
Resilience of Hybrid Casper under varying values of parameters

LETTERIO GALLETTA, IMT School for Advanced Studies Lucca, Italy

COSIMO LANEVE, University of Bologna, Italy

IVAN MERCANTI, IMT School for Advanced Studies Lucca, Italy

ADELE VESCHETTI, University of Bologna, Italy

Hybrid Casper is the new Ethereum blockchain protocol that uses both Proof of Work and Proof of Stake to reach a consensus

between nodes. Here, we analyse the protocol using PRISM+, an extension of the probabilistic model checker PRISM with

primitives for expressing blockchain data types. First, we extend PRISM+ to include data types and operations for modelling

and analysing Proof of Stake-based consensus protocols. Then, we model Hybrid Casper in PRISM+ as a parallel composition

of stochastic processes, thus precisely describing the behaviour of the protocol and highlighting its corner cases. PRISM+ is

therefore used to rapidly and automatically analyse the resilience of Hybrid Casper when tuning, up or down, several basic

parameters of the protocol, such as the rates of creating blocks, and the strategies for determining penalties. Finally, we study

the robustness of Hybrid Casper to two well known attacks: the Eclipse attack and the majority attack.

CCS Concepts: · Theory of computation→ Veriication by model checking; · Security and privacy → Logic and

veriication.

Additional Key Words and Phrases: stochastic modelling and analysis, proof of stake, blockchain fork

1 INTRODUCTION

Blockchain is revolutionising the way individuals and companies exchange digital assets without the control of a
central authority. This technology has been successfully exploited in diferent contexts, e.g., the management of
cryptocurrencies (Bitcoin being the most famous one [38]), running decentralized applications (Ethereum smart
contracts [11]), the implementation of voting systems [10] and Decentralized Finance [40].

Blockchain main novelty is to enable a dynamic and asynchronous network of peer-to-peer nodes to maintain
a distributed ledger that globally records the occurrence of certain events. Nodes contain a local copy of the ledger
that is updated upon reception of special messages, called transactions. Due to the inherent asynchrony of the
network, the main diiculty that a blockchain-based system must address is the consistency of the ledger upon
updates performed by diferent nodes. To overcome this problem, these systems rely on a consensus protocol
that imposes a total order on the updates performed by the nodes. Traditionally, following the seminal work
by Nakamoto [38], these protocols have been based on a probabilistic mechanism called Proof of Work (PoW)
whereby nodes can update the ledger only if they solve a hard computational problem.

Because of the hardness of the computational problem, PoW has the substantial short-come of requiring a very
large amount of computational resources and energy [21]. For this reason, new proposals have been emerging, the
most popular being Proof of Stake (PoS) where nodes can update the ledger with a probability that is proportional

Authors’ addresses: Letterio Galletta, letterio.galletta@imtlucca.it, IMT School for Advanced Studies Lucca, Lucca, Italy; Cosimo Laneve,

cosimo.laneve@unibo.it, University of Bologna, Bologna, Italy; Ivan Mercanti, ivan.mercanti@imtlucca.it, IMT School for Advanced Studies

Lucca, Lucca, Italy; Adele Veschetti, adele.veschetti2@unibo.it, University of Bologna, Bologna, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

2769-6472/2022/11-ART $15.00

https://doi.org/10.1145/3571587

Distrib. Ledger Technol.

HTTPS://ORCID.ORG/0000-0003-0351-9169
HTTPS://ORCID.ORG/0000-0002-0052-4061
HTTPS://ORCID.ORG/0000-0002-9774-1600
HTTPS://ORCID.ORG/0000-0002-0403-1889
https://orcid.org/0000-0003-0351-9169
https://orcid.org/0000-0002-0052-4061
https://orcid.org/0000-0002-9774-1600
https://orcid.org/0000-0002-0403-1889
https://doi.org/10.1145/3571587


2 • Galleta et al.

to the quantity of cryptocurrency they invested to be part of the network ś the stake. One of these protocols ś the
Casper Protocol [12] ś will be adopted by future releases of Ethereum. Meantime, to ensure a smooth transition
with minimal impact on the users, Ethereum developers have deployed a hybrid version of Casper ś the Hybrid
Casper Protocol ś that uses both PoW and PoS [14]. In particular, Hybrid Casper speeds up block creation by
means of a less expensive PoW than Bitcoin (block creation occurs every 14 seconds in Hybrid Casper [14], while
it takes 600 seconds in Bitcoin [17]) and uses a voting mechanism to select the blocks to append to the blockchain.

Votes are expressed by suitable nodes of the network that own a stake, called validators, and for certain blocks,
called checkpoints.1 These checkpoint blocks pass through two stages: the irst when the checkpoint is justiied,
which means that it has received at least 2/3 of the validators’ votes in terms of stake; the second is when it is
inalized, which means that it is justiied and its child checkpoint is justiied as well. Finalization guarantees
consistency of the corresponding blockchains in the distributed ledger.

Since Hybrid Casper is a recent proposal, the protocol may have corner cases that can pave the way to possible
attacks. Therefore, in this paper, we present an analysis of Hybrid Casper by means of a formal model and an
automatic veriication technique that allow us (�) to predict how it behaves in diferent settings of the parameters;
(��) to understand its resilience and robustness to attacks; and (���) to study new variants of the protocol. The
approach we follow is the one of Bistarelli et al. [9], where the Bitcoin protocol has been analysed using PRISM+,
an extension of the PRISM model checker [32] with primitives for PoW protocols, such as data types ledger,
block and set, and the operations upon them. In particular, to cover Hybrid Casper, we have further extended
PRISM+ with data types and operations that are typical of PoS protocols, such as the map data type to express
the table of the stakes and the management of votes. Once the extension has been prototyped, the protocol
is rendered as a parallel composition of PRISM+ processes where the time to create a block and to broadcast a
message is an exponential distribution with a rate parameter associated to process actions. Henceforth, by tuning
up and down the rates, it has been possible to rapidly and automatically analyse diferent settings of the basic
parameters of the protocol and check the corresponding correctness, as done in, e.g., [6, 30]. In particular, we
measure the impact of tuning the rates for creating blocks as well as the penalties that nodes have to pay when
they vote maliciously and the resistance of the protocol to two well known attacks.

The main contributions of this paper are:
• We irst extend PRISM+ with PoS data types and operations; the software package is available online [22]
and can be used to model and study quantitative properties of generic PoW and PoS protocols.

• We then model Hybrid Casper as a PRISM+ process and verify that the model is compliant with the results
of Buterin et al. [14] when the rate of actions are the same. In particular, we show that (�) the probability
of justifying a checkpoint within one epoch is 0.672; and (��) that the probability of inalizing a checkpoint
within 20 epochs is almost 1.

• We give a stochastic characterization of the safety and liveness properties proposed in [14] and we verify
that they hold even when changing the time needed to deliver a block.

• We verify that increasing the rate of creation severely impacts on the justiication/inalization of blocks. In
particular, we show that when the creation rate is 6 seconds (instead of the standard value 14 seconds), the
probability of justifying a block within 1 epoch is 0.005.

• We analyse diferent penalty strategies, by studying diferent quotas of penalty in case of misbehaviours of
validators. We show that (�) when the penalty is 40% of the stake, the stake of a misbehaving validator
is almost 0 ether after 17 epochs, even if it misvoted just 3 times; and (��) when the penalty is 20% of the
stake, validator’s stake decreases less rapidly (if it misvoted 3 times its stake is 7 ether).

• We compute the probabilities of misbehaviours of Hybrid Casper against two well known attacks. First,
we consider the Eclipse attack, where an adversary obstructs the delivery of messages to some nodes of

1Checkpoints are blocks whose block number/height is a multiple of 64, which is is called epoch length.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 3

the network, and force them to work on an untruthful view of the blockchain. Our results show that the
probability of a successful attack is 0.049. Then, we focus on the majority attack where an attacker (or a
coalition of attackers) controls the majority of the network and works on creating a separate blockchain. In
this case, we show that the probability of a successful attack is less then 10−4.

The paper is organized as follows. Section 2 compares our technique with respect to other analyses. Section 3
contains an overview of the Hybrid Casper protocol and of its consensus algorithm; Section 4 provides a quick
introduction to PRISM; Section 5 presents PRISM+, the extension of PRISM with the data types for blockchain
system and the new operations we introduce to model PoS consensus algorithms. Our model of Hybrid Casper is
deined in Section 6 and the analyses assessing its coherence are in Section 7. Section 8 presents our study of the
resilience of Hybrid Casper to the changes of diferent parameters, such as the time needed to create a new block
and diferent strategies of penalties. It also presents our results about the robustness of the protocol to two well
known attacks. Section 9 compares our proposal with the literature and Section 10 draws some conclusions and
discusses possible future work. Table 1 summarizes the notation and the symbols used in the paper.

2 REMARKS ABOUT OUR TECHNIQUE

Assessing the security of a distributed system is a fundamental activity, which is even more stringent for
blockchain systems that manage crypto-assets of a high economic value. Since the security of such systems
strictly depends on the consensus protocol that is used, it is essential to assess which properties this protocol
enjoys. In this section we overview the automatic techniques that have been proposed in the literature and position
our approach. Additional details can be found in Section 9. There are three mainstream approaches for automatic

analysing consensus protocols: testing, simulation and formal veriication.
In the irst approach, the system under test runs in a virtual network or a simulated environment under varying

conigurations that resemble as much as possible the production environment. Usually, the goal is to evaluate
how the system behaves under diferent values of the parameters such as network conditions, workloads, and
attacks. To perform this evaluation, testers require generating the network traic, simulating the attackers, and
implementing mechanisms that measure the properties of interest. For example, the test net used in Buterin [14]
tests the behaviour of Ethereum protocols in scenarios that are similar to the inal one. It is frequent that testnets
spot bugs, but it also happens that bugs may remain uncaught and displayed by the inal system. The testing
approach usually imposes a severe burden on testers that have to set up an actual distributed infrastructure,
generate the relevant network traic, and simulate the attackers. The deployment of a large-scale distributed
computing testnet is often tedious, time-consuming, and costly. For these reasons, testers hardly reproduce a
precise deployment environment due to limited inancial and timing resources.
The second approach uses simulators [43], which implement the protocols by ad-hoc modules that try to

reconstruct the overall behaviour on a single machine [20]. These implementations rely on simulation models,
which are stochastic in the case of blockchains, e.g. continuous Time Markov Chain, Markov Decision Process, etc.
Blockchain simulators allow designers to reproduce real-world processes in a low cost manner, such as network
latency and bandwidth. Additionally, by changing parameters of the simulation, the system can be analysed
without the need to re-implement it. So, simulators allow users to quickly test a blockchain system using diferent
settings and parameters, to study its behaviour under various operational scenarios and to choose the proper
coniguration settings. For example, Gervais et al. [24] introduce a quantitative model based on Markov chains to
compare PoW blockchains. The model allows them to reason about optimal adversarial strategies while taking
into account the adversarial mining power, the impact of eclipse attacks, block rewards, and real world network
and consensus parameters. The system is however diferent from the original implementation and simulations
only highlight particular executions. In general, the development of simulators is complex. Most simulators can

Distrib. Ledger Technol.



