
                                                              

University of Dundee

Structure Prediction for Gland Segmentation with Hand-Crafted and Deep
Convolutional Features
Manivannan, Siyamalan; Li, Wenqi; Zhang, Jianguo; Trucco, Emanuele; McKenna, Stephen

Published in:
IEEE Transactions on Medical Imaging

DOI:
10.1109/TMI.2017.2750210

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Manivannan, S., Li, W., Zhang, J., Trucco, E., & McKenna, S. (2017). Structure Prediction for Gland
Segmentation with Hand-Crafted and Deep Convolutional Features. IEEE Transactions on Medical Imaging.
DOI: 10.1109/TMI.2017.2750210

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://dx.doi.org/10.1109/TMI.2017.2750210
http://discovery.dundee.ac.uk/portal/en/research/structure-prediction-for-gland-segmentation-with-handcrafted-and-deep-convolutional-features(9ef4f5fd-6f1e-4e3f-a51c-a54d6a3a6643).html


SUBMISSION TO: IEEE TRANSACTIONS ON MEDICAL IMAGING, JANUARY 2017 1

Structure Prediction for Gland Segmentation with
Hand-Crafted and Deep Convolutional Features
Siyamalan Manivannan, Member, IEEE, Wenqi Li, Member, IEEE, Jianguo Zhang, Emanuele Trucco,

and Stephen McKenna, Senior Member, IEEE

Abstract—We present a novel method to segment instances
of glandular structures from colon histopathology images. We
use a structure learning approach which represents local spatial
configurations of class labels, capturing structural information
normally ignored by sliding-window methods. This allows us to
reveal different spatial structures of pixel labels (e.g., locations
between adjacent glands, or far from glands), and to identify cor-
rectly neighbouring glandular structures as separate instances.

Exemplars of label structures are obtained via clustering
and used to train support vector machine classifiers. The label
structures predicted are then combined and post-processed to
obtain segmentation maps. We combine hand-crafted, multi-scale
image features with features computed by a deep convolutional
network trained to map images to segmentation maps.

We evaluate the proposed method on the public domain
GlaS dataset, which allows extensive comparisons with recent,
alternative methods. Using the GlaS contest protocol, our method
achieves the overall best performance.

Index Terms—Molecular and cellular imaging; Gastrointesti-
nal tract; Segmentation.

I. INTRODUCTION

Histological assessment of gland formation and morphol-
ogy informs diagnosis, prognosis and treatment planning of
patients [1]. It is useful for grading of adenocarcinomas in
colon, breast, and prostate. Such assessment is labour inten-
sive, performed by highly trained pathologists, and often has
limited reproducibility. The emergence of whole-slide imaging
is increasing the volume of digital histology image data to
be analysed, exacerbating the problem. Algorithms capable of
reliably segmenting glandular structures automatically would
accelerate analysis and provide reproducible, quantitative mea-
sures of gland morphology. The development of such algo-
rithms is challenging because malignancy results in irregular
morphology and poorly differentiated gland boundaries, and
because glandular structures can be closely packed together but
need to be segmented as separate instances. Glands in healthy
epithelial tissue have a clear structure with interior lumen
surrounded by columnar epilthelial cells (Fig. 1 (a)). This
structure degenerates in moderately or poorly differentiated
adenocarcinomas (Fig. 1 (b)).

Gland segmentation, and more generally semantic pixel
labelling, often incorporates a sliding window classification
procedure based on features extracted from a local window
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Fig. 1: Glandular structures in the Warwick-QU dataset [2]. (a)
Glands in healthy tissue. (b) Left to right: adenoma, moder-
ately differentiated, and poorly differentiated adenocarcinoma.

centred at each image location (e.g. [3], [4]). Such a procedure
ignores the class labels’ spatial structure. Instead, we propose
to learn discriminative models for segmentation in which local
spatial structures are encoded in the label (output) space as
well as in the feature (input) space. By directly employing
label structure we can more reliably separate objects and
thus improve instance segmentation. The number of possible
label structures grows exponentially as the size of the local
region considered increases, posing a challenge. We show how
this large output space can be handled by combining small
numbers of local structure exemplars obtained via clustering.

We combine hand-crafted features with learned deep con-
volutional features to capture image context information.
We conduct experiments with the publicly available GlaS
dataset [2] showing that the proposed use of local structure
prediction improves gland segmentation compared with using
binary classifiers. Direct comparison with other published
results indicates that our method is the top ranked.

This paper follows on from short conference papers that
evaluated choices of image features [4] and a preliminary
version of local structure prediction [5]. Contributions of this
paper with respect to those earlier ones include the following.

1) We summarise the literature on gland segmentation,
reviewing progress over the last decade.

2) We incorporate features learned using fully convolu-
tional networks (FCN) into the local structure predic-
tion framework, whereas previously [5] we tested the
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feasibility of structure learning using only hand-crafted
features.

3) We evaluate combining feature types in the context of
local structure prediction, whereas previously [4] we
combined features only in a binary (gland vs non-gland)
setting.

4) We investigate the effect of the number of structure
exemplars (clusters) at both training and test time.

5) We employ the full GlaS dataset [2] for all evaluations
presented in this paper whereas our previously published
experiments used only a subset of it.

6) The GlaS dataset allows extensive comparisons with
recent, alternative methods; using the GlaS contest pro-
tocol, our method achieves the best overall performance.

