4 research outputs found

    MULTILEVEL ANT COLONY OPTIMIZATION TO SOLVE CONSTRAINED FOREST TRANSPORTATION PLANNING PROBLEMS

    Get PDF
    In this dissertation, we focus on solving forest transportation planning related problems, including constraints that consider negative environmental impacts and multi-objective optimizations that provide forest managers and road planers alternatives for making informed decisions. Along this line of study, several multilevel techniques and mataheuristic algorithms have been developed and investigated. The forest transportation planning problem is a fixed-charge problem and known to be NP-hard. The general idea of utilizing multilevel approach is to solve the original problem of which the computational cost maybe prohibitive by using a set of increasingly smaller problems of which the computational cost is cheaper. The multilevel techniques are devised consisting of two parts. The first part is to recursively apply a graph coarsening heuristic to the original problem to produce a set of coarser level problems of which the sizes in terms of number of problem components such as edges and nodes are in decreasing order. The second part is to solve the set of the coarser level problems including the original problem bottom up, starting with the coarsest level. We propose that if coarser level problems inherit important properties (such as attribute value distribution) from their ancestor during the coarsening process, they can be treated as smaller versions of the original problem. Based on this hypothesis, the multilevel techniques use solutions obtained for the coarser level problems to solve the finer level problems. Mainly, we develop multilevel techniques to address three problems, namely a constrained fixed-charge problem, parameter configuration problem, and a multi-objective transportation optimization problem in this study. The performance of the multilevel techniques is compared with other commonly used approaches. The statistical analyses on the experimental results indicate that the multilevel approach can reduce computing time significantly without sacrificing the solution quality

    An ant colony based model to optimize parameters in industrial vision

    Get PDF
    Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful.Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful.Industrial vision constitutes an efficient way to resolve quality control problems. It proposes a wide variety of relevant operators to accomplish controlling tasks in vision systems. However, the installation of these systems awaits for a precise parameter tuning, which remains a very difficult exercise. The manual parameter adjustment can take a lot of time, if precision is expected, by revising many operators. In order to save time and get more precision, a solution is to automate this task by using optimization approaches (mathematical models, population models, learning models...). This paper proposes an Ant Colony Optimization (ACO) based model. The process considers each ant as a potential solution, and then by an interacting mechanism, ants converge to the optimal solution. The proposed model is illustrated by some image processing applications giving very promising results. Compared to other approaches, the proposed one is very hopeful

    Multi-objective pareto ant colony system based algorithm for generator maintenance scheduling

    Get PDF
    Existing multi-objective Generator Maintenance Scheduling (GMS) models have considered unit commitment problem together with unit maintenance problem based on a periodic maintenance strategy. These models are inefficient because unit commitment does not undergo maintenance and periodic strategy cannot be applied on different types of generators. Present graph models cannot generate schedule for the multi-objective GMS models while existing Pareto Ant Colony System (PACS) algorithms were not able to consider the two problems separately. A multi-objective PACS algorithm based on sequential strategy which considers unit commitment and GMS problem separately is proposed to obtain solution for a proposed GMS model. A graph model is developed to generate the units’ maintenance schedule. The Taguchi and Grey Relational Analysis methods are proposed to tune the PACS’s parameters. The IEEE RTS 26, 32 and 36-unit dataset systems were used in the performance evaluation of the PACS algorithm. The performance of PACS algorithm was compared against four benchmark multi-objective algorithms including the Nondominated Sorting Genetic, Strength Pareto Evolutionary, Simulated Annealing, and Particle Swarm Optimization using the metrics grey relational grade (GRG), coverage, distance to Pareto front, Pareto spread, and number of non-dominated solutions. Friedman test was performed to determine the significance of the results. The multiobjective GMS model is superior than the benchmark model in producing the GMS schedule in terms of reliability, and violation objective functions with an average improvement between 2.68% and 92.44%. Friedman test using GRG metric shows significant better performance (p-values<0.05) for PACS algorithm compared to benchmark algorithms. The proposed models and algorithm can be used to solve the multi-objective GMS problem while the new parameters’ values can be used to obtain optimal or near optimal maintenance scheduling of generators. The proposed models and algorithm can be applied on different types of generating units to minimize the interruptions of energy and extend their lifespan
    corecore