4 • Galleta et al.

realistically reproduce only one or few aspects of the (blockchain) system leaving the other ones simpliied, or
even skipped entirely.
The third approach for verifying distributed protocols relies on formal veriication using an automatic tool,

therefore its application requires no supervision or expertise in mathematical reasoning and covers almost all
possible behaviours of the system. Among the various techniques, model checking has been widely applied to
consensus protocols [19, 34, 36, 46]. With respect to testnets, model checking has the advantage that it is relatively
cheap (no network infrastructure nor the relevant network traic is needed to be generated) and it is relatively fast
to stress-test the protocol under diferent settings and conditions because it suices to adjust model’s parameters.
With respect to simulations, model checking has the advantage to undertake a (more) complete analysis of the
possible executions.
However, model checking has some drawbacks. The irst one is that one analyses an abstract model rather

than the actual implementation of the protocol. Therefore, while being correct, some precision is necessarily
lost. Additionally, the deinition of the abstract model takes time since it is essential to understand the modelling
language and the protocol (in our case, the process of deining the model took us around a couple of weeks).

The second drawback is that the analyses are time-consuming due to the state explosion problem (the whole
model, or an approximation of it, must be completely generated). For example, in our experiments, verifying
a network with eight nodes takes around four hours, while it takes around seven days when the nodes are
sixteen. In particular, to bound our analyses, we ran the experiments till the results stabilise, which occurred
when validators are in between 12 and 16. (For this reason, 16 has been the maximal size of our networks).

The third one is that, to further reduce the state explosion, one resorts to approximations of model checking,
such as the so-called statistical model checking that compromises testing and classical model checking techniques.
For example, PRISM runs the model generating a certain number of samples of execution paths and evaluates
the property being checked along these paths to perform a statistical analysis. To bound the length of execution
paths, the tool imposes a maximum length on the executions.

Overall, we think that automatic analyses have pros and cons. However, it is possible to use them all together,
with the opportunity to spot a large number of bugs at the early stages of software development. In this view, we
think that our technique adds a new axis to the analysis of blockchain protocols that may complement the other
techniques.

3 THE HYBRID CASPER PROTOCOL

Ethereum [11] is a peer-to-peer asynchronous network whose state is maintained through a distributed ledger.
This ledger is a tree of blocks with a pointer, called handle, to a leaf block at maximal depth; the blockchain is the
sequence of blocks from the handle to the root, called genesis block; each block in the ledger has a height which is
the length of the path from the block to the genesis block.
Hybrid Casper [14] is a new protocol for Ethereum that keeps the ledgers consistent by using two consensus

techniques: it exploits PoW as block proposal mechanism and PoS to choose a stable blockchain. As usual in PoW,
nodes have to solve a computational problem to add new blocks, whose diiculty is set so that a solution is found
within 14 seconds.2 We overview the protocol by highlighting the main features in diferent paragraphs.

The Hybrid Casper smart contract. The PoS protocol is implemented through a special smart contract stored on
the Ethereum blockchain that records the current set of active nodes and manages their stakes and the voting
process. The nodes of the network that own a stake are called validators and they can vote for certain blocks. In
particular, nodes willing to become validators create a stake by locking 32 ether, which is performed by calling a
deposit function of the smart contract. Conversely, a validator may exit from the active validator set by invoking
a logout function (validators need to wait a minimum period after depositing before being allowed to withdraw).

2See the GitHub implementation at https://github.com/ethereum/eth2.0-specs

Distrib. Ledger Technol.

https://github.com/ethereum/eth2.0-specs


Resilience of Hybrid Casper under varying values of parameters • 5

Justiications and inalizations. The goal of the voting process is to justify and inalize checkpoints, which are
blocks whose height is multiple of an epoch3 in the ledger: a checkpoint is justiied if it is voted by validators
that own at least 2/3 of the stake of the overall network; when two consecutive checkpoints are justiied, the
older one becomes inalized. (The root block of the ledger, the genesis block, is both justiied and inalized by
deinition.) This mechanism ensures that a inalized block together with all its ancestors belong to the valid chain,
and thus, can be considered as permanent (and the transactions linked to the block are permanently recorded on
the blockchain). Once a checkpoint is inalized, the validators are paid, and their payment is proportional to the
deposited stake.

The fork choice rule. During the vote, validators follow the fork choice rule to select the next checkpoint: the next
checkpoint is the block at maximum height that the validator received irst. When a set of validators are incorrect,
that is deviate from the protocol (e.g. the chosen block is not the one at maximum height that has been received
irst or more than one block is voted) a fork between diferent justiied checkpoints may occur.

Penalties. To prevent validators from misbehaving, the protocol relies on economic incentives and penalties:
validators who voted correctly during an epoch are rewarded, while validators who did not are penalized. This is
achieved by adjusting validators’ stakes according their own voting behaviour: when a checkpoint is inalized
the stakes of validators who voted for it is increased by a positive interest rate � (see Section 8.2 for details),
whereas the stakes of validators who voted for other checkpoints are shrunk. The penalties grow in proportion
of non-voting validators. If epochs fail to be inalized for a long time, the penalties become more and more
severe. When a validator engages in clear misbehaviour, e.g. by voting for conlicting checkpoints, then it is can
be punished by slashing its deposits. Incorrect votes are not punished as harshly as conlicting votes, as there
are protocol behaviours that can cause a validator to fail to produce a valid vote. Note that the the deposits of
validators are updated only after checkpoints get inalized.

Properties of Hybrid Casper. Standard attacks to PoS protocols include the nothing-at-stake attack and the
class of long range attacks, such as the posterior corruption [15]. In the nothing-at-stake, the attacker generates
multiple conlicting blocks to maximize its beneit without risking its stake. This kind of attack is not possible
in Hybrid Casper by design because of its penalisation mechanism: misbehaving validators are discouraged to
generate conlicting blocks by the loss of stake. In the posterior corruption attack, the attacker generates a new
branch starting from an earlier block to overtake the main chain. The core idea is that when stake-holders have
sold their stake in the system, nothing prevents them from performing a history-rewrite attack [16]. In Hybrid
Casper the blockchain up to the most recently inalized checkpoint will never be reverted guaranteeing that
a posterior corruption attack can not be successful. In simple terms, a revision fork that inalizes blocks older
than the last inalized block will be ignored, because all clients will have already seen a inalized block at that
height and will refuse to revert it. Another assumption made is that each client will log in the system and gain a
complete view of the updated chain at some regular frequency [12].

4 A QUICK INTRODUCTION TO PRISM

PRISM [32] is a probabilistic model checker that, given a formal description of a system, called themodel, computes
the likelihood of the occurrence of certain events. The model checker supports diferent kinds of probabilistic
formalism which give semantics to the model. We refer to Kwiatkowska et al. [33] for a full account of PRISM.

A PRISM system is a parallel composition of interacting modules, where each module represents a (sequential)
agent/process. The internal state of a module is determined by the values assigned to its variables, whereas the
overall state of a system is determined by the internal states of all its modules. The behaviour of a module is

3An epoch is the contiguous sequence of blocks between two checkpoints, including the irst but not the latter. We denote the length of an

epoch with lenepoch and we set it to 64 as in the GitHub implementation.

Distrib. Ledger Technol.



6 • Galleta et al.

1 const int N = 10;

2 const double mu = 1/10;

3 const double lambda = 1/2;

4 const double gamma = 1/3;

5

6 module queue

7 q : [0..N];

8

9 [] q<N -> mu:(q'=q+1);

10 [] q=N -> mu:(q'=q);

11 [serve] q>0 -> lambda :(q'=q-1);

12 endmodule

13

14 module server

15 s : [0..1];

16

17 [serve] s=0 -> 1:(s '=1);

18 [] s=1 -> gamma:(s'=0);

19 endmodule

Listing 1. A PRISM specification modelling a N-place queue and a server.

deined by a set of commands that specify how and under which conditions the module performs a transition
and updates its internal state. The syntax of a command is

[a] guard -> rho_1:update_1 +...+ rho_n:update_n;

where a is called action and may be omitted; guard is a predicate over the state variables of the module and
those of other modules; update_i deines the changes of module’s internal state, i.e., a list of assignments to its
state variables; and rho_i is the rate at which update_i is executed. The meaning of the above command is the
following: when guard is true, the module chooses a transition (the operator + denotes a choice) according to the
rate rho_i associated to that update. PRISM semantics constrains modules retaining actions with the same name
to synchronize with the corresponding commands, i.e. the modules execute the commands with action a at the
same time.
The example in Listing 1, taken from the documentation,4 helps understand the semantics of modules. It

models an N-place queue of jobs and a server that removes jobs from the queue and processes them. The modules
queue (line 6 to 12) and server (line 14 to 19) synchronize on the action serve. Module queue has an integer
variable q (deined in line 7) representing its size (the constant N deines the capacity of the queue). Transitions
describe the operations on the queue. The irst one (line 9) inserts a new element with rate mu, if the queue is
not full (q<N); the insertion is modelled by increasing the value of q. Note that PRISM uses the prime notation to
denote the new value of a variable, in our case q' = q + 1. The second command (line 10) says that no new
element is inserted when the queue is full. The last command (line 11) removes an element, and it is performed
provided that the server can consume an element; for this reason it has the action name serve that constrains
server to perform a transition with the same name.
In the module server, the boolean variable s (line 15) deines whether the server is busy or not. When it is

idle, the command at line 17 allows the server to synchronize with queue through the action serve. After this
synchronization the server updates its state to busy (s'=1). The rate of the synchronization is the product of the
two individual rates (in this case, lambda*1). The second command (line 18) of server states that a busy server
(s=1) may complete its task with rate gamma.