II. RELATED WORK

Here we review how gland segmentation has progressed
over the past decade. Early methods attempted to segment
glandular structures by first explicitly identifying substructures
such as nuclei and lumen. Farjam et al. [6] performed k-
means clustering of local texture features to distinguish stroma
and lumen from regions more densely populated with nuclei.
However, robust gland segmentation requires more domain
knowledge to be incorporated whether modeled explicitly or
acquired via machine learning with a supervision mecha-
nism. A popular approach has been to classify pixels based
on colour, identify candidate lumen regions, and run either
region growing or contour-based segmentation initialised at
each of these candidates. Wu et al. [7] described a region
growing algorithm initialised in lumen regions obtained by
thresholding. Naik et al. [8] used supervised pixel colour
classification to label pixels as nuclear, cytoplasmic, or lu-
men. Candidate gland lumen regions were identified based
on size and bordering epithelial cytoplasm. These were used
to initialise level-sets contour segmentation; contours evolved
outward with stopping gradient based on nuclei likelihood.
In a similar spirit, Nguyen et al. [9] grouped nuclear and
cytoplasmic pixels to obtain gland boundary segments and
then grew lumen regions in a controlled way until they met
with surrounding gland boundary segments. Gunduz-Demir et
al. [10] used k-means colour clustering to identify pixel clus-
ters corresponding approximately to nuclei and lumen. They
ran an iterative algorithm to fit discs inside nuclear regions
and lumen regions. They then clustered lumen discs into two
clusters based on features including size and displacement of
neighbouring discs. Finally, lumen discs in the cluster more
likely to represent glands were used to seed region growing
constrained by line segments joining proximal pairs of nuclear
discs. More recently, Cohen et al. [11] classified pixels as
nuclei, immune system, lumen, cytoplasm, stroma, and goblet
cells based on local colour statistics using two stages of
random forest classification. Candidate lumen boundaries were
then used to initialise active contours with external forces
designed to attract the contour to nuclear pixels and repel it
from stroma and immune system pixels, encouraging it to stop
at the boundary of the nuclear layer at the gland periphery. A
final classification step reduced false positives based on shape

features and pixel labels. The methods described above, based
on iterative segmentation initialised at lumina and terminated
based on constraints provided by pixels classified as nuclear,
can work well for well-formed glandular structures. However,
they will fail when the spatial assumptions on which they
are based are badly violated. This will often be the case for
malignant glands with deformation of gland morphology.

Ben Cheikh et al. [12] used colour classification to locate
cell nuclei. They applied advanced morphological operators to
nuclear objects to obtain candidate epithelial layers and gland
central regions. These were combined to obtain glandular
structures. Nguyen et al. [13] formulated gland segmentation
as a graph cuts problem, constructing graphs with nuclei and
lumen as nodes. Nuclei were detected based on radial sym-
metry and classified as epithelial or stromal using a support
vector machine (SVM) based on local texture features. This
method was able to detect glands without lumen and glands
with multiple lumina. Sirinukunwattana et al. [14], [15] found
candidate glands by classifying superpixels as gland or non-
gland based on colour and texture features extracted from
superpixel neighbourhoods. In [15] they initialised a polygonal
contour model for each such candidate and inferred both the
number of vertices in the polygon and their location based
on reversible-jump Markov chain Monte Carlo. After post-
processing to remove some false positives, the MAP contours
obtained compared favorably with several previous algorithms.
Scattering coefficients have been used as texture features in
the computation of glandular structure maps [14]. Their use
as input to a convolutional neural network (CNN) in addition
to raw image values to detect tumour cells in histology images,
showed that CNN can perform better when the input consists
of a combination of handcrafted features and raw data [16].

Research on gland segmentation was invigorated by the
GlaS contest [2]. Its focus on shared data and compara-
tive evaluation of methods in a controlled setting yielded
an informative snapshot of the state-of-the-art. Several of
the most highly ranked GlaS entries were based on sliding
window classifiers incorporating CNNs. The 5th-placed entry,
CVML [2], used a CNN trained to classify small 19 × 19
pixel windows into three classes representing gland lumen,
epithelial cells forming the gland boundary, and inter-gland
tissue; class probability maps thus obtained were used to drive
level set segmentation. In general, sliding window classifiers
trained to classify gland versus non-gland pixels can result in
neighbouring glandular structures being erroneously merged.
In an effort to prevent this, the 2nd-placed entry from ExB [2]
trained a CNN with two paths, one to classify gland versus
non-gland pixels, the other to classify pixels close to gland
boundaries versus all other pixels. For the same reason,
Kainz et al. [3] annotated pixels close to at least two gland
objects in the training data and trained a CNN to classify
windows as centred on such pixels or not. A second CNN
was trained to classify windows as centred on gland or non-
gland from either benign or malignant tissue (i.e. four classes).
An additive combination of outputs from these two classifiers
gave better segmentation results than the latter CNN alone.
Finally, gland segmentation was refined using convex geodesic
active contours. The 4th-placed entry, from our group, used
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SVM classifiers with features from a CNN combined with
features extracted from multi-scale patches [4]. Fu et al. [17]
developed a sliding window detector in which windows were
circular. A conditional random field (CRF) model was trained,
after transforming windows to polar coordinates, to find the
closed contour in each window most likely to be a gland
boundary. Support vector regression on pyramid HOG features
was used to select the strongest gland candidates from the
CRF. This method assumes glands are star shaped (in the sense
of Veksler [18]) which is not always the case, especially with
malignant glands.

Fully convolutional networks (FCNs) can be trained end-to-
end to map images directly to their segmentation maps [19].
Their typical contracting network architecture, in which con-
secutive convolution layers are interspersed with spatial pool-
ing operations, can result in FCN outputs having low reso-
lution. However, subsequent upsampling operators and con-
volutions can be used to learn more precise output. Four
methods for gland segmentation based on FCN variants with
image-to-segmentation-map training have been proposed in the
literature [20–23]. Ben Taieb and Hamarneh [20] used a loss
function for a deep FCN with penalty terms that encouraged
gland boundary smoothness and correct label hierarchy. An
indicator function was used in the loss function to indicate
whether or not an assignment was valid. Their experiments
suggest that this can help improve gland segmentation. Three
other methods based on FCN incorporate some mechanism to
help avoid nearby neighbouring gland structures from merging
erroneously. The U-net of Ronneberger et al. [22] (the third
ranked team in GlaS) is an FCN modified to yield more
precise segmentation. It learns to map a raw RGB image to a
binary gland segmentation. As well as a contracting analysis
path and an up-sampling synthesis path with many feature
channels, this network combines high-resolution features from
the contracting path with the upsampling layers so that a suc-
cessive convolution layer can learn to assemble a more precise
output. A high pixel-wise loss was used for pixels in gaps
between glandular structures in the training set. The winning
GlaS entry from Chen et al. [21] used an FCN combining
upsampling from layers at different depths to enhance multi-
scale analysis due to the varying effective receptive field size.
Their network was trained simultaneously to output both a
gland foreground map and a gland boundary map. These maps
were then logically combined to obtain a gland foreground
map in which nearby glands were kept separate. More recently,
Xu et al. [23] incorporated boundary maps into an FCN with
a complex structure. A deep convolutional channel predicted
a gland foreground map; outputs from N of its convolutional
layers were fed as inputs to a side channel which predicted
a gland boundary map through a linear combination of maps
computed from each of the N stages it was fed. A final CNN
stage combined these maps to predict a gland instance map.
They reported state-of-the-art results on the GlaS dataset.

