1,069 research outputs found

    Secure CAN logging and data analysis

    Get PDF
    2020 Fall.Includes bibliographical references.Controller Area Network (CAN) communications are an essential element of modern vehicles, particularly heavy trucks. However, CAN protocols are vulnerable from a cybersecurity perspective in that they have no mechanism for authentication or authorization. Attacks on vehicle CAN systems present a risk to driver privacy and possibly driver safety. Therefore, developing new tools and techniques to detect cybersecurity threats within CAN networks is a critical research topic. A key component of this research is compiling a large database of representative CAN data from operational vehicles on the road. This database will be used to develop methods for detecting intrusions or other potential threats. In this paper, an open-source CAN logger was developed that used hardware and software following the industry security standards to securely log and transmit heavy vehicle CAN data. A hardware prototype demonstrated the ability to encrypt data at over 6 Megabits per second (Mbps) and successfully log all data at 100% bus load on a 1 Mbps baud CAN network in a laboratory setting. An AES-128 Cipher Block Chaining (CBC) encryption mode was chosen. A Hardware Security Module (HSM) was used to generate and securely store asymmetric key pairs for cryptographic communication with a third-party cloud database. It also implemented Elliptic-Curve Cryptography (ECC) algorithms to perform key exchange and sign the data for integrity verification. This solution ensures secure data collection and transmission because only encrypted data is ever stored or transmitted, and communication with the third-party cloud server uses shared, asymmetric secret keys as well as Transport Layer Security (TLS)

    Truck accident litigation

    Get PDF
    Meeting proceedings of a seminar by the same name, held March 4, 2020

    Науково методичні та практичні засоби об’єктивного та суб’єктивного контролю повітряного судна

    Get PDF
    Робота публікується згідно наказу ректора від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт вищої освіти в репозиторії НАУ". Керівник дипломної роботи: професор кафедри авіоніки, Грищенко Юрій ВіталійовичSafety remains and will remain a very important part of the aviation industry. Airplane remain one of the fastest and most comfortable solutions to long range travel. However not all flights end as planned. Minor incidents do occur occasionally, but the worst cases are the ones that result in loss of human lives. In addition, EASA has issued a Regulation (EU) 2021/1963 amending Regulation (EU) No 1321/2014 which in part means that PART-145 organisations are obliged to have Safety Management System. Objectivity and subjectivity are a philosophical and (from a certain stand-point) scientific components of safety itself. Aircraft accidents are currently not one hundred percent preventable due to our human nature. People are not perfect, far from it. Accidents are not only caused by mistakes of the machinery and onboard systems (objective) but also by organizational disputes/troubles as well as human errors (subjective). By correctly dividing aircraft as a system of objective and subjective control as well that this system has to be in a certain balance will prevent more accidents and provide a better understanding how accidents happen in the first reason, especially when used in conjunction with other already well-established models of analysis. Objectivity is nearly impossible for humans to achieve, and the essence of human objectivity can only be grasped with the power of hindsight. Only by analysing past actions with the knowledge of today it could be said if the actions of a person were truly objective. Objectivity is achieved through other machine based or algorithm-based methods which also increase flight safety, however doing so does increase flight complexity in return. Subjective control is culmination of human input in its entirety not only as decisions of air traffic controllers and pilots but the input of maintenance crew and even corporate management of an airline company. Subjectivity is in majority of time a negative aspect that is meant to be reduced to a minimum.Безпека залишається і залишатиметься дуже важливою частиною авіаційної галузі. Літак залишається одним із найшвидших і найкомфортніших рішень для далеких подорожей. Однак не всі рейси закінчуються за планом. Дрібні інциденти іноді трапляються, але найгірші випадки, які призводять до людських життів. Крім того, EASA випустила a Регламент (ЄС) 2021/1963 про внесення змін до Регламенту (ЄС) № 1321/2014, який частково означає що організації PART-145 зобов'язані мати систему управління безпекою. Об'єктивність і суб'єктивність є філософською та (з певних позицій) науковою складовими самої безпеки. Авіаційним аваріям наразі неможливо на сто відсотків запобігти завдяки нашій людині природи. Люди не ідеальні, далеко не так. Аварії виникають не лише через помилки механізми та бортові системи (об'єктивно), а також через організаційні суперечки/проблеми, як а також людські помилки (суб'єктивні). Правильно поділивши літак як систему об'єктивного і суб'єктивного управління, а також те ця система має бути в певному балансі, щоб запобігти більшій кількості нещасних випадків і забезпечити кращий розуміння того, як трапляються нещасні випадки в першій причині, особливо коли використовується разом з іншими вже добре встановленими моделями аналізу. Людям майже неможливо досягти об’єктивності, а суть людської об’єктивності можна зрозуміти лише заднім числом. Тільки аналізуючи минулі дії з знання сьогодні можна було б сказати, якби дії людини були справді об'єктивними. Об'єктивність досягається за допомогою інших машинних або алгоритмічних методів, які також підвищити безпеку польоту, однак це у свою чергу збільшує складність польоту. Суб'єктивний контроль є кульмінацією людського внеску в його повноті не тільки як повітряні рішення диспетчери руху та пілоти, але внесок бригади технічного обслуговування та навіть корпоративних управління авіакомпанією. Суб'єктивність у більшості випадків є негативним аспектом має бути зведено до мінімуму