4http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Example2

Distrib. Ledger Technol.

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Example2


Resilience of Hybrid Casper under varying values of parameters • 7

In this paper we focus on Continuous Time Markov Chains (CTMC) models that are transition systems (as the
one above) where each transition is labelled by a positive real number, called rate. In particular, if the rate of a
transition from a state � to �′ is r then the probability of moving from � to �′ within � ≥ 0 time units is 1 − �−r·� ,
that is rates are used as parameters of an exponential distribution. Note that, higher is the rate, higher is the
probability to leave � in a given time. For example, in Hybrid Casper, the creation of blocks can be approximated
by an exponential distribution with rate 1/14 (because a block is created every 14 seconds) [14] and an exponential
distribution also approximates the probability of delivering blocks across the network [17].

When a CTMC state has several exiting transitions, e.g. the above state x=1, then the probability of choosing
one of them depends on their rates ś this is known as race condition. For example, if r1, · · · , r� are the rates
of transitions exiting from a state s (and entering on pairwise diferent states), then the probability of taking a
transition with rate r� is r�/R, where R = r1+· · ·+r� . This is due to the fact that the minimum of two exponentially
distributed random variables is still an exponentially distributed random variable with a rate equal to the sum of
their rates.
In the following sections we are interested in the probability of reaching states with a given property within a

certain time. A basic property of Markov chains is that the events are independent from the previous events in the
history ś the Markov property. Therefore, the above probability is a function of the product of the probabilities
in the intermediate states (this function is not simple because one has to consider all the possible partitions of �
and all the possible paths to reach the state from the initial step).

In the PRISM framework, properties of CTMC models are expressed in Continuous Stochastic Logic (CSL) [3ś5],
which is an extension of temporal logic with a probabilistic operator. The formulas we use in this paper have
always the form

P=?[F<=t property]

and express the probability that property is eventually true in a state of the model within � time units (starting
from the initial state). In particular, eventuality is expressed by the operator F of CSL logic; the operator ? asks
the model checker to produce a numeric value for the probability. For example, consider the following code that
implement a two-items queue

1 module C

2 x : [0..2] init 0;

3

4 [] x=0 -> 2 : (x′ = 1);

5 [] x=1 -> 3 : (x′ = 2);

6 [] x=1 -> 5 : (x′ = 0);

7 [] x=2 -> 2 : (x′ = 1);

8

9 endmodule

10

11 label "full" = x = 2;

12 label "empty" = x = 0;

where the variable x can assume three possible values: 0 (the queue is empty), 1 (the queue has one element) and
2 (the queue is full, i.e. it has two elements). According to lines 5 and 6, from state x=1 the system can evolve
either in x=2 with rate 3 and in x=1 with rate 5. The probability that the two-items queue is łfullž within 10 time
units is denoted by the CSL formula

P=?[F<=10 "full "].

To actually compute this probability, PRISM performsmodel checking. However, since models may bear ininite sets
of executions (in general and in our case, in particular), PRISM does not undertake an exhaustive exploration of

Distrib. Ledger Technol.



8 • Galleta et al.

the state-space and sticks to a so called statistical model checking, which combines model checking and statistical
methods.

In a nutshell, given a model of the stochastic system and a formula � representing the property to verify, PRISM
generates a inite number of executions and evaluates them to determine the fraction of executions satisfying � .
This process computes an approximation �′ of the actual probability � for the formula � , and ofers a probabilistic
guarantee on the accuracy of �′. In particular, the resulting �′ is such that the probability that the error of the
approximation is too high is bounded by a constant chosen by the user and called conidence level.
In summary, the core idea of statistical model checking is to conduct partial analyses of the system, monitor

them, and then decide whether the system satisies the property or not with some degree of conidence.

5 THE EXTENSION PRISM+

PRISM+ extends PRISM by adding a native support for expressing and manipulating dynamic data types, such as
lists and trees, and data types speciically designed for modelling blockchain protocols such as block and ledger.
The goal of our extension is to provide a generic set of primitives that can be used to model and analyse diferent
kinds of blockchain protocols. In this paper, we also provide ad-hoc primitives for the PoS protocols such as
votes, penalties, and rewards. This section describes the data types and the operations PRISM+ provides, and the
implementation of PRISM+ as a fork of PRISM.

5.1 Data types and Operations

The data types that have been implemented in PRISM+ are block, ledger, set, and map. These data types, in
particular ledger and set make models of PRISM+ be ininite state. Therefore we analyse them by means of the
statistical model checking engine. Below, we present and discuss the representation of these types and provide a
precise semantics of the corresponding operations.

Blocks, noted b, p, . . . , are triples (vn; p; h), where v is the name of the validator v who created the block; n is a
unique numeric label; p, called father, is the name of another block which (vn; p; h) points to; h is the height of
the block in the ledger. For instance, (v0

3
; v7

4
; 3) is a block named v0

3
, which is the irst block created by v3, whose

father is the block named v7
4
and which is at height 3. The operations on blocks are:

• createB(v, n, L) returns a block (vn; p; h), where p is the handle of the ledger L (see below) and h is the
height of p plus one;

• isCP(b) returns true if the block b is a checkpoint (i.e. its height is a multiple of 64), false otherwise;
• height(b) returns the height of b.

Ledgers, noted L, L′, . . . , are tuples ⟨T;f;p;K⟩ where T is a tree of blocks; f is the name of a block in T (the
last inalized block of L); p is the name of a leaf block at maximal height in the subtree rooted at f, called the
handle of L; and K is a mapping from blocks in T to integers such that, if b has been inserted more recently than
b′ in T, then K(b) > K(b′). The root of T is called genesis block and is denoted by (genesis0; genesis0; 0). The
blockchain of L is the sequence of blocks that starts from the handle and reaches the genesis.

The operations on ledgers are:

• canBeIns(L,b) returns true if b can be inserted in L (i.e. if the father of b is in L), false otherwise;
• addBtoL(L,b) inserts b in L and returns the updated ledger (precondition: canBeIns(L,b) = true); it
also updates the mapping K and, in case, it updates the handle;

• lastCP(L) and lastboCP(L) return the last checkpoint and the last-but-one checkpoint in L, respectively;
• lastF(L) returns the last inalized block in L, e.g. lastF(⟨T, f, p, K⟩) = f.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 9

• updateHF(L,b) takes a ledger L = ⟨T; f; p; K⟩ and a block b that has been inalized such that K(b) > K(f)

and returns L′ = ⟨T; b; p′; K⟩ where p′ is the leaf block in the subtree of b such that K(b) is the greatest
value.

A important notion for ledgers is that of fork deined as follows:

Deinition 5.1. Let L1 = ⟨T1; f1; p1; K1⟩, . . . , L� = ⟨T� ; f� ; p� ; K�⟩ be a set of ledgers and let m be the maximal
height of the handles p1, . . . , p� . Let also L�1 , . . . , L�� be the ledgers in the above set with the handle at height�.
We say that the set L1, . . . , L� has a fork of length� − ℎ, where ℎ is the length of the maximal common suix of
the blockchains of L�1 , . . . , L�� .

The following operations are used to compute and verify forks:

• calculateFork(L1, . . . , Ln) returns the length of the fork in L1, . . . , Ln, 0 if there is no fork.
• verifyCP(L1, . . . , Ln) returns true if lastCP(L1) = . . . = lastCP(Ln), false otherwise.

Sets, noted S, S′, . . . , are collections of blocks, whose operations are almost standard:

• get(S) returns a block randomly extracted from the set S, the block is not removed from S;
• add(S,b) returns S ∪ {b};
• receive(S) returns a block b extracted from S;
• remove(S,b) returns S \ b;
• isEmpty(S) returns true if the set S is empty, false otherwise.

In our Hybrid Casper model we use them to store the blocks that have been received but have to be inserted in
the local ledger.

Maps, noted H, H′, . . . , are used to record the stakes of validators and the votes of checkpoints. We use the
following operations:

• addVote(H,b,v) returns the update of H where the vote of v for b has been recorded;
• updateS(H,H′,b) returns H updated with the rewards and penalties for each validator according to if they
voted correctly for b or not; the votes are taken from H′. The techniques for rewarding and penalizing the
validators are described by Buterin et al. [14];

• isJust(b, H, H′) returns true if the sum of the stakes of the validators in � that have voted for b is greater
than 2/3 of the total stake of the system, false otherwise. Stakes are retrieved from H′.

5.2 The implementation of PRISM+

PRISM+ has required a signiicant programming efort in order to make the data types of Section 5.1 native.
The main challenge has been the fact that PRISM is not designed to be extended with plug-ins. Thus, we have
implemented our data types and operations modifying the PRISM source code and providing a new software
package that includes our extensions.
To support the augmented syntax, we have irst extended the PRISM parser to allow users to use the new

operations as they were built-in. In particular the extension of PRISM expressions with the new types has led to
extending the PRISM abstract class Expression. For example, the implementation of the data type map is done by
the Java class ExpressionMap (see the snippet of code in Listing 2) whose ields are:

• name which represents the name of the map;
• length which is the length of the list of blocks;
• votedBlocks which is a list of pairs storing the votes of each block.