In summary, today’s most successful methods are based
on supervised machine learning, typically incorporating CNNs
enhanced by some mechanism to prevent neighbouring gland
structures from merging. This contrasts with earlier methods
which tended to use pipelines reliant on detection of compo-

nents such as lumen and nuclei to seed and constrain multiple
instances of region growing or contour search.

III. METHOD

Gland segmentation takes a histology image as input and
outputs a label image in which pixel values denote gland or
non-gland. We formulate this in terms of local label structure
prediction. In summary, for each location on a rectangular grid
we extract image features and apply support vector machine
classifiers to predict a local label patch centred at that location.
These label patches are obtained as combinations of label
structure exemplars. Neighbouring label patch predictions
overlap so they are averaged. A post-processing step is applied
to identify the regions corresponding to individual glandular
structures. We first describe label structure classification and
post-processing before giving details of the features used to
capture image context using both handcrafted features and
deep convolutional networks.

A. Structure prediction

We denote a labelled data set as {(Ii, Gi)}, i = 1, . . . , n,
where Ii is an image and Gi its ground truth annotation. In
Gi, each gland region is represented by pixels assigned a
unique positive integer while non-gland (background) regions
are zero. Figs. 10 and 11 show examples with different gland
regions mapped to different colours. Let xij ∈ Rd denote
the feature representation at point sij of image Ii. Let uij

denote a label patch extracted at the same location from the
corresponding binary ground truth segmentation map. Fig. 3
shows some examples of label patches. Let uijk ∈ [0, 1] denote
the kth element of uij , i.e., the kth location in the label patch.
If this location is definitely foreground (gland) then uijk = 1.
If it is definitely background (non-gland)then uijk = 0.

A common approach (e.g. [24]) is to train a binary classifier
on a set of labeled windows, {xij , yij}, where yij ∈ {0, 1}. A
binary label, yij , can be computed from uij by thresholding:

yij =

{
1 1

d′

∑d′

k=1 uijk > t

0 otherwise.
(1)

where t is a user-specified threshold. Instead, our proposed
method directly finds a mapping from the input feature space
to a set of label exemplars {vk}, k = 1, . . . ,K. At test
time, the method directly predicts the local structure of the
labels for any given image location (see Fig. 2) using these
exemplars. The exemplars can be thought of as visual words
for binary images. A labelling can be reconstructed as a
weighted combination of those exemplars. The exemplars can
be obtained, for example, by clustering training label patches
{uij} and treating each cluster center, vk, as an exemplar.
Fig. 4 shows exemplars obtained using K-means.

Once we have K exemplars, structure classifiers are defined,
each of which separates a label configuration vk from other
configurations vm,∀m,m 6= k. We use linear classifiers,

fk(xij) = wT
k xij + bk (2)
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Fig. 2: Left: a traditional approach to patch-based segmentation. Right: using local structure learning and prediction.

(a) (b) (c)

Fig. 3: (a) An image, (b) its ground truth, and (c) example label patches extracted from (b).

Fig. 4: Label exemplars obtained using K-means (K = 30).

and learn (wk, bk) using an SVM optimization,

arg min
wk,bk

1

2
‖wk‖22 +

λ

|U|
∑
i,j∈U

max(0, 1−wT
k xij − bk)

+
λ

|Ū |
∑
i,j∈Ū

max(0, 1 + wT
k xij + bk)

(3)

where λ is a regularization parameter and U is defined as

U = {i, j | ‖uij − vk‖22 ≤ ‖uij − vm‖22, ∀m,m 6= k}. (4)

Ū is the complement of U . We used the LibLinear library [25]
to implement (3). The output of each classifier, fk, is calibrated
using Platt scaling [26] to obtain probabilities pk(xij) using
the logistic function,

pk(xij) =
1

1 + exp−Akfk(xij)−Bk
(5)

where Ak and Bk are two free parameters to be learned.
For a given test image location sij , the learned classifiers
{(wk, bk)}, k = 1, . . . ,K output the probabilities:

pij = [p1(xij), . . . , pK(xij)] . (6)

Let P represent a set of r(≤ K) indices which correspond to
the largest r values in pij . Renormalising,

qk(xij) =
pk(xij)∑

m∈P pm(xij)
, ∀k ∈ P, (7)

we obtain a distribution qij = [q1(xij), . . . , qr(xij)] that
indicates the extent to which the label structure at sij is
exemplified by each of the r most relevant exemplars. The
label patch uij at a given test image location sij can be
reconstructed by weighting the label exemplars accordingly:

uij ≈
∑
r∈P

qr(xij)vr (8)

In this way the local label structure can be reconstructed from
a few exemplars. When r = 1 this amounts to selecting the
exemplar with the highest Platt-scaled classification score.

