ACM SIGSOFT Int. Symp. on Foundations of SW Eng., ESEC/FSE-13,
pages 263–272, 2005.

[TDH08] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test generation
for .net. In Proc. of the 2nd Int. Conf. on Tests and proofs, pages 134–153.
2008.

[TEL11] C. Torens, L. Ebrecht, and K. Lemmer. Starting model-based testing based
on existing test cases used for model creation. In 2011 IEEE 11th Int. Conf.
on Computer and Information Technology (CIT), pages 320–327, 2011.

[TG13] Rajeev Tiwari and Noopur Goel. Reuse: reducing test effort. SIGSOFT
Softw. Eng. Notes, 38(2):1–11, March 2013.

[Ton04] Paolo Tonella. Evolutionary testing of classes. In Proc. of the Int. Symp. on
SW Testing and Analysis, pages 119–128, 2004.

[TXT+09a] K. Taneja, Tao Xie, N. Tillmann, J. de Halleux, and W. Schulte. Guided
path exploration for regression test generation. In Proc. 31st Int. Conf. on
SW Eng., pages 311 –314, 2009.

[TXT+09b] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux,
and Wolfram Schulte. MSeqGen: object-oriented unit-test generation via
mining source code. In Proc. of the 7th joint meeting of the European SW
Eng. Conf. and the ACM SIGSOFT Symp. on the Foundations of SW Eng.,
pages 193–202, 2009.

[TXT+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux,
and Zhendong Su. Synthesizing method sequences for high-coverage
testing. In Proc. of the ACM Int. Conf. on Object oriented programming
systems languages and applications, pages 189–206, 2011.

[VPK04] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input
generation with java pathfinder. In Proc. ACM SIGSOFT Int. Symp. on SW
testing and analysis, pages 97–107, 2004.

96 Bibliography

[WGMO10] Yi Wei, Serge Gebhardt, Bertrand Meyer, and Manuel Oriol. Satisfying test
preconditions through guided object selection. Software Testing, Verification,
and Validation, 2008 Int. Conf. on, 0:303–312, 2010.

[XCR10] Zhihong Xu, Myra B. Cohen, and Gregg Rothermel. Factors affecting the
use of genetic algorithms in test suite augmentation. In Proc. 12th Conf.
on Genetic and evolutionary computation, GECCO ’10, pages 1365–1372,
2010.

[Xie09] Tao Xie. Improving automation in developer testing: State of the practice.
Technical Report TR-2009-6, North Carolina State University Department
of Computer Science, February 2009.

[XKK+10] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, and Myra B.
Cohen. Directed test suite augmentation: techniques and tradeoffs. In
Proc. of the eighteenth ACM SIGSOFT Int. Symp. on Foundations of SW
engineering, pages 257–266, 2010.

[XKKR11] Zhihong Xu, Yunho Kim, Moonzoo Kim, and G. Rothermel. A hybrid di-
rected test suite augmentation technique. In 22nd International Symposium
on Software Reliability Engineering, pages 150–159, 2011.

[XMSN05] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: a
framework for generating object-oriented unit tests using symbolic execu-
tion. In Proc. 11th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, pages 365–381, Berlin, Heidelberg, 2005. Springer-
Verlag.

[XR09] Zhihong Xu and Gregg Rothermel. Directed test suite augmentation. In
Proc. of the 16th Asia-Pacific SW Eng. Conf., APSEC ’09, pages 406–413,
2009.

[XTLL09] Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. Data mining for
software engineering. IEEE Computer, 42(8):35–42, August 2009.

[YH10] Shin Yoo and Mark Harman. Test data regeneration: Generating new test
data from existing test data. Journal of Software Testing, Verification and
Reliability, 22(3):171–201, 2010.

[YX06] Hai Yuan and Tao Xie. Substra: A framework for automatic generation of
integration tests. In WS on Automation of SW Test, pages 64–70, 2006.

[Zel99] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
Proc. 7th European SW Eng. Conf. jointly with 7th ACM SIGSOFT Int. Symp.
on Foundations of SW Eng., pages 253–267, 1999.

97 Bibliography

[ZSBE11] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined static
and dynamic automated test generation. In Proc. of the Int. Symp. on SW
Testing and Analysis, pages 353–363, 2011.

[ZZLX10] Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. Random unit-test
generation with MUT-aware sequence recommendation. In Proc. of the
IEEE/ACM Int. Conf. on Automated SW Eng., pages 293–296, 2010.

[ZZWD05] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version
histories to guide software changes. IEEE Trans. SW Eng., 31(6):429 – 445,
june 2005.

	Contents
	List of Figures
	List of Tables
	Introduction
	Research hypothesis and contributions
	Scope of research
	Structure of the dissertation

	State of the Art
	Automating test case generation
	Test suite evolution
	Reuse in automating software testing

	Test Case Interrelation
	Test entities
	Test case structure
	Test case complexity
	Structural overlap
	Important information in test cases

	Generating Integration Test Cases Automatically
	Approach
	Extracting class dependencies
	Extracting instantiation and execution sequences
	Generating test cases
	Example

	Evaluation
	Prototype implementation Fusion
	Experimental setup
	Applicability and feasibility
	Usefulness
	Effectiveness
	Discussion

	Conclusions
	Contributions
	Future directions

	Bibliography