The constructor of ExpressionMap takes as parameters the name of the map and a list of pairs (validator, vote);
it initializes votedBlocks with the votes ś see Listing 2. Note that each vote is stored in the array position
corresponding to the name of the validator, e.g. the vote of validator v1 is stored in position 1 of the array.

Distrib. Ledger Technol.



10 • Galleta et al.

1 public class ExpressionMap extends Expression{

2

3 private String name;

4 private int length;

5 private List <Pair > votedBlocks;

6

7 public ExpressionMap(String n, List <Pair > b){

8 name = n;

9 this.votedBlocks = new ArrayList <Pair >();

10 if(b!=null) {

11 for(int i=0; i<b.size(); i++) {

12 votedBlocks.add(b.get(i));

13 }

14 }

15 length = votedBlocks.size();

16 }

17 }

Listing 2. The ExpressionMap class.

The addition of the new operations to PRISM has required the extension of the class ExpressionFunc where
the built-in operations are deined. For example, the operation addVote(H,b,v) is reported in Listing 3. (All the
other operations are implemented following the same schema.) The operation irst checks if the map storing the

1 private ExpressionMap addVote(ExpressionMap table , ExpressionBlock block , String validator){

2

3 int j = 0;

4 boolean found = false;

5 for(int i = 0; i<validator.length () and !found; i++) {

6 if(Character.isDigit(nameTmp.charAt(i))) {

7 j = i;

8 found = true;

9 }

10 }

11 String nameTmp2 = validator.substring(j);

12 int whichMiner = 0;

13 if(found) {whichMiner = Integer.parseInt(nameTmp2);}

14 boolean flag = false;

15 if(table.getVotedBlocks ()!=null) {

16 for(int i = 0; i<table.getVotedBlocks ().size(); i++) {

17 if(table.getVotedBlocks ().get(i).getBlock ().equals(block)){

18 flag = true;

19 table.addVote(i,whichMiner ,stake);

20 }

21 }

22 if(!flag) {

23 table.addBlock(block ,whichMiner ,stake);

24 }

25 }

26 else {

27 table = new ExpressionMap ();

28 table.addBlock(block ,whichMiner ,stake);

29 }

30 return table;

31 }

Listing 3. The implementation of addVote operation.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 11

votes for the block is empty. If it is not, it adds the stake of the validator who is voting to the corresponding index
of the array. If the the map is empty or the block the validator is voting for is not present in the map, it adds the
block and the vote.

6 THE DEFINITION OF HYBRID CASPER IN PRISM+

We model Hybrid Casper in PRISM+ as the parallel composition of � Validator modules and the modules
Vote_Manager, Network and Global. The architecture of our model is in Figure 1.

Fig. 1. The Ethereum PoS model architecture.

The module Vote_Manager stores the tables containing the votes for each checkpoint and calculates the
rewards/penalties at the end of each epoch; the module Network implements the broadcast communication
mechanism among validators; Global is an auxiliary module that computes the length of forks ś see Section 7.
We note that the management of votes is centralized in Vote_Manager, which corresponds to the smart contract
of Hybrid Casper [14].
In our model and in the analyses presented in next sections we overlook some details of Hybrid Casper that

are not relevant for the properties we are interested in. In particular, since our goal is to study the behaviour of
the protocol to changes of basic parameters, such as the rate of creating new blocks and the percentages in the
penalties system, we assume that

(1) the network consists of validators that also create new blocks;
(2) the proof of work is negligible: we model the overall efect of creating a new block through an ad-hoc action

and we ignore the algorithmic process of mining;
(3) blocks are black boxes: we omit any informations that is not relevant for the consensus, such as Solidity

transactions.

For clarity sake, we present a sugared version of the PRISM+ code; the online repository [22] contains the
actual implementation, the veriied properties with the data of our analyses and the instructions for the use of
the tool. We present below the PRISM+ modules for validators, network and vote manager. The Global module
will be presented in the next section.

Distrib. Ledger Technol.



12 • Galleta et al.

1 module Validator_i

2 STATE_i : [Start ,Create ,Receive ,Move ,Vote ,Check ,Fin] init Start;

3 L_i : ledger init ⟨{( genesis0;genesis0 ;0)}; genesis0;genesis0;[ genesis0 ↦→ 1]⟩;

4 c_i : [0..1000] init 0;

5 b_i : block;

6 lastJ_i : block init (genesis0;genesis0 ;0);

7

8 [] (STATE_i=Start) ->

9 mR_i : (b_i′=createB(Validator_i ,c_i ,L_i))N(c_i′=c_i+1)N(STATE_i ′=Create );

10 [] (STATE_i=Start) -> hR_i : (STATE_i ′=Receive );

11 [] (STATE_i=Start) -> rC_i : (b_i′=lastCP(L_i))N(STATE_i ′=Check );

12 [addB_i] (STATE_i=Create)N!isCP(b_i) ->

13 1 : (L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Start );

14 [addB_i] (STATE_i=Create)NisCP(b_i) ->

15 1 : (L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Vote);

16 [voteB_i] (STATE_i=Vote) -> 1 : (STATE_i ′=Start );

17 [] (STATE_i=Receive)N!isEmpty(Set_i) ->

18 1 : (b_i′=receive(Set_i))N(STATE_i ′=Move);

19 [] (STATE_i=Receive)NisEmpty(Set_i) -> 1 : (STATE_i ′=Start );

20 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)NisCP(b_i) ->

21 1 : (L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Vote);

22 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)N!isCP(b_i) ->

23 1 : (L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Start );

24 [] (STATE_i=Move) N !canBeIns(L_i ,b_i) -> 1 : (STATE_i ′=Start );

25 [] (STATE_i=Check)NisJust(b_i ,Votes ,Stakes)NlastJ_i=lastboCP(b_i ,L_i) ->

26 1 : (lastJ_i ′=b_i)N(L_i′= updateHF(L_i ,lastJ_i ))N(STATE_i ′=Fin);

27 [] (STATE_i=Check)NisJust(b_i ,Votes ,Stakes)NlastJ_i != lastboCP(L_i) ->

28 1 : (lastJ_i ′=b_i)N(STATE_i ′=Start );

29 [] (STATE_i=Check)N!isJust(b_i ,Votes) -> 1 : STATE_i ′=Start;

30 [finB_i] (STATE_i=Fin) -> 1 : STATE_i ′=Start;

31 endmodule

Listing 4. Pseudocode of a Validator.

6.1 Validator module

The code of Validator module is reported in Listing 4. A Validator is deined as a state machine with seven
states. The current state is recorded in the variable STATE_i deined at line 2. The actions of Validator are
guarded by STATE_i and update this variable when executed.
In the initial state Start, the validator may either create a new block and transit to Create state (line 9), or

receive a new block from the network and transit to Receive (line 10), or check whether a checkpoint can be
justiied and transit to Check (line 11) only if at the end of an epoch. Since these operations consume time (see
Section 5), they are associated with the rates mR_i, hR_i, and rC_i, respectively. The rates mR_i are deined as
1/� , where � is the number of seconds needed to create a new block, since � = 14 in Hybrid Casper [14], then
mR_i = 1/14. The rates hR_i are complementary to mR_i, therefore they are deined as hR_i = 1 − mR_i (the
rational behind this choice is that a validator is more likely not to create a block rather than to create one). The
rates rC_i represent how often a validator should check for new justiied/inalized blocks. According to Buterin
et al. [14], this happens at the end of each epoch, thus rC_i = 1/(lenepoch × s).

When Validator creates a new block, it updates its ledger and sends the created block to Network (see action
addB_i at lines 12 and 14) to forward it to the other validators. The rate of this action is determined by the
companion action in Network (i.e. 1 × �� ), which expresses the communication latency of the network (c.f. line 6
of Listing 5). In our model, we set �� to either 1/12.6, which is the broadcast delay of the Bitcoin network [17] or
to 1/7, which is the so-called (1/2)-network synchrony ś the time to deliver messages is 1/2 of the time to create a
block [13]. If the new block is a checkpoint (the height of the block is a multiple of the epoch length), Validator

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 13

transits to Vote state, otherwise it returns to Start state. In the state Vote, Validator votes by synchronizing
with Vote_Manager through the action voteB_i; this synchronization causes the addition of the vote to the table
Votes (c.f. line 16).

When Validator tries to receive a new block ś state Receive ś it veriies whether Network has blocks to
deliver (lines from 17 to 19), and in case it transits to the state Move; otherwise, it returns to Start. In the state
Move, Validator veriies whether the block can be inserted in its own ledger (lines from 20 to 23). If this is the
case and the block is a checkpoint, Validator votes for it, otherwise, returns to the initial state (line 24).
From the initial state Start, a validator can also transit to the state Check (line 11) with the rate rC_i, only

when it is at the end of an epoch. In this state, Validator veriies whether the last checkpoint, say C� , has
received the majority of the votes (i.e. C� has been justiied) and whether the last but one checkpoint in the
blockchain of C� , say C�, is also justiied. If this is the case, C� becomes inalized and C� becomes justiied ś in
lines 25-26 this is performed by storing C� in lastF_i and updating the last inalized block of L_i to lastJ_i.
At the same time, the handle of L_i may be updated as well ś see deinition of updateHF(L_i,lastJ_i) in
Section 6. If C� is not justiied then C� is stored in lastJ_i (lines 27-28). In any case, Validator goes to Start

state and the process starts again.
It is worth noticing that a block is added in the correct position of the ledger, even if it is a stale block. In our

model stale blocks are represented as valid blocks which are not part of the blockchain. On the opposite, an
orphan block is modelled as a block that has not its entire ancestry (yet) in the local ledger and thus cannot be
added. So an orphan block is not added to the ledger and is left in the local set setMiner_i of Network (see the
discussion below).