B. Post-processing

Structure prediction (Section III-A) outputs a label window
centred on each location in a test image (Eq. (8)). Nearby
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label windows overlap and so are averaged to obtain a map in
which higher values correspond to probable gland locations.
Example label maps are shown in Figs. 10 and 11. To segment
individual glands from this map, we apply a fixed threshold
of T (estimated from training data, see IV-C) followed by
morphological erosion with circular structuring element of
radius 5 pixels to help reduce any connectivity between
adjacent glands. Small connected components (area < 900
pixels) are discarded. (To give an idea of scale, images in
Fig. 10 are 775×522 pixels). Dilation with structuring element
of radius 10 pixels restores objects to their original size given
that the system was trained using the ground truth images
which had been eroded using a structuring element of radius
5. Finally, a hole filling algorithm is run to remove holes in
foreground regions.

C. Feature representation
Let sij be the jth sampling point from image Ii. We use two

sets of features to represent image context around sij : deep
features extracted by applying a trained FCN, and HC features
with locality-constrained linear coding (LLC) [27]. These two
representations are normalized independently using the square-
root and L2 normalizations as in [28] and concatenated.

1) Fully convolutional neural networks: To capture multi-
level contextual information we make use of a fully convolu-
tional neural network [19]. This network can be trained in an
end-to-end (image-to-image) manner, which takes an image as
input and produces a correspondingly-sized probability map in
a single forward propagation. The network contains a down-
sampling path and an up-sampling path (Fig. 5). The down-
sampling path contains convolutional and max pooling layers,
and aims at extracting the high level (coarse) abstraction
information. The up-sampling path contains convolution and
up-sampling layers which try to extract the fine (pixel-level)
detail. We use a transfer learning approach to mitigate the
challenge of insufficient training data. Our starting point is
the pretrained FCN model from [19], an FCN-8s architecture
with 21 layers, trained using ImageNet and fine-tuned on
the Pascal VOC dataset. For gland segmentation, we append
two convolutional layers. The first, containing 512 output
channels, acts as a feature extractor; the second, containing 2
channels, provides foreground (gland) and background (non-
gland) scores. By leveraging an existing pre-trained network,
this design keeps relatively low the number of new parameters
to be learned for gland segmentation thus reducing the cost of
training and the risk of over-fitting on a dataset of relatively
small scale. In structure prediction experiments we use as
features the penultimate layer’s output (512 channels).

The network was implemented using Caffe [29]. Parameters
in the new layers were initialized using the "Xavier" initial-
ization [30] and the other 21 layers were initialized as the pre-
trained FCN from [19]. The whole network was then trained
in an end-to-end fashion by stochastic gradient descent with
maximum number of iterations set to 75, 000. Since we need
to fine-tune the FCN-8s architecture (shaded blue in Fig. 5)
and to learn from scratch the parameters of the new layers
(shaded red in Fig. 5), we set a higher learning rate for the
latter (10−4) than for the former (10−5 for FCN-8s).

The network was trained on randomly cropped sub-images
of size 384 × 384 pixels. Data augmentation (rotations and
flipping) was used to increase effectiveness of the network
while reducing risk of over-fitting. At test time, we extracted
overlapping sub-images of size 384×384 with overlap of 200
pixels. We averaged adjacent probability maps to obtain the
final prediction for an image. This sliding window approach
reduces memory requirements compared to an FCN applied to
entire images.

2) Hand-crafted features: Our second representation is
inspired by zoom-out features [31] and was built by concate-
nating window descriptors computed from concentric windows
of sizes 48× 48, 80× 80, 128× 128, and 200× 200 centered
at sij , as well as from the entire image. In addition, to capture
local fine structure, the 48×48 window was divided into nine
16 × 16-pixel windows and the feature representations from
these windows also concatenated. This is illustrated in Fig. 6.

Within each window, root-SIFT [32], vectorized raw-pixel
values, and multi-resolution local patterns [33] were extracted
from patches of size 16 × 16 with a step size of 2 pixels.
For each feature type, features extracted from the three color
channels (R, G, and B) were concatenated. Average pooling
was used to get window representations from the dictionary-
encoded features with a dictionary size of 200. (See [4] for ex-
periments with different dictionary sizes). We used square-root
and L2 normalizations [28] to normalize the pooled encoded
features from each individual window before concatenation.
The final dimensionality of HC features was 8400 (14 windows
× size of the dictionary ×3 features).

IV. EXPERIMENTS

A. Dataset

The Warwick-QU dataset was used for evaluation [15]. It
formed the basis of the Gland Segmentation (GlaS) Challenge
Contest hosted by MICCAI [2] and is now publicly available1.
It consists of 165 images each annotated with an associated
‘ground truth’ segmentation and histological grade (benign
or malignant). These 165 images were extracted from a set
of 52 visual fields which had been selected from 16 H&E-
stained whole-slide images (from 16 patients) of stage T3 or
T4 colorectal adenocarcinoma. They had been scaled to have
pixel resolution of 0.620µm (20× magnification) and were
typically of size 775× 522 pixels. An expert pathologist had
provided ground truth which involved assessing the grade of
each visual field and delineating the glandular structures. In
line with GlaS Challenge protocol, we used the provided split
into a training part and two test parts: test part A and test
part B. The training part has 85 images: 37 from visual fields
graded as benign and 48 from fields graded as malignant. Test
A has 60 images (33 benign, 27 malignant) and test B has 20
images (4 benign and 16 malignant). Figs. 10 and 11 show
example images. Table I summarises dataset composition.

1http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/
glascontest/

http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/
http://www2.warwick.ac.uk/fac/sci/dcs/research/combi/research/bic/glascontest/
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Fig. 5: Proposed FCN architecture. Blue: FCN-8s [19]. Red: new layers appended in this work.

Fig. 6: Feature representation at sij by HC features.

Histological grade
Number of images

Training Test A Test B

Benign 37 33 4

Malignant 48 27 16

TABLE I: Dataset composition.

B. Evaluation measures

Evaluation used three criteria, following [2]: detection accu-
racy, segmentation score, and shape dissimilarity. Mean values
over all the test images under each criteria were used to rank
different methods.

