398 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Graph run-length matrices for histopathological image segmentation

    Get PDF
    Cataloged from PDF version of article.The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentatio

    A novel polar space random field model for the detection of glandular structures

    Get PDF
    In this paper, we propose a novel method to detect glandular structures in microscopic images of human tissue. We first convert the image from Cartesian space to polar space and then introduce a novel random field model to locate the possible boundary of a gland. Next, we develop a visual feature-based support vector regressor to verify if the detected contour corresponds to a true gland. And finally, we combine the outputs of the random field and the regressor to form the GlandVision algorithm for the detection of glandular structures. Our approach can not only detect the existence of the gland, but also can accurately locate it with pixel accuracy. In the experiments, we treat the task of detecting glandular structures as object (gland) detection and segmentation problems respectively. The results indicate that our new technique outperforms state-of-the-art computer vision algorithms in respective fields

    Structure Prediction for Gland Segmentation with Hand-Crafted and Deep Convolutional Features

    Get PDF
    We present a novel method to segment instances of glandular structures from colon histopathology images. We use a structure learning approach which represents local spatial configurations of class labels, capturing structural information normally ignored by sliding-window methods. This allows us to reveal different spatial structures of pixel labels (e.g., locations between adjacent glands, or far from glands), and to identify correctly neighboring glandular structures as separate instances. Exemplars of label structures are obtained via clustering and used to train support vector machine classifiers. The label structures predicted are then combined and post-processed to obtain segmentation maps. We combine hand-crafted, multi-scale image features with features computed by a deep convolutional network trained to map images to segmentation maps. We evaluate the proposed method on the public domain GlaS data set, which allows extensive comparisons with recent, alternative methods. Using the GlaS contest protocol, our method achieves the overall best performance

    Micro-Net: A unified model for segmentation of various objects in microscopy images

    Get PDF
    Object segmentation and structure localization are important steps in automated image analysis pipelines for microscopy images. We present a convolution neural network (CNN) based deep learning architecture for segmentation of objects in microscopy images. The proposed network can be used to segment cells, nuclei and glands in fluorescence microscopy and histology images after slight tuning of input parameters. The network trains at multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The extra convolutional layers which bypass the max-pooling operation allow the network to train for variable input intensities and object size and make it robust to noisy data. We compare our results on publicly available data sets and show that the proposed network outperforms recent deep learning algorithms
    corecore