6.2 Network module

The module Network is deined in Listing 5 where the variable N represents the number of validators in the
system. For each validator i, where 1 ≤ i ≤ N, the internal state of Network contains (i) the set of blocks set_i
that represents the messages to be delivered to Validator_i; and (ii) the set N_i that records the nodes to which
the Validator_i is connected to. In this section, we assume that validators are totally connected, therefore N_i is
always equal to {1, · · · , i−1, i+1, · · · , �}. Networkmodule synchronises with the validator iwho creates a block
by synchronizing on the action addB_i. When this happens, Network updates the sets of blocks of the validators
contained in N_i (line 6). When a block has been added to the local ledger of Validator_i, by synchronizing
with the action removeB_i, Network removes the block from the corresponding set (line 8).

1 module Network

2 for i from 0 to N:

3 SetB_i : set [];

4 N_i : set [];

5 for i from 0 to N:

6 [addB_i] -> r� : foreach k in N_i{ SetB_k ′=add(SetB_k ,b_i); }

7 for i from 0 to N:

8 [removeB_i] -> 1 : SetB_i ′=remove(SetB_i ,b_i);

9 endmodule

Listing 5. Pseudocode of the Network.

6.3 Vote Manager module

The module Vote_Manager is reported in Listing 6. Its internal state consists of a map Stakes that stores the
stakes of validators; a map Votes that takes the name of a block and return the list of validators who have
voted for the corresponding block; and the epoch that records the height of the last inalized block. The module
synchronizes with the validator i on actions voteB_i and finB_i. The synchronization on voteB_i adds the
vote for the block that is stored in b_i to Votes, i.e. the name Validator_i is added to the list of b_i (line 8).

Distrib. Ledger Technol.



14 • Galleta et al.

The synchronization on finB_i is used to compute the rewards and penalties for each validator when a block is
inalized. In particular, this happens when the irst validator inalizes a block b because, in this case, the height of
b is higher than epoch. (This is our modelling of Hybrid Casper′s epochs.) In this case, both Stakes and epoch

are updated with the new stakes and height(b), respectively (lines 9ś10). If the validator is not the irst to
inalize then no update occurs.

1 module Vote_Manager

2 Stakes : map {} ;

3 Votes : map {};

4 epoch = 0 ;

5 for i from 0 to N:

6 Stakes[validator_i] : [0.. MAX_STAKE] init STAKE_i;

7 for i from 0 to N:

8 [voteB_i] -> 1 : Votes ′=addVote(Votes ,b_i ,Validator_i );

9 [finB_i] (height(lastF(L_i)) > epoch) ->

10 1: epoch ′=height(lastF(L_i))NStakes ′=updateS(Stakes ,Votes ,lastF(L_i));

11 [finB_i] (height(lastF(L_i)) <= epoch) -> 1: ;

12 endmodule

Listing 6. Pseudocode of the Vote_Manager.

7 COHERENCE OF THE HYBRID CASPER MODEL

The goal of this section is to validate our model with respect to literature [13, 14] on Hybrid Casper. To this
aim, we set the basic parameters as follows: (i) lenepoch = 64, i.e. checkpoints are validated every 64 blocks; (ii)
all validators start with the same amount of stake in the initial state and work honestly, i.e. they never vote
maliciously nor do they create blocks in the wrong position; (iii) the rate mR� of creating new blocks is 1/14. Our
model may be easily updated to analyse validators (or pools of validators) with diferent mining rates: it suices
to set the constants mR� to the corresponding values (we haven’t undertaken such analyses because we miss the
values).

The experiments that we describe in the rest of the paper were carried out on a Virtual Machine with 8 VCPU
and 64 GB RAM. We set the PRISM+ model checker to generate 100000 samples of protocol executions. The
veriied systems were composed by � validators, with � = 6, 8, 10, 12, 14, 16, and the experiments are always run
until we observe a stabilization of results. Usually with networks larger than 10-12 validators, the diferences
between the outputs of the analyses are in the order of 10−3. This is due to the fact that we use mean rates to
describe the latency of the network (which are taken from the literature) therefore the number of nodes has little
impact on the broadcast of blocks. In particular, we strongly believe that our conclusions obtained with, say 14-16
validators, are meaningful also for larger networks.

We start by computing the probabilities for creating a new block. Figure 2a reports these probabilities, which
are calculated by letting PRISM+ to analyze the property:

P =?[F <= T ”someCreated”]

where someCreated is a label that identiies all the states in which a validator is in the state Create. In this igure
and in Figure 2b, the broadcast delay r� is 1/7, that is, we assume that the time to deliver messages is 1/2 of the
time to create a block, c.f. (1/2)-network synchrony [13]. The results we obtain are coherent with the ones in the
literature [13]; in particular, the probability of creating a block within 14 seconds is 0.6 and the one of creating a
block within 50 seconds is 1.

To verify the occurrence of forks in ledgers, we use the following module Global

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 15

module Global

difference : [0..N] init 0;

[] (STATE_1 = Start | ... | STATE_n = Start) -> 1 :

(difference ′ = calculateFork(L_1 , . . ., L_n))

endmodule

that computes the diference between the ledgers of the system every time one of them is modiied (when the
Validator_i changes its state to Start). To this aim, Global invokes the operation calculateFork deined in
Section 5 that stores the length of the fork in the state variable difference. Therefore, following Section 4, the
probability of reaching a state with a fork of length k within the irst T time units is deined by the following
formula:

P =?[F <= T difference = k] .

Figure 2b shows how the probability of having a fork of length � , with 1 ≤ � ≤ 10, varies over the time. We run
the analysis by considering k*14 as bound time. Our results show that the probability of a fork of length 1 is
higher than 0.9, while the probability decreases as the � increases, and it is 0.009 for forks of length 10.

Figures 2c and 2d respectively report the probabilities of justiication and inalization within � epochs. These

(a) (b)

(c) (d)

Fig. 2. Results of the analyses for assessing the coherence of the model.

probabilities are computed by PRISM+ using the formulas

P=?[F<=T "someJustified"] P=?[F<=T "someFinalized"]

where someJustified and someFinalized are the labels that identify all the states in which a validator is in
the state Check and the block is justiied and inalized, respectively (lines 25-28 of Listings 4). The experiments
reported in Figures 2c and 2d have been run with two diferent broadcast delays: the standard broadcast delay of
Bitcoin, i.e. r� = 1/12.6 [17] and the (1/2)-network synchrony delay �� = 1/7. It turns out that, when r� = 1/12.6,
the probability of justifying within 1 epoch is 0.389 while it is 0.672 when r� = 1/7. This is because, in the irst
case, a checkpoint needs more time to reach all the nodes in the network. Hence the voting process is longer and
the probability is smaller when r� = 1/12.6. It is also worth to notice that, when the epochs are 5, the probability

Distrib. Ledger Technol.



16 • Galleta et al.

is greater than 0.96 with both values of r� , which is in accordance with [13] where this probability is stated to be
greater than 0.5 in one epoch. We inally notice that the probability of justifying a block is lower when �� is equal
to the rate of Bitcoin.
In Figure 2d we report the probability of inalization within � epochs that have been computed by Buterin

et al. [13] (the red curve in the igure) and we compare these results with those computed by PRISM+ with the
two broadcast values of r� = 1/12.6 and r� = 1/7. Our results are coherent with [13] but a little lower for � < 7.
We also notice that the probabilities obtained with rates r� = 1/12.6 and r� = 1/7 grows in a similar way and
are almost the same for � > 7 (for example, when � = 20, the probability is 0.9994 with r� = 1/12.6, while it is
0.99999 with r� = 1/7).

Finally, Buterin et al. [13] proved properties of safety and liveness for Hybrid Casper. In particular, they deine
a protocol to be

• safe when two (or more) conlicting inalized checkpoints cannot occur;
• live when the set of inalized blocks always grows.

Figures 3a and 3b show the analyses of safety and liveness in PRISM+ with respect to the broadcast delay �� . In
these analyses we adopt the setting of Buterin et al. [13], and we suppose that all the validators vote correctly,
i.e. they vote only for one checkpoint at the same height. According to our results, the probability of inalizing
two conlicting checkpoints is always 0 (Figure 3a) and the probability of inalizing a new checkpoint is always
greater than 0.85 when �� ≥ 1/100 (it is almost 1 with �� ≥ 1/12.6).

(a) (b)

Fig. 3. Safety and liveness properties.

8 HYBRID CASPER STRESS TESTS AND ITS ROBUSTNESS TO ATTACKS

The resilience of Hybrid Casper to the changes of diferent parameters of the protocol is veriied in this section.
First, we analyse how the probabilities of forks and justiications change by varying the rate mR� of creating new
blocks. In the following experiments, the broadcast rate r� is set to 1/7 (we assume it depends on technological
constraints of the network; therefore we adhere to the (1/2)-network synchrony assumption). Next, we analyse
how the percentage of penalties may afect the behaviour of malicious validators. Finally, we study the robustness
of Hybrid Casper to two attacks that have been studied in the literature [18, 27]. It is worth noticing that all these
analyses have been done with little eforts (by manually changing the PRISM+ settings of the protocol), which is
a beneit of our technique. In particular, regarding the attacks, we model them using the PRISM+ language and
study their impact on the correct execution of the protocol through the veriication capabilities of the model
checker.

Hereafter, we will assume that all the mR� are equal and we generically denote them with mR.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 17

8.1 Diferent rates of creating blocks

We study the resilience of the protocol when the time for creating blocks is lower than the standard one (14 seconds
in Ethereum). More precisely, we consider the cases where the rates are mR = 1/14, 1/8, 1/7, 1/6, respectively,
i.e. blocks are created within 14, 8, 7 and 6 seconds, and the length of epochs is 64.

(a)

(b) (c)

Fig. 4. Stress tests with diferent rates.