    Power system fault analysis based on intelligent techniques and intelligent electronic device data

    Get PDF
    This dissertation has focused on automated power system fault analysis. New contributions to fault section estimation, protection system performance evaluation and power system/protection system interactive simulation have been achieved. Intelligent techniques including expert systems, fuzzy logic and Petri-nets, as well as data from remote terminal units (RTUs) of supervisory control and data acquisition (SCADA) systems, and digital protective relays have been explored and utilized to fufill the objectives. The task of fault section estimation is difficult when multiple faults, failures of protection devices, and false data are involved. A Fuzzy Reasoning Petri-nets approach has been proposed to tackle the complexities. In this approach, the fuzzy reasoning starting from protection system status data and ending with estimation of faulted power system section is formulated by Petri-nets. The reasoning process is implemented by matrix operations. Data from RTUs of SCADA systems and digital protective relays are used as inputs. Experiential tests have shown that the proposed approach is able to perform accurate fault section estimation under complex scenarios. The evaluation of protection system performance involves issues of data acquisition, prediction of expected operations, identification of unexpected operations and diagnosis of the reasons for unexpected operations. An automated protection system performance evaluation application has been developed to accomplish all the tasks. The application automatically retrieves relay files, processes relay file data, and performs rule-based analysis. Forward chaining reasoning is used for prediction of expected protection operation while backward chaining reasoning is used for diagnosis of unexpected protection operations. Lab tests have shown that the developed application has successfully performed relay performance analysis. The challenge of power system/protection system interactive simulation lies in modeling of sophisticated protection systems and interfacing the protection system model and power system network model seamlessly. An approach which utilizes the "compiled foreign model" mechanism of ATP MODELS language is proposed to model multifunctional digital protective relays in C++ language and seamlessly interface them to the power system network model. The developed simulation environment has been successfully used for the studies of fault section estimation and protection system performance evaluation

    Запобігання авіаційних пригод засобами суб’єктивного та об’єктивного контролю повітряного судна

    Get PDF
    Робота публікується згідно наказу ректора від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт вищої освіти в репозиторії НАУ". Керівник дипломної роботи: професор сумісник кафедри авіоніки, Леонід Вікторович СібрукSafety remains and will remain a very important part of the aviation industry. Airplane remain one of the fastest and most comfortable solutions to long range travel. However not all flights end as planned. Minor incidents do occur occasionally but the worst cases are the ones that result in loss of human lives. Aircraft accidents are currently not one hundred percent preventable due to our human nature. People are not perfect, far from it. Accidents are not only caused by mistakes of the machinery and onboard systems (objective) but also by organizational disputes/troubles as well as human errors (subjective). By correctly dividing aircraft as a system of objective and subjective control as well that this system has to be in a certain balance will prevent more accidents and provide a better understanding how accidents happen in the first reason, especially when used in conjunction with other already well established models of analysis.Безопасность остается и останется очень важной частью авиационной отрасли. Самолет остается одним из самых быстрых и удобных решений для дальних путешествий. Однако не все рейсы заканчиваются так, как планировалось. Незначительные инциденты случаются время от времени, но самые серьезные случаи - это те, которые приводят к гибели людей. Авиакатастрофы в настоящее время невозможно предотвратить на сто процентов из-за нашего человеческого фактора. природа. Люди не идеальны, это далеко не так. Несчастные случаи происходят не только из-за ошибок техники и бортовых систем (объективно), но и организационными спорами/неурядицами, т.к. а также человеческие ошибки (субъективные). Правильно разделяя самолет как систему объективного и субъективного управления, а также эта система должна быть в определенном равновесии, чтобы предотвратить больше несчастных случаев и обеспечить лучшее понимание того, как происходят несчастные случаи по первой причине, особенно при использовании в сочетании с другими уже хорошо зарекомендовавшими себя моделями анализа

