827 research outputs found

    Assisted Generation and Publication of Geospatial Metadata

    Get PDF
    Ponència presentada en AGILE’2012 International Conference on Geographic Information Science, "Multidisciplinary Research on Geographical Information in Europe and Beyond" celebrat a Avignon, els dies 24-27 d'abril de 2012Today, the existence of metadata is one of the most important factors for the effective discovery of geospatial data published in Spatial Data Infrastructures (SDI). However, due to the lack of efficient tools, integrated in the user?s daily workflow to assist users in generating metadata, little metadata is produced. This paper presents a mechanism for generating and publishing metadata with a Publication Service. This method is provided as a web service implemented with a standard-base interface, the Web Processing Service (WPS) specification to improve its interoperability with other SDI components. This paper extends previous research regarding the design of a Publication Service within the framework of the European Directive INSPIRE as a solution to assist users in publishing geospatial data and metadata automatically in order to improve, among others, SDI maintenance and usability

    Knowledge-based systems and geological survey

    Get PDF
    This personal and pragmatic review of the philosophy underpinning methods of geological surveying suggests that important influences of information technology have yet to make their impact. Early approaches took existing systems as metaphors, retaining the separation of maps, map explanations and information archives, organised around map sheets of fixed boundaries, scale and content. But system design should look ahead: a computer-based knowledge system for the same purpose can be built around hierarchies of spatial objects and their relationships, with maps as one means of visualisation, and information types linked as hypermedia and integrated in mark-up languages. The system framework and ontology, derived from the general geoscience model, could support consistent representation of the underlying concepts and maintain reference information on object classes and their behaviour. Models of processes and historical configurations could clarify the reasoning at any level of object detail and introduce new concepts such as complex systems. The up-to-date interpretation might centre on spatial models, constructed with explicit geological reasoning and evaluation of uncertainties. Assuming (at a future time) full computer support, the field survey results could be collected in real time as a multimedia stream, hyperlinked to and interacting with the other parts of the system as appropriate. Throughout, the knowledge is seen as human knowledge, with interactive computer support for recording and storing the information and processing it by such means as interpolating, correlating, browsing, selecting, retrieving, manipulating, calculating, analysing, generalising, filtering, visualising and delivering the results. Responsibilities may have to be reconsidered for various aspects of the system, such as: field surveying; spatial models and interpretation; geological processes, past configurations and reasoning; standard setting, system framework and ontology maintenance; training; storage, preservation, and dissemination of digital records

    Theory and Practice of Data Citation

    Full text link
    Citations are the cornerstone of knowledge propagation and the primary means of assessing the quality of research, as well as directing investments in science. Science is increasingly becoming "data-intensive", where large volumes of data are collected and analyzed to discover complex patterns through simulations and experiments, and most scientific reference works have been replaced by online curated datasets. Yet, given a dataset, there is no quantitative, consistent and established way of knowing how it has been used over time, who contributed to its curation, what results have been yielded or what value it has. The development of a theory and practice of data citation is fundamental for considering data as first-class research objects with the same relevance and centrality of traditional scientific products. Many works in recent years have discussed data citation from different viewpoints: illustrating why data citation is needed, defining the principles and outlining recommendations for data citation systems, and providing computational methods for addressing specific issues of data citation. The current panorama is many-faceted and an overall view that brings together diverse aspects of this topic is still missing. Therefore, this paper aims to describe the lay of the land for data citation, both from the theoretical (the why and what) and the practical (the how) angle.Comment: 24 pages, 2 tables, pre-print accepted in Journal of the Association for Information Science and Technology (JASIST), 201

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Approach to Facilitating Geospatial Data and Metadata Publication Using a Standard Geoservice

    Get PDF
    Nowadays, the existence of metadata is one of the most important aspects of effective discovery of geospatial data published in Spatial Data Infrastructures (SDIs). However, due to lack of efficient mechanisms integrated in the data workflow, to assist users in metadata generation, a lot of low quality and outdated metadata are stored in the catalogues. This paper presents a mechanism for generating and publishing metadata through a publication service. This mechanism is provided as a web service implemented with a standard interface called a web processing service, which improves interoperability between other SDI components. This work extends previous research, in which a publication service has been designed in the framework of the European Directive Infrastructure for Spatial Information in Europe (INSPIRE) as a solution to assist users in automatically publishing geospatial data and metadata in order to improve, among other aspects, SDI maintenance and usability. Also, this work adds more extra features in order to support more geospatial formats, such as sensor data.Sergio Trilles has been funded by the postdoctoral programme Vali+d (GVA) (grant number APOSTD/2016/058). This work has been funded by the European Commission through the GEO-C project (H2020-MSCA-ITN-2014, Grant Agreement number 642332, http://www.geo-c.eu/)

    Mediation to deal with information heterogeneity ? application to Earth System Science

    No full text
    International audienceWe address the problem of data and information interoperability in the Earth System Science information domain. We believe that well-established architectures and standard technologies are now available to implement data interoperability. In particular, we elaborate on the mediated approach, and present several technological aspects of our implementation of a Mediator-based Information System for Earth System Science Data. We highlight some limitations of current standard-based solutions and introduce possible future improvements

    Integration of weakly heterogeneous semistructured data

    Full text link
    While most business applications typically operate on structured data that can be effectively managed using relational databases, some applications use more complex semistructured data that lacks a stable schema. XML techniques are available for the management of semistructured data, but such techniques tend to be ineffective when applied to large amounts of heterogeneous data, in particular in applications with complex query requirements. We describe an approach that relies on the mapping of multiple semistructured data sets to object-relational structures and uses an object-relational database to support complex query requirements. As an example we use weakly heterogeneous oceanographic data. © 2009 Springer Science+Business Media, LLC

    Data mining and fusion

    No full text

    Geospatial Workflows and Trust: a Use Case for Provenance

    Get PDF
    At first glance the Astronomer by Vermeer, Tutankhamun’s burial mask, and a geospatial workflow may appear to have nothing in common. However, a commonality exists; each of these items can have a record of provenance detailing their history. Provenance is a record that shows who did what to an object, where this happened, and how and why these actions took place. In relation to the geospatial domain, provenance can be used to track and analyze the changes data has undergone in a workflow, and can facilitate scientific reproducibility. Collecting provenance from geospatial workflows and finding effective ways to use this provenance is an important application. When using geospatial data in a workflow it is important to determine if the data and workflow used are trustworthy. This study examines whether provenance can be collected from a geospatial workflow. Each workflow examined is a use case for a specific type of geospatial problem. In addition to this, the collected provenance is then used to determine workflow trust and content trust for each of the workflows examined in this study. The results of this study determined that provenance can be collected from a geospatial workflow in such a way as to be of use to additional applications, such as provenance interchange. From this collected provenance, content trust and workflow trust can be estimated. The simple workflow had a content trust value of .83 (trustworthy) and a workflow trust value of .44 (untrustworthy). Two additional workflows were examined for content trust and workflow trust. The methods used to calculate content trust and workflow trust could also be expanded to other types of geospatial data and workflows. Future research could include complete automation of the provenance collection and trust calculations, as well as examining additional techniques for deciding trust in relation to workflows

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection
    • …
    corecore