1) Detection accuracy: The F1 score is employed to mea-
sure the detection accuracy of individual glandular objects:

F1 =
2PR

P +R
, P =

NTP

NTP +NFP
, R =

NTP

NTP +NFN

where NTP , NFP , and NFN denote the number of true
positives, false positives, and false negatives, respectively. Cor-
respondence is established between each segmented instance
and the ground truth object that has maximum overlap with it.
A segmented instance that intersects with at least 50% of its
corresponding ground truth object is considered a true positive,
otherwise it is considered a false positive. A ground truth
object that has no corresponding segmented instance, or that

has less than 50% of its area overlapped by its corresponding
segmented instance, is considered a false negative.

2) Segmentation score: Pixel-level Dice score of a segmen-
tation O with ground truth G is defined as

Dp(G,O) =
2|G ∩ O|
|G| ∪ |O|

where | · | denotes set cardinality. Object-level Dice score is
then defined as

Do(Gi, Oi) =
1

2

 nO∑
j=1

ωiDp(Gij , Oij) +

nG∑
j=1

ω̃iDp(G̃ij , Õij)


where wj = |Oij |/

∑nO

k=0 |Oik| and w̃j = |G̃ij |/
∑nG

k=0 |G̃ik|.
Gij is the jth ground-truth object that maximally overlaps
with the segmentation Oij , and Õij is the jth segmentation
which maximally overlaps with the ground-truth object G̃ij .
nG and nO are the total number of ground-truth objects, and
segmented objects in the images Gi and Oi respectively.

3) Shape dissimilarity: Shape dissimilarity of segmented
object and ground truth is measured as Hausdorff distance:

H(G,O) = max{sup
x∈G

inf
y∈O
‖x− y‖, sup

x∈O
inf
y∈G
‖x− y‖}

An object-level measure is then defined as

Ho(Gi, Oi) =
1

2

 nO∑
j=1

ωiHp(Gij , Oij) +

nG∑
j=1

ω̃iHp(G̃ij , Õij)


C. Experimental settings

Structure predictors were applied at locations on a grid
with spacing of 8 pixels. We set the size of each patch, uij ,
to 48 × 48 pixels, approximately 30 × 30µm2. We used k-
means to learn 48× 48-pixel exemplars (Fig. 4). Parameter λ
in Eq. (3) was set to λ = 1; solvers in liblinear are known
not to be very sensitive to this parameter [25]. For all the
reported binary segmentation methods we used a relatively
high value of t = 0.8 (Eq. (1)) to encourage separation of
adjacent glands. We used data augmentation at training and test
time. Four instances of each classifier were trained, each on a
rotated version of the training data ({0◦, 90◦, 180◦, 270◦}). At
test time, 16 prediction maps were obtained for each image (4
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Methods

Mean values Median values

F1 score Obj dice Obj Hausdorff F1 score Obj dice Obj Hausdorff

Test A Test B Test A Test B Test A Test B Test A Test B Test A Test B Test A Test B

Binary (HC) 0.718 0.675 0.692 0.695 111.0 160.0 0.724 0.697 0.690 0.729 93.2 140.3

Binary (CNN) 0.758 0.690 0.688 0.671 94.9 166.5 0.772 0.769 0.724 0.746 66.9 133.1

Binary (HC+CNN) 0.784 0.722 0.799 0.776 75.0 139.0 0.809 0.817 0.820 0.879 59.2 74.3

Ours (HC) 0.838 0.723 0.834 0.747 67.0 122.4 0.857 0.714 0.859 0.809 55.9 116.1

Ours (CNN) 0.870 0.749 0.868 0.832 55.8 105.4 0.882 0.845 0.874 0.899 39.7 44.8

Ours (HC+CNN) 0.892 0.801 0.887 0.853 51.2 87.0 0.930 0.857 0.941 0.914 23.4 45.7

TABLE II: The proposed method (K=100) vs. binary prediction with different features. Mean and median values of the
evaluation measures over the images are reported.

Post-processing

Binary (HC+CNN) Ours (HC+CNN)

F1 score Obj dice Obj Hausdorff F1 score Obj dice Obj Hausdorff

Test A Test B Test A Test B Test A Test B Test A Test B Test A Test B Test A Test B

No post-processing 0.747 0.629 0.743 0.746 92.7 141.4 0.657 0.546 0.849 0.817 63.6 102.0

remove small isolated regions 0.781 0.724 0.743 0.747 93.2 141.5 0.849 0.763 0.852 0.818 63.0 101.5

Erosion + remove small isolated regions +
dilation

0.795 0.729 0.795 0.769 73.9 140.5 0.892 0.801 0.881 0.845 52.1 88.5

Erosion + remove small isolated regions +
dilation + fill holes

0.784 0.722 0.799 0.776 75.0 139.0 0.892 0.801 0.887 0.853 51.2 87.0

TABLE III: Effect of post-processing on mean values of performance measures. (Post-processing steps are explained in
Section III-B).

rotations of the test image × 4 classifiers). These prediction
maps were averaged to get the final prediction map for that
image (as in [33]). The threshold T in III-B was automatically
selected such that the selected T maximizes the average of
object level F1 and Dice scores on training data.

D. Evaluation

Results in Table II compare the proposed method with the
binary prediction method of Eq. (1). Structure prediction gave
better mean and median values than binary prediction in terms
of all measures. (Higher values are better for F1 and Dice
scores; lower values are better for Hausdorff distance.) Fig. 7
explores the effect of the number of structure exemplars, K.
When CNN features were used, performance peaked at around
K = 50 for test set B and at around K = 25 for test
set A. This is consistent with the fact that test set B has a
higher proportion of malignant cases; these contain irregularly
shaped glandular structures and so we would expect a more
complex representation of label structure to be of benefit.
When HC features are used either alone or in combination with
CNN features, it appears that still larger values of K can be
beneficial. Boxplots in Fig. 8 provide a comparison of structure
prediction (with different values of K) and binary prediction,
in the case of combined HC and CNN features. Considering
the median values (red lines) these are consistent with Fig. 7.
These boxplots highlight that performance varies considerably
between images with a few particularly challenging images
being very poorly segmented. Fig. 10 shows examples for
which stucture prediction gave better segmentation than bi-
nary prediction; adjacent gland boundaries are more reliably

separated by our method. Fig. 11 shows two cases for which
binary prediction gave better agreement with the annotated
ground-truth, although qualitative subjective comparison may
lead the reader to question whether it did in fact give better
segmentations. Fig. 12 shows two challenging examples that
resulted in structure predictions that were outliers.

