243 research outputs found

    Synchrony versus causality in distributed systems

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Given a synchronous system, we study the question whether – or, under which conditions – the behaviour of that system can be realized by a (non-trivially) distributed and hence asynchronous implementation. In this paper, we partially answer this question by examining the role of causality for the implementation of synchrony in two fundamental different formalisms of concurrency, Petri nets and the π-calculus. For both formalisms it turns out that each ‘good’ encoding of synchronous interactions using just asynchronous interactions introduces causal dependencies in the translation

    Big-Step Semantics

    Get PDF
    With the popularity of model-driven methodologies, and the abundance of modelling languages, a major question for a requirements engineer is: which language is suitable for modelling a system under study? We address this question from a semantic point-of-view for big-step modelling languages (BSMLs). BSMLs are a popular class of behavioural modelling languages in which a model can respond to an environmental input by executing multiple, possibly concurrent, transitions. We deconstruct the semantics of a large class of BSMLs into high-level, orthogonal semantic aspects and discuss the relative advantages and disadvantages of the semantic options for each of these aspects to allow a requirements engineer to compare and choose the right BSML. We accompany our presentation with many modelling examples that illustrate the differences between a set of relevant semantic options.

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    Verificare: a platform for composable verification with application to SDN-Enabled systems

    Full text link
    Software-Defined Networking (SDN) has become increasing prevalent in both the academic and industrial communities. A new class of system built on SDNs, which we refer to as SDN-Enabled, provide programmatic interfaces between the SDN controller and the larger distributed system. Existing tools for SDN verification and analysis are insufficiently expressive to capture this composition of a network and a larger distributed system. Generic verification systems are an infeasible solution, due to their monolithic approach to modeling and rapid state-space explosion. In this thesis we present a new compositional approach to system modeling and verification that is particularly appropriate for SDN-Enabled systems. Compositional models may have sub-components (such as switches and end-hosts) modified, added, or removed with only minimal, isolated changes. Furthermore, invariants may be defined over the composed system that restrict its behavior, allowing assumptions to be added or removed and for components to be abstracted away into the service guarantee that they provide (such as guaranteed packet arrival). Finally, compositional modeling can minimize the size of the state space to be verified by taking advantage of known model structure. We also present the Verificare platform, a tool chain for building compositional models in our modeling language and automatically compiling them to multiple off-the-shelf verification tools. The compiler outputs a minimal, calculus-oblivious formalism, which is accessed by plugins via a translation API. This enables a wide variety of requirements to be verified. As new tools become available, the translator can easily be extended with plugins to support them

    The embedded systems design challenge

    Get PDF
    We summarize some current trends in embedded systems design and point out some of their characteristics, such as the chasm between analytical and computational models, and the gap between safety-critical and best-effort engineering practices. We call for a coherent scientific foundation for embedded systems design, and we discuss a few key demands on such a foundation: the need for encompassing several manifestations of heterogeneity, and the need for constructivity in design. We believe that the development of a satisfactory embedded systems design science provides a timely challenge and opportunity for reinvigorating computer scienc
    • …
    corecore