The results in Figure 4a show that the probability of a fork of length � for mR = 1/8, 1/7, 1/6 is higher than
the one for mR = 1/14 (we run the analyses by considering k*1/mR as bound time). In particular, the probability
of a fork of length 7, i.e., �7fork , is 0.25 for mR = 1/6; whereas it is around 0.06 when we consider the other rates.
This may result in a lower probability of justifying a block, because there is a higher probability of having two
diferent checkpoints at the same height. As expected, when mR = 1/8, 1/7, 1/6, a block must wait for more epochs
to be justiied, see Figure 4c. In particular, with a creation rate mR ≤ 1/7, a block cannot be justiied within one
epoch, but after two epochs, the probability rapidly increases. Even when mR ≤ 1/8 the probability of justifying a
block within 1 epoch is lower since the analysis shows that �1_just = 0.134. Figure 4c reports the probability ��_in
of inalization within � epochs. The results are in line with what we expect, in fact, the slower is the system to
create a block the lower is the probability of inalization within 2 epochs. This is due to the fact that also the
probability of justiication is very low. Moreover, with mR = 1/6, ��_in starts to increase after 9 epochs, becoming
0.915 after 20 epochs.

8.2 Variation of the penalties

We analyse how the stakes change when the penalties for misbehaving validators vary. In Hybrid Casper, to
incentivise correct behaviours, a bonus is given to validators when they vote checkpoints that are inalized; on
the contrary a penalty is given to those that clearly misbehave.

In the following analyses, we studying how the stakes of malicious validators changes. A validator is malicious
when she votes for more than a checkpoint at the same height. To illustrate the technique, we deine a stochastic
process that misbehaves with a rate of 1/2. (Other strategies can be easily implemented by changing the code.) In

Distrib. Ledger Technol.



18 • Galleta et al.

particular, the stake of validator � at epoch � is deined by stake � (�)

stake � (0)
def
= 10 ETH

stake � (� + 1)
def
=

{

stake � (�) + � · stake � (�) if the validator votes correctly
stake � (�) − � · stake � (�) otherwise

that increases or decreases stakes according to a parameter � . In our experiments (Figure 5) we consider three
values for � : 20%, 30% and 40%. In Figure 5a, we report how the stake of the malicious validator varies while

(a) (b)

Fig. 5. Analyses with diferent penalties.

epochs increase. It points out that the less the penalty is in percentage, the slower the stake decreases (there are
necessary more than 125 epochs to become 0 when � is 20%). The number of times a validator misbehaves with
respect to the epochs is reported in Figure 5b. The higher is the penalty, the lower is the number. In particular,
when � = 20 the validator misbehaves 8 times after 20 epochs, while when � = 30 only 6 times. When � = 40 the
validator misbehaves 3 times at 20 epochs and this number does not grow anymore since its stake becomes 0.
This conirms that the malicious behaviour is discouraged when the penalty is high.

We remark that in our model it is always possible to reach a state of fork due to multiple blocks being mined at
the same time. Thus, if a honest validator � that follows the fork choice rule, votes for a block � that will not be
voted by the majority (simply because � received � irst), � ’s stake will be shrunk. To illustrate this, we report in
Figure 6 the updates of the stake of a validator (since we want to highlight the ongoing behaviour of a validator,
we have chosen the simulator option in PRISM). As the reader can observe, at epoch 16 the stake of the validator

Fig. 6. How changes the stake of a validator.

decreases, that is due to the fact that it voted for the wrong checkpoint. The same stake increases because the
validator voted correctly afterwards.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 19

8.3 Eclipse Atack

In the Eclipse attack, an adversary attempts to obstruct message delivery at the level of the peer-to-peer network
causing nodes to work on a corrupted or distorted snapshot of the blockchain [18, 28]. The underlying idea of
this attack is that an adversary control all the incoming and outgoing connections of a victim to prevent it from
receiving new blocks from the network. In this way, victims receive new blocks only from the attacker and from
other victims. The attacker waits until the blocks created by victims are likely to be justiied by the rest of the
network. Then, she stops eclipsing and publishes the private chain to the network. The attack succeeds when a
block created by the victims or by the attacker is either justiied by the network or the honest validators start
using the corrupted chain.

This attack is modelled in PRISM+ as a participant that runs in parallel with honest validators. In particular, we
have modiied the Network code in Listing 5 ś the new code is in Listing 8 ś and we use the code in Listing 7
for the attacker. The attacker collects the blocks created by the victims in the set setAttack_i. She also counts
both the blocks created by the victims and the ones created by the rest of the network, storing these numbers in
nBlocksAttack and nBlocks, respectively. Since the victims are isolated from the rest of the network, they can
communicate only between them and with the attacker. Thus, in the code of the Network we have modiied the
sets the validators and the victims can send blocks to (lines 8-9 of Listing 8). As soon as the attacker notices that
the blocks created by the victims are more than those created by the rest of the network (line 15 of Listing 7), the
attacker makes them available to the rest of the network (line 24 of Listing 7). The attack is successful when a
block created by the attacker or by one of the victims becomes justiied.

To deine this property, we introduce the boolean variable eclipseAttack_i in every validator; this variables
is set to true when the validator is about to justify a block created by a victim or by the attacker (lines 36-38). As
soon as the attacker publishes all the blocks, the attack is considered over and all the validators can communicate
again between each other (lines 12-15 of Listing 8). The honest validators may reach a consensus on this new
chain after checking its validity. The probability of a successful attack by one attacker and an increasing number
of victims (from 2 to 5) is computed by the formula

P =?[F <= T ”eclipseAttack”]

where eclipseAttack means that at least one of the miner_i boolean variables eclipseAttack_i is true.
Figure 7a shows the probability of a successful attack by varying the rate of creating new blocks.
In every case, this probability increases with the number of victims. Additionally, when blocks are created faster

than the standard one, then the probability of a successful attack is much lower. In particular, when mR ≤ 1/8, the
system appears to be more resilient to this attack.

In a simpler version of this attack, the attacker aims to reduce the stake of the victims. Figure 7b reports how
the stake of the victims decreases as the length of the epochs changes for diferent values of mR. It turns out that
these results are in line with those of Figure 7a, that is the attacker does not succeed when mR ≤ 1/8.

8.4 Majority Atack

In a PoS system a majority attack consists of one validator or a coordinated set of validators that own more
than 34% of the overall stake. When this is the case, a majority attack can impact the blockchain by performing
inalization and justiication, since checkpoints can now receive the majority of the votes. Figure 8 displays the
results obtained by our analysis of the majority attack by changing the total stake owned by the attacker and
the rate of creating new blocks. In this case, the code for the attacker is the one reported in Listing 4 with the
unique diference being the percentage of the stake owned by the attacker. Our results show that the probability
of justifying a block decreases when the percentage of the stake owned by the attacker increases. This is due to
the fact that if the attackers decide to perform a majority attack, the honest part of the network cannot justify

Distrib. Ledger Technol.



20 • Galleta et al.

1 module Attacker_i

2 STATE_i : [Start ,Create ,Receive ,Move ,Vote ,Check ,Fin ,Comm] init Start;

3 setAttack_i : set [];

4 attack : bool init true;

5 nBlocksAttack : [0..1000] init 0;

6 nBlocks : [0..1000] init 0;

7 eclipseAttack_i : bool init false;

8 ...

9

10

11 [] (STATE_i=Start) ->

12 mR_i : (nBlocksAttack '= nBlocksAttack +1)N(b_i′=createB(Validator_i ,c_i ,L_i))

13 N(c_i′=c_i+1)N(STATE_i ′=Create );

14 [] (STATE_i=Start)N(nBlocksAttack >nBlocks)N(! isEmpty(setAttack_i )) ->

15 1 : (attack '= false)N(STATE_i ′=Comm)N(b_i′=receive(setAttack_i ));

16 ...

17 [addB_i] (STATE_i=Create)N!isCP(b_i)N(attack=true) ->

18 1 : setAttack_i ′=add(setAttack_i ,b_i)N(L_i′=addBtoL(L_i ,b_i))

19 N(STATE_i ′=Start );

20 [addB_i] (STATE_i=Create)NisCP(b_i)N(attack=true) ->

21 1 : setAttack_i ′=add(setAttack_i ,b_i)N(L_i′=addBtoL(L_i ,b_i))

22 N(STATE_i ′=Vote);

23 ...

24 [communicate] (STATE_i=Comm) -> (setAttack_i '= remove(setAttack_i ,b_i))N(STATE_i ′=Start );

25 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)NisCP(b_i)NfromVictim(b_i) ->

26 1 : (nBlocksAttack '= nBlocksAttack +1)N(setAttack_i ′=add(setAttack_i ,b_i))

27 N(L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Vote);

28 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)N!isCP(b_i)NfromVictim(b_i) ->

29 1 : (nBlocksAttack '= nBlocksAttack +1)N(setAttack_i ′=add(setAttack_i ,b_i))

30 N(L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Start );

31 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)NisCP(b_i)N!fromVictim(b_i) ->

32 1 : (nBlocks '= nBlocks +1)N(L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Vote);

33 [removeB_i] (STATE_i=Move)NcanBeIns(L_i ,b_i)N!isCP(b_i)N!fromVictim(b_i) ->

34 1 : (nBlocks '= nBlocks +1)N(L_i′=addBtoL(L_i ,b_i))N(STATE_i ′=Start );

35 ...

36 [] (STATE_i=Check)NisJust(b_i ,Votes ,Stakes)NlastJ_i=lastboCP(b_i ,L_i)NfromVictim(b_i) ->

37 1 : (lastJ_i ′=b_i)N(L_i′= updateHF(L_i ,lastJ_i ))

38 N(STATE_i ′=Fin)N(eclipseAttack_i ′=true);

39 ...

40 endmodule

Listing 7. Pseudocode of an Atacker.

(a) (b)

Fig. 7. Analysis in presence of an Eclipse atack.

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 21

1 module Network

2 for i from 0 to N:

3 SetB_i : set [];

4 N_i : set [];

5 Victims : set [];

6

7 [communicate] -> 1 : foreach k in N_i∖Victims{ SetB_k ′=add(SetB_k ,b_i); }

8 foreach i in Victims:

9 [addB_i] (attack=true) -> r� : foreach k in Victims{ SetB_k ′=add(SetB_k ,b_i); }

10 foreach i N_i∖Victims:

11 [addB_i] (attack=true) -> r� : foreach k in N_i∖Victims{ SetB_k ′=add(SetB_k ,b_i); }

12 for i from 0 to N:

13 [addB_i] (attack=false) -> r� : foreach k in N_i{ SetB_k ′=add(SetB_k ,b_i); }

14 for i from 0 to N:

15 [removeB_i] -> 1 : SetB_i ′=remove(SetB_i ,b_i);

16 endmodule

Listing 8. Pseudocode of the Network in presence of an Atacker.