    Signal processing for distribution network monitoring

    Get PDF

    Prosessitiedon tehokkaampi hyödyntäminen ennakoivassa verkonhallinnassa

    Get PDF
    A continuously increasing amount of data is gathered from the distribution network. The increased amount of data offers new possibilities to be utilized but requires more sophisticated processing to be applied as well. This data consists mainly of different alarms, status indications and measurements. The target of this thesis was to study the process data and its possibilities for proactive network management. The study for the present state of process data utilization was carried out from two different perspectives. At first, an exploration was made to the available process data and the processes exploiting it. The studied data sources were substations, automated disconnector stations, remote reclosers and smart meters. The study was complemented by including the user perspective with interviewing the personnel of Elenia. From the interviews, several visions for the improved process data utilization were encountered. These were refined to the functionalities of a novel Proactive Network Management System (PNMS) concept by studying the required initial data and some other boundaries. The functionalities will form a guideline for the system-driven development of proactive network management in Elenia. More thorough analysis of the new functionalities revealed that it would not be reasonable to implement all of these into a single system; a novel nor an existing one. Some of the functions could be implemented into existing systems with little effort. Some of the functionalities instead require data from multiple locations and may not fit in any of the existing systems. Thus a need for a novel system was verified. Each of the functions requires still more careful evaluation before implementing them into practice. The features of this novel system were also discussed in general. Finally, two of the discovered functionalities, repetitive reclosing analysis and the handling of disturbance records, were studied in more detail. The former represents a functionality which could be implemented in the Distribution Management System (DMS) in use at present. Next, a more detailed specification should be made with the software vendor. The latter would enable the multiple functionalities of which the improved fault analysis was studied the most. To have these functionalities implemented in practice, further research is needed with actual records to verify the potential of each function before rushing into system development

    A method of active system safety

    Get PDF
    The concept of Active Safety proposed originally by Prof Schagaev [3][4][5][6] can be applied to provide additional improvement in safety of a system over its operational lifecycle by continuous analysis and assessment of the state of the system in real time of its operation and reacting dynamically to improve its safety. This thesis develops the concept, theory and an implementation for a Method of Active System Safety (MASS) for application in the field of Aviation. The thesis has three parts: Part 1 researches the Aviation domain and current safety practices. General and Civil Aviation flight statistics are analysed to gain and understanding of flight risks, their causes and opportunities to improve safety. Current approaches to safety management are reviewed then the Principle of Active Safety (PASS) is introduced. Part 2 explores how PASS can be used as a basis for improving operational reliability, and so safety; the PASS algorithm is presented. A theoretical reliability model is then developed for the operational lifecycle of an aircraft and then conditional, preventive and PASS assisted maintenance strategies are evaluated. The beneficial effect of introducing PASS is then demonstrated at 2 levels: first during the lifecycle of use of an aircraft showing how apparent reliability can be improved and unnecessary maintenance reduced and second during each flight, using PASS to improve flight reliability. This uses an operational model (flight modes and limits) and a physical aircraft model (elements and fault detection) using dependency and recovery matrices. A means is proposed to provide timely and relevant safety advice based on continuous PASS analysis in real time of flight operations. A prototype implementation is described and a process proposed for characterisation of the system for a particular aircraft. The state of the art in Active Safety is reviewed and suggestions for further research are outlined. Part 3 contains supportive information in the Appendices. The contribution made to the knowledge of Active Safety is a theoretical and practical development of the concept in terms of aircraft classification, flight risk analysis, operational reliability modelling, fault analysis, the application of PASS in aviation and a system design for an Active Safety Monitor which operates in real time of flight
    corecore