Statistical tests were used to compare the eight methods
featured in Table II and Fig. 8 based on their performance
on the complete test set (Test A and Test B combined).
For each of the three measures (F1, Dice and Hausdorff) a
non-parametric Friedman test of differences was conducted
and in all three cases the Chi-square value was significant
(p < .01). Post-hoc Nemenyi tests were then conducted.
A critical difference (CD) value of 1.1739 was obtained (at
significance level 0.05); the difference in performance of two
methods can be considered statistically significant if the rank
difference is more than the CD. Figure 9 reports the results
as CD diagrams [34]. Structure prediction was significantly
better than all of the binary predictors provided that CNN
features were used. Structure prediction with combined HC
and CNN features (HC+CNN) and K ∈ {50, 100} gave the
best results; the Dice scores obtained were significantly better
than all other methods, and the F1 and Haussdorff measures
were significantly better than structure prediction with HC
features alone and significantly better than binary prediction.
The gains over binary prediction were ∼0.11 (Test A) and
∼0.08 (Test B) in terms of mean object-level F1 score, and
∼0.09 (Test A) and ∼0.08 (Test B) in terms of mean object-
level Dice score.

Effect of post-processing. The post-processing steps are
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(a) F1 score (b) Object-level Dice score (c) Object-level Hausdorff distance

Fig. 7: Results (mean values) using structure prediction with different features and different values of K.

(a) F1 score for Test A (b) Object-level Dice score for Test A (c) Object-level Hausdorff distance for Test A

(d) F1 score for Test B (e) Object-level Dice score for Test B (f) Object-level Hausdorff distance for Test B

Fig. 8: Box plots comparing structure prediction with binary prediction (with HC + CNN features).

(a) Object-level F1 score (b) Object-level Dice score (c) Object-level Hausdorff distance

Fig. 9: Nemenyi post-hoc test results. The horizontal scale numbered 1 to 6 shows the average rank of each method. Smaller
ranks are better. Red horizontal lines indicate no significant difference between the methods they connect.

explained in Section III-B. Table III explores the effect of
post-processing on binary and structure prediction methods.
In both cases post-processing improved the overall scores.
Effect of r. Thus far, the value of r in Eq. (7) was set to
r = 1. Table IV reports performance for different values of

r on test set A and suggests that increasing r does not help.
Similar results were obtained on test set B. Larger values of
r sometimes resulted in overly smoothed gland boundaries.
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(a) (b)

(c) (d)

Fig. 10: Four examples for which structure prediction (with HC+CNN features) gave better object-level detection scores than
binary prediction (with HC+CNN features). In each sub-figure, the first column shows the original image (top) and its ground
truth (bottom), the second column shows the probability map and segmentation obtained using binary prediction, and the last
column shows the probability map and segmentation obtained using the proposed method.

(a) (b)

Fig. 11: Two examples for which binary prediction (with HC+CNN features) gave better object-level detection scores than
local structure prediction (with HC+CNN features). Sub-figure layout is similar to Fig. 10. (a) A mismatch with ground-truth
was caused by torn glands at the edge of the tissue sample which the annotator had chosen not to annotate. (b) A mismatch
with ground-truth occurs at the lower-left of the image, probably due to boundary effects.

r
K=50 K=100

F1 score Obj Dice Obj Hausd. F1 score Obj Dice Obj Hausd.

1 0.90 0.89 50.6 0.89 0.89 51.2

3 0.89 0.88 50.6 0.88 0.88 53.3

5 0.88 0.87 51.1 0.87 0.87 55.2

10 0.86 0.85 57.0 0.86 0.86 53.7

TABLE IV: Effect of varying r (HC+CNN features).

E. Computational cost

The network (Fig. 5) took 12 hours to converge on an
NVidia Tesla K40 GPU with 12GB memory2. Training a
structured output classifier with 100,000 randomly sampled
features (HC+CNN) took around 2 hours on a core i7 machine
with 32 GB of RAM using Matlab 2015a. The average time to
extract the HC features for a test image of size 755×522 was
about 80s. The total time required to obtain the segmentation
from a test image by our unoptimized Matlab code was

2NVidia Corporation donated the Tesla K40 GPU used for this research.
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(a) (b)

Fig. 12: Example predictions that correspond to outliers in Fig. 8 (using HC+CNN features). Upper-left: original image.
Upper-right: ground truth annotation. Lower-left: structure prediction. Lower-right: binary prediction.

Method

F1 score Obj Dice Obj Hausdorff

Rank sumTest A Test B Test A Test B Test A Test B

score rank score rank score rank score rank score rank score rank

Ours 0.892 3 0.801 1 0.887 3 0.853 1 51.175 2 86.987 1 11

Xu et al. [23] 0.858 8 0.771 2 0.888 2 0.815 2 54.202 3 129.930 2 19

CUMedVision2 0.912 1 0.716 5 0.897 1 0.781 6 45.418 1 160.347 8 22

ExB1 0.891 4 0.703 6 0.882 6 0.786 4 57.413 8 145.575 3 31

ExB3 0.896 2 0.719 4 0.886 4 0.765 7 57.350 7 159.873 7 31

Freiburg2 0.870 5 0.695 7 0.876 7 0.786 4 57.093 5 148.463 5 33

CUMedVision1 0.868 6 0.769 3 0.867 10 0.800 3 74.596 10 153.646 6 38

ExB2 0.892 3 0.686 8 0.884 5 0.754 8 54.785 4 187.442 10 38

Freiburg1 0.834 9 0.605 10 0.875 8 0.783 5 57.194 6 146.607 4 42

CVIP Dundee 0.863 7 0.633 9 0.870 9 0.715 9 58.339 9 209.048 12 55

CVML 0.652 11 0.541 11 0.644 13 0.654 10 155.433 13 176.244 9 67

LIB 0.777 10 0.306 13 0.781 11 0.617 11 112.706 12 190.447 11 68

vision4GlaS 0.635 12 0.527 12 0.737 12 0.610 12 107.491 11 210.105 13 72

TABLE V: Comparison with the state of the art.