Fig. 8. Analysis in presence of a majority atack.

(and inalize) new blocks and, thus, the whole system is afected. Additionally, the probability decreases with
respect to the rate of creating a new block. This is in line with the idea that the less time is needed to create a
block, the faster is the attacker. However, due to the slashing conditions, the majority attack is so costly that it is
unlikely that one will ever be launched against this protocol in practice. Thus, in the light of our results above
and considering how fast the stake of a malicious validator decreases, it should not be a problem if one decides to
use a faster rate to create new blocks.

9 RELATED WORK

The blockchain was introduced by Haber and Stornetta [26] and only in the last few years, because of Bitcoin,
the problem of analyzing the properties of the consensus protocols and the consistency of the ledgers managed
by these protocols has attracted the interest of several researchers. Proof of work systems have been largely
analyzed to ensure the correctness of the protocol [23, 42]. For example, Gervais et al. [24] introduce a quantitative
framework to compare PoW blockchains. Their framework is based on Markov Decision Process and focuses on
studying double-spending and selish mining attacks. In contract, our work considers Hybrid Casper which is a
PoS consensus algorithm. Moreover, we model the system through CTMC where the participants of the protocol
are expressed as modules in the PRISM language.

For what concerns proof of stake, to the best of our knowledge, there are few papers that use formal methods
to study the properties of the consensus protocols. Here, we irst discuss contributions about Hybrid Casper and
then those contributions about other PoS protocols.

Distrib. Ledger Technol.



22 • Galleta et al.

The initial contribution of Hybrid Casper by Buterin et al. [14] also addresses the analysis of few properties.
In particular, it is proved that the incentive mechanisms entail liveness and provide safety guarantees for the
protocol. They also discuss issues related to parametrisation, funding, throughput and network overhead, and
point out potential limitations of the protocol. The properties are analysed by means of numerical arguments
on the states of possible computations. Our technique is diferent: we use statistical model checking to analyse
the ininite-state blockchain model. By means of this model, we automatically verify quantitative properties, in
particular those regarding the reachability of certain states of the network, and we can check them with diferent
setting of protocol parameters. Moreover, it is possible to grasp other properties with slight changes of the model,
e.g. we need blocks structured as a sequence of transactions and a mechanism to count transactions therein. As
regards safety and liveness properties demonstrated by Buterin et al. [14], we have conirmed them even by
changing the communication delay.
Safety of Casper has been formally proved using the Isabelle proof assistant [39] and in the Coq theorem

prover [41] by verifying basic properties about the ordering of messages, of justiications, and the state transitions.
Similarly to these papers, our model overlooks the implementation details that do not afect the properties of
interest (such as the process of creating new blocks). However, in the foregoing contributions, relevant properties,
such as accountable safety and (a form of) liveness are demonstrated in the case when the set of validators is
dynamic and at least 2/3 of them behave honestly [2]. In that case, diferent settings require completely new
proofs. On the contrary, our analysis can be easily adapted to diferent settings of the protocol by changing basic
parameters such as the network delay or adding/removing parallel processes acting as attackers. As said above,
in our setting, safety and liveness can be proved in a probabilistic version.
Coq has been also used to verify the Algorand PoS protocol [25]. Its correctness, i.e. two diferent blocks can

never be certiied in the same round even when the adversary completely control the network (asynchronous
safety), is also demonstrated taking into account network delays, timing issues, and malicious nodes. We think
that the same comments above apply to the analysis of Algorand, once the protocol has been modelled in PRISM+.

With regards to other PoS protocols, another protocol that has been formally speciied in a process calculus is
Tendermint [35, 37, 44]. In this case, similarly to Section 6, the network of validators is modelled as a parallel
composition of processes and the system is veriied by means the PAT model checker [45], which is neither
stochastic nor probabilistic. The authors prove that the consensus protocol is deadlock free and can reach
consensus when at least 2/3 of the validators are in agreement. Our technique, by using a stochastic model
checker, allows us to prove quantitative properties (e.g. probabilities of justiication or inalizations) rather than
qualitative ones.
PoS based blockchain design has been also studied by Bentov et al. [7, 8], both alone and in conjunction

with PoW. Although they showed that the protocols are secure against some classes of attacks, no formal proof
has been provided. A PoS protocol with rigorous security guarantees is Ouroboros [29], where persistence and
liveness properties are thoroughly studied. In that context, persistence means that, once an honest node declares
a given transaction as łstablež, then all the other honest nodes will agree on that choice; liveness means that once
an honestly generated transaction has been made available to the network then it will become eventually stable.
The authors prove that Ouroboros enjoys these properties in presence of adversaries through a manual proof. In
our work we considered a probabilistic version of the safety and liveness property for Hybrid Casper and we
proved them automatically through a model checker. We are conident that we can adopt our methodology to
study similar properties of Ouroboros as well.

10 CONCLUSIONS

We have analyzed Hybrid Casper that will be adopted by Ethereum in the near future and that combines both
PoW and PoS. We analyzed the protocol by means of PRISM+, an extension of the probabilistic model checker

Distrib. Ledger Technol.



Resilience of Hybrid Casper under varying values of parameters • 23

PRISM with primitives for expressing the data types ledger and block, and the operations upon them (we used a
similar technique to analyze the Bitcoin protocol [9]).

Once our model has been proved coherent with respect to the results by Buterin et al. [13], we have exploited
the automatic veriication machinery of PRISM+ to perform several probabilistic analyses and to study the protocol
behaviour in diferent settings of the basic parameters, such as rate of creation of blocks and penalty strategies.
Our results have showed that increasing the rate of creation severely impacts on the justiication/inalization of
blocks and have conirmed that higher is the penalty over the stake, lower is the rate of misbehaviour. We have
also studied the behaviour of Hybrid Casper against two well known attacks: the Eclipse attack and the majority

attack. Our results conirm that the protocol is robust against these two attacks when the original Hybrid Casper
parameters are considered. We remark that PRISM+ is available online [22] and can be used to model and study
quantitative properties of generic PoW and PoS protocols.
Our current PRISM+ model renders validators as pure stochastic processes and abstracts away the fact that

they are actually rationale agents that compete each other to maximize a given utility function. Therefore, their
behaviour is not only driven by the protocol but also by a given strategy that they follow when inalizing blocks.
In such a competitive setting, the strategy of a validator may also depend on the ones of others and validators
may group themselves in coalitions that may collaborate to achieve a common goal. We plan to investigate these
scenarios by extending the model with strategies and possible collaborative behaviours. Presumably, this will
require the formalization of utility functions [31] and will require a particular care because PRISM (and PRISM+)
manifests scalability issues when there are a lot of processes running in parallel (which is the case when coalitions
are modelled).

Since the maximum block size indirectly deines the maximum number of transactions carried within a block,
large blocks may cause slower propagation speeds, which in turn increases the stale block rate. Thus, it could
be interesting to extend our model to take into account the block size and verify how diferent sizes impact the
security of the system.

Moreover, we plan to apply our approach to the Casper protocol. More speciically, we plan to study the random
validation mechanism, which Casper will use to select the validator who can propose a new block [12]. This
mechanism seems to be a perfect test-bed for our technique: the rapid analysis of the random protocol may help
in taking the right decisions. For example, the simple technique where the hash of the previous block functions
is used as a random seed for leader selection on the next round, has been already proven to be vulnerable to
attacks [1]. It is also in our agenda the comparison of Hybrid Casper and Casper to quantify which one provides
a better trade-of between security and performance and to estimate their resilience to possible attacks.
We inally plan the analysis of other recent Byzantine fault tolerant protocols such as Algorand [25] and

Tendermint [37] and quantitatively compare them to (Hybrid) Casper.

REFERENCES

[1] Mansoor Ahmed and Kari Kostiainen. 2018. Don’t Mine, Wait in Line: Fair and Eicient Blockchain Consensus with Robust Round

Robin. arXiv: Cryptography and Security (2018).

[2] Musab A. Alturki, Elaine Li, Daejun Park, Brandon Moore, Karl Palmskog, Lucas Peña, and G. Rosu. 2020. Verifying Gasper with Dynamic

Validator Sets in Coq. Technical Report.

[3] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. 1996. Verifying Continuous Time Markov Chains (Lecture Notes

in Computer Science, Vol. 1102). Springer, Computer Aided Veriication, 8th International Conference, CAV ’96. , 269ś276. https:

//doi.org/10.1007/3-540-61474-5_75

[4] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2000. Model Checking Continuous-Time Markov

Chains by Transient Analysis. In Computer Aided Veriication, E. Allen Emerson and Aravinda Prasad Sistla (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 358ś372.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. 2003. Model-checking algorithms for continuous-time Markov chains. IEEE

Transactions on Software Engineering 29, 6 (2003), 524ś541. https://doi.org/10.1109/TSE.2003.1205180

Distrib. Ledger Technol.

https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1109/TSE.2003.1205180


24 • Galleta et al.

[6] Stylianos Basagiannis, Sophia G. Petridou, Nikolaos Alexiou, Georgios I. Papadimitriou, and Panagiotis Katsaros. 2011. Quantitative

analysis of a certiied e-mail protocol in mobile environments: A probabilistic model checking approach. Comput. Secur. 30, 4 (2011),

257ś272.

[7] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies Without Proof of Work. In Financial Cryptography and Data

Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 9604), Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner,

and Kurt Rohlof (Eds.). Springer, 142ś157. https://doi.org/10.1007/978-3-662-53357-4_10

[8] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. 2014. Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of

Stake [Extended Abstract]. SIGMETRICS Perform. Evaluation Rev. 42, 3 (2014), 34ś37. https://doi.org/10.1145/2695533.2695545

[9] Stefano Bistarelli, Rocco De Nicola, Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and Adele Veschetti. 2021. Stochastic modeling and

analysis of the bitcoin protocol in the presence of block communication delays. Concurrency and Computation: Practice and Experience

(2021), e6749. https://doi.org/10.1002/cpe.6749

[10] Stefano Bistarelli, Ivan Mercanti, Paolo Santancini, and Francesco Santini. 2019. End-to-End Voting with Non-Permissioned and

Permissioned Ledgers. J. Grid Comput. 17, 1 (2019), 97ś118. https://doi.org/10.1007/s10723-019-09478-y

[11] Vitalik Buterin. 2013. Ethereum White Paper. https://github.com/ethereum/wiki/wiki/White-Paper.

[12] Vitalik Buterin and V. Griith. 2017. Casper the Friendly Finality Gadget. ArXiv abs/1710.09437 (2017).

[13] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang.

2020. Combining GHOST and Casper. CoRR abs/2003.03052 (2020).

[14] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Piliouras. 2020. Incentives in Ethereum’s hybrid Casper protocol.

International Journal of Network Management 30, 5 (2020), e2098.

[15] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks, and Defenses. ACM Comput. Surv. 53, 3, Article 67 (jun 2020), 43 pages. https://doi.org/10.1145/3391195

[16] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconigurable Consensus and Applications to Provably Secure

Proof of Stake. In Financial Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,

February 18-22, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11598), Ian Goldberg and Tyler Moore (Eds.). Springer,

23ś41. https://doi.org/10.1007/978-3-030-32101-7_2

[17] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the Bitcoin network. In 13th IEEE International Conference

on Peer-to-Peer Computing, IEEE P2P 2013, Trento, Italy, September 9-11, 2013, Proceedings. IEEE, P2P 2013, 1ś10. https://doi.org/10.1109/

P2P.2013.6688704

[18] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. 2019. A Survey on Long-Range Attacks for Proof

of Stake Protocols. IEEE Access 7 (2019), 28712ś28725. https://doi.org/10.1109/ACCESS.2019.2901858

[19] Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. 2014. Model Checking Paxos in Spin. In Proceedings Fifth International

Symposium on Games, Automata, Logics and Formal Veriication, GandALF 2014, Verona, Italy, September 10-12, 2014 (EPTCS, Vol. 161),

Adriano Peron and Carla Piazza (Eds.). 131ś146. https://doi.org/10.4204/EPTCS.161.13

[20] Carlos Faria and Miguel Correia. 2019. BlockSim: Blockchain Simulator. In 2019 IEEE International Conference on Blockchain (Blockchain).

439ś446.

[21] Cambridge Center for Alternative Finance. 2021. Cambridge Bitcoin Electricity Consumption Index. https://cbeci.org/. (last access 2021).

[22] Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and Adele Veschetti. 2022. PRISM+ software package, supporting material, and additional

experiments. https://github.com/adeleveschetti/casper-analysis

[23] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and Applications (Lecture Notes in

Computer Science, Vol. 9057). Springer, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the

Theory and Applications of Cryptographic Techniques. , 281ś310. https://doi.org/10.1007/978-3-662-46803-6_10

[24] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. 2016. On the Security and

Performance of Proof of Work Blockchains. IACR Cryptol. ePrint Arch. (2016), 555. http://eprint.iacr.org/2016/555

[25] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for

Cryptocurrencies. In SOSP. ACM, 51ś68.

[26] Stuart Haber and W. Scott Stornetta. 1990. How to Time-Stamp a Digital Document (Lecture Notes in Computer Science, Vol. 537). Springer,

CRYPTO. , 437ś455. https://doi.org/10.1007/3-540-38424-3_32

[27] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In Proceedings

of the 24th USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15). USENIX Association, USA, 129ś144.

[28] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse attacks on {Bitcoin’s}{peer-to-peer} network. In 24th

USENIX Security Symposium (USENIX Security 15). 129ś144.

[29] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake

Blockchain Protocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.).

Distrib. Ledger Technol.

https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1002/cpe.6749
https://doi.org/10.1007/s10723-019-09478-y
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/3391195
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/ACCESS.2019.2901858
https://doi.org/10.4204/EPTCS.161.13
https://cbeci.org/
https://github.com/adeleveschetti/casper-analysis
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/555
https://doi.org/10.1007/3-540-38424-3_32


Resilience of Hybrid Casper under varying values of parameters • 25

Springer, 357ś388. https://doi.org/10.1007/978-3-319-63688-7_12

[30] Marta Kwiatkowska, Gethin Norman, and David Parker. 2008. Analysis of a Gossip Protocol in PRISM. SIGMETRICS Perform. Eval. Rev.

36, 3 (Nov. 2008), 17ś22. https://doi.org/10.1145/1481506.1481511

[31] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2018. PRISM-Games: Veriication and Strategy Synthesis for Stochastic

Multi-Player Games with Multiple Objectives. 20, 2 (April 2018), 195ś210. https://doi.org/10.1007/s10009-017-0476-z

[32] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2002. Probabilistic Symbolic Model Checking with PRISM: A Hybrid

Approach. 2280 (2002), 52ś66. https://doi.org/10.1007/3-540-46002-0_5

[33] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veriication of Probabilistic Real-Time Systems (Lecture

Notes in Computer Science, Vol. 6806). Springer, Computer Aided Veriication - 23rd International Conference, CAV 2011. , 585ś591.

https://doi.org/10.1007/978-3-642-22110-1_47

[34] Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. 2001. Automated Veriication of a Randomized Distributed Consensus

Protocol Using Cadence SMV and PRISM. In Computer Aided Veriication, 13th International Conference, CAV 2001, Paris, France, July

18-22, 2001, Proceedings (Lecture Notes in Computer Science, Vol. 2102), Gérard Berry, Hubert Comon, and Alain Finkel (Eds.). Springer,

194ś206. https://doi.org/10.1007/3-540-44585-4_17

[35] Jae Kwon. 2014. Tendermint : Consensus without Mining.

[36] Leslie Lamport. 2006. Fast Paxos. Distributed Comput. 19, 2 (2006), 79ś103. https://doi.org/10.1007/s00446-006-0005-x

[37] Wai YanMaungMaung Thin, Naipeng Dong, Guangdong Bai, and Jin Song Dong. 2018. Formal Analysis of a Proof-of-Stake Blockchain. In

2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS). 197ś200. https://doi.org/10.1109/ICECCS2018.

2018.00031

[38] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.

[39] R. Nakamura, T. Jimba, and D. Harz. 2019. Reinement and Veriication of CBC Casper. In 2019 Crypto Valley Conference on Blockchain

Technology (CVCBT). 26ś38. https://doi.org/10.1109/CVCBT.2019.00008

[40] E. Napoletano and John Schmidt. 2021. Decentralized Finance Is Building A New Financial System. https://www.forbes.com/advisor/

investing/dei-decentralized-inance/. (last access 2021).

[41] Karl Palmskog, Milos Gligoric, Lucas Peña, Brandon M. Moore, and G. Rosu. 2018. Veriication of Casper in the Coq Proof Assistant.

[42] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Blockchain Protocol in Asynchronous Networks (Lecture Notes in

Computer Science, Vol. 10211). Springer, EUROCRYPT. , 643ś673. https://doi.org/10.1007/978-3-319-56614-6_22

[43] Remigijus Paulavicius, Saulius Grigaitis, and Ernestas Filatovas. 2021. A Systematic Review and Empirical Analysis of Blockchain

Simulators. IEEE Access 9 (2021), 38010ś38028. https://doi.org/10.1109/ACCESS.2021.3063324

[44] Jun Sun, Yang Liu, Jin Song Dong, and Chunqing Chen. 2009. Integrating Speciication and Programs for SystemModeling and Veriication.

In 2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering. 127ś135. https://doi.org/10.1109/TASE.2009.32

[45] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards Flexible Veriication under Fairness. In Computer Aided Veriication,

Ahmed Bouajjani and Oded Maler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 709ś714.

[46] Tatsuhiro Tsuchiya and Andre Schiper. 2007. Model Checking of Consensus Algorit. In 2007 26th IEEE International Symposium on

Reliable Distributed Systems (SRDS 2007). 137ś148. https://doi.org/10.1109/SRDS.2007.20

Distrib. Ledger Technol.

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-44585-4_17
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1109/ICECCS2018.2018.00031
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CVCBT.2019.00008
https://www.forbes.com/advisor/investing/defi-decentralized-finance/
https://www.forbes.com/advisor/investing/defi-decentralized-finance/
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/ACCESS.2021.3063324
https://doi.org/10.1109/TASE.2009.32
https://doi.org/10.1109/SRDS.2007.20


26 • Galleta et al.

A NOTATION AND SYMBOLS

A summary of the symbols

Symbol Value Meaning

�� 1/12.6 communication latency of the network

��� 1/14 (1/8, 1/7, 1/6) time needed to create a new block

ℎ�� 1-��� time needed to not create a block

��� 1/(lenepoch × s) how often a validator should check for new justiied/inalized blocks

� 13 number of validators

� 20%, 30%, 40% percentage of the increased/decreased stake

�������ℎ 64 epochs length

��_in N/A probability that a checkpoint is inalized within � epochs

��_just N/A probability that a checkpoint is justiied within � epochs

Table 1. A table summarising the symbols used throughout the article.

Distrib. Ledger Technol.


	Abstract
	1 Introduction
	2 Remarks about our technique
	3 The Hybrid Casper protocol
	4 A quick introduction to PRISM
	5 The extension PRISM+
	5.1 Data types and Operations
	5.2 The implementation of PRISM+

	6 The definition of Hybrid Casper in PRISM+
	6.1 Validator module
	6.2 Network module
	6.3 Vote Manager module

	7 Coherence of the Hybrid Casper model
	8 Hybrid Casper stress tests and its robustness to attacks
	8.1 Different rates of creating blocks
	8.2 Variation of the penalties
	8.3 Eclipse Attack
	8.4 Majority Attack

	9 Related work
	10 Conclusions
	References
	A Notation and symbols