300s. This time includes extracting all features (HC+CNN)
from 4 rotated versions of the image and obtaining the final
segmentation. However note that this could be improved by
processing the 4 rotated versions of an image in parallel.

F. Comparison with the State of the Art

We compare our method (structure classifier with HC+CNN
features and K = 100) with published methods for gland
segmentation. We use the performance measures and ranking
criteria from the GlaS challenge for consistency [2]. Specif-
ically, the ranking method is as follows. Methods are first
ranked based on each of the three criteria (IV-B) on each of
the two test sets, giving 6 rank scores for each method. The
sum of these 6 scores, termed the rank sum, is used as an
indicator of overall performance; lower rank sums are better.

Table V compares our method with other methods using
results reported in [2] and [23]. It also reports the ranks and
rank sums we computed from these measures3. Our method’s

3Our submission to the GlaS contest (denoted CVIP Dundee [2]) used a
seven-layer CNN based on AlexNet [35] trained on fixed patch size of 96×96.

rank sum of 11 compares favorably with the rank sum of
22 obtained by the winning method in the GlaS contest
(CUMedVision2 [21]) and with the rank sum of 19 obtained
by the recently proposed method of Xu et al. [23].

V. DISCUSSION AND CONCLUSION

We have proposed a method for learning to segment object
instances that takes into account the local spatial structure of
labels by training classifiers using a set of structure exemplars
obtained via clustering. The encouraging results and the fact
that this approach is relatively straightforward to implement by
modifying existing classification pipelines lead us to believe
that our approach will be of interest to researchers working
not only on gland segmentation but on other similar problems
in biomedical image analysis.

In other experiments not reported here we tried alternatives
to k-means for learning the exemplars. Specifically, we tried
to jointly learn the exemplars in a discriminative way together
with the structure output classifiers rather than learning the
exemplars by unsupervised clustering. We did this in a joint
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optimization framework that minimizes the overall reconstruc-
tion error between the binary ground truth maps and the
predictions reconstructed using the discriminatively learned
exemplars learned. However our initial results did not show
any advantage for this formulation.

The FCN approach typically employs heavy downsampling,
reducing the spatial resolution of intermediate feature maps.
The proposed pipeline utilises the multi-scale representations
of FCN and retains local spatial information. This scheme may
partially explain its relatively good performance.

The implementation used in this paper is too slow for
deployment to a clinical application processing whole-slide
images. However, processing time could certainly be reduced.
HC feature extraction and structure prediction were imple-
mented in Matlab without optimising the code for speed
and without use of GPUs. The method lends itself straight-
forwardly to parallelisation across multiple cores or GPU
cards: the rotated versions of each image can be processed
in parallel and images themselves (extracted from whole slide
images) can be processed in parallel. Combined with rapid
improvements being made in hardware infrastructure, scaling
this kind of method to whole slide imaging should become
feasible without prohibitive cost in the not so distant future.

The GlaS challenge [2] provided an important dataset and
protocol for comparison of algorithms for glandular structure
segmentation, adding impetus to this aspect of digital pathol-
ogy image analysis. We obtained state of the art results using
the proposed method on the GlaS dataset. While useful as
an indicator of performance relative to other methods, rank-
based ‘league table’ comparisons are not always robust and
the statistical (or clinical) significance of differences in rank
is not always obvious. Methods such as bootstrapping could
be usefully employed in future for systematic comparison of
methods.

Results had higher variance on test set B than on test
set A. This is as expected given that test set B consists
of fewer images which are mostly from malignant tissue
with moderately or poorly differentiated adenocarcinoma. The
proposed method ranked first by all performance measures on
test set B indicating that it copes well with malignancy.

We followed the GlaS contest protocol and data set splits
in order to facilitate direct comparison with other published
methods. As acknowledged in [2], different visual fields from
the same slide can appear in different parts of the dataset (i.e.
training and test parts) because the data were not stratified
by patient. They were however stratified according to the
histologic grade and the visual field before splitting. Design
of any future gland segmentation dataset should ensure that no
data from the same patient can be present in both training and
test splits. Despite this limitation, GlaS results may in fact be
pessimistic because images have been subdivided into small
sub-images, introducing artificial image borders that cut many
gland structures into incomplete parts. This makes learning
to segment the structures artificially difficult. When applied
to whole-slide imaging, the difficulties arising from viewing
arbitrary 2D slices through 3D structures will remain but need
not be exacerbated by cropping the 2D slice.

VI. ACKNOWLEDGEMENT

We are grateful to Korsuk Sirinukunwattana for answering
our queries about the GlaS dataset and results, and to the other
GlaS organisers (J. Pluim, D. Snead, N. Rajpoot) for making
the dataset available.

REFERENCES

[1] M. Fleming, S. Ravula, S. F. Tatishchev, and H. L. Wang, “Colorectal
carcinoma: Pathologic aspects,” Gastrointestinal Oncology, vol. 3, pp.
153—-173, 2012.

[2] K. Sirinukunwattana, J. P. W. Pluim, H. Chen, X. Qi, P. Heng, Y. B.
Guo, L. Y. Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, A. Böhm,
O. Ronneberger, B. B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer,
M. Urschler, D. R. J. Snead, and N. M. Rajpoot, “Gland segmentation
in colon histology images: The GlaS challenge contest,” Medical Image
Analysis, vol. 35, pp. 489 – 502, 2016.

[3] P. Kainz, M. Pfeiffer, and M. Urschler, “Semantic segmentation of
colon glands with deep convolutional neural networks and total variation
segmentation,” arXiv preprint arXiv:1511.06919, 2015.

[4] W. Li, S. Manivannan, S. Akbar, J. Zhang, E. Trucco, and S. J.
McKenna, “Gland segmentation in colon histology images using hand-
crafted features and convolutional neural networks,” in ISBI, 2016.

[5] S. Manivannan, W. Li, S. Akbar, J. Zhang, E. Trucco, and S. J. McKenna,
“Local structure prediction for gland segmentation,” in ISBI, 2016.

[6] R. Farjam, H. Soltanian-Zadeh, K. Jafari-Khouzani, and R. A. Zoroofi,
“An image analysis approach for automatic malignancy determination of
prostate pathological images,” Cytometry, vol. 72B, p. 227–240, 2007.

[7] H.-S. Wu, R. Xu, N. Harpaz, D. Burstein, and J. Gil, “Segmentation
of intestinal gland images with iterative region growing,” Journal of
Microscopy, vol. 220, no. 3, pp. 190–204, 2005.

[8] S. Naik, S. Doyle, M. Feldman, J. Tomaszewski, and A. Madabhushi,
“Gland segmentation and computerized Gleason grading of prostate his-
tology by integrating low-, high-level and domain specific information,”
in MIAAB Workshop, 2007.

[9] A. J. K. Nguyen and R. Allen, “Automated gland segmentation and clas-
sification for Gleason grading of prostate tissue images,” in International
Conference on Pattern Recognition, Istanbul, August 2010.

[10] C. Gunduz-Demir, M. Kandemir, A. B. Tosun, and C. Sokmensuer,
“Automatic segmentation of colon glands using object-graphs,” Medical
Image Analysis, vol. 14, no. 1, pp. 1 – 12, 2010.

[11] A. Cohen, E. Rivlin, I. Shimshoni, and E. Sabo, “Memory based active
contour algorithm using pixel-level classified images for colon crypt
segmentation,” Comput Med Imaging Graph., vol. 43, pp. 150–64, July
2015.

[12] B. Ben Cheikh, P. Bertheau, and D. Racoceanu, “A structure-based
approach for colon gland segmentation in digital pathology,” in Medical
Imaging: Digital Pathology, ser. SPIE Proceedings, vol. 9791, 2016.

[13] K. Nguyen, A. Sarkar, and A. K. Jain, “Prostate cancer grading: Use
of graph cut and spatial arrangement of nuclei,” IEEE Transactions on
Medical Imaging, vol. 33, no. 12, pp. 2254–2270, December 2014.

[14] K. Sirinukunwattana, D. R. Snead, and N. M. Rajpoot, “A novel
texture descriptor for detection of glandular structures in colon histology
images,” pp. 94 200S–94 200S–9, 2015.

[15] K. Sirinukunwattana, D. R. J. Snead, and N. M. Rajpoot, “A stochastic
polygons model for glandular structures in colon histology images.”
IEEE Transactions on Medical Imaging, vol. 34, no. 11, pp. 2366–2378,
2015.

[16] M. N. Kashif, S. E. A. Raza, K. Sirinukunwattana, M. Arif, and
N. Rajpoot, “Handcrafted features with convolutional neural networks
for detection of tumor cells in histology images,” in IEEE International
Symposium on Biomedical Imaging, 2016, pp. 1029–1032.

[17] H. Fu, G. Qiu, J. Shu, and M. Ilyas, “A novel polar space random field
model for the detection of glandular structures,” IEEE TMI, vol. 33,
no. 3, pp. 764–776, 2014.

[18] O. Veksler, “Star shape prior for graph-cut image segmentation,” in
ECCV ’08 Proceedings of the 10th European Conference on Computer
Vision, vol. III. Springer-Verlag, 2008, pp. 454–467.

[19] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015.

[20] A. BenTaieb and G. Hamarneh, “Topology aware fully convolutional
networks for histology gland segmentation,” in MICCAI, 2016.

[21] H. Chen, X. Qi, L. Yu, and P.-A. Heng, “DCAN: Deep contour-aware
networks for accurate gland segmentation,” in CVPR, 2016.



SUBMISSION TO: IEEE TRANSACTIONS ON MEDICAL IMAGING, JANUARY 2017 12

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in MICCAI, ser. LNCS.
Springer, 2015, vol. 9351, pp. 234–241.

[23] Y. Xu, Y. Li, M. Liu, Y. Wang, M. Lai, E. I. Chang et al., “Gland
instance segmentation by deep multichannel side supervision,” arXiv
preprint arXiv:1607.03222, 2016.

[24] S. Manivannan, H. Shen, W. Li, R. Annunziata, H. Hamad, R. Wang, and
J. Zhang, “Brain tumor region segmentation using local co-occurrence
features and conditional random fields,” in MICCAI – Brain Tumour
Digital Pathology Segmentation Challenge, 2014.

[25] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[26] H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on Platt’s probabilistic
outputs for support vector machines,” Machine Learning, vol. 68, no. 3,
2007.

[27] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in IEEE CVPR, 2010.

[28] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV, 2010.

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[30] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010.

[31] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedfor-
ward semantic segmentation with zoom-out features,” CoRR, vol.
abs/1412.0774, 2014.

[32] R. Arandjelović and A. Zisserman, “Three things everyone should know
to improve object retrieval,” in IEEE CVPR, 2012.

[33] S. Manivannan, W. Li, S. Akbar, R. Wang, J. Zhang, and S. J.
McKenna, “An automated pattern recognition system for classifying
indirect immunofluorescence images of HEp-2 cells and specimens,”
Pattern Recognition, vol. 51, pp. 12–26, 2016.

[34] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, p. 1–30, 2006.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.


	Introduction
	Related Work
	Method
	Structure prediction
	Post-processing
	Feature representation
	Fully convolutional neural networks
	Hand-crafted features


	Experiments
	Dataset
	Evaluation measures
	Detection accuracy
	Segmentation score
	Shape dissimilarity

	Experimental settings
	Evaluation
	Computational cost
	Comparison with the State of the Art

	Discussion and Conclusion
	Acknowledgement
	References

