112 research outputs found

    MonoPerfCap: Human Performance Capture from Monocular Video

    Full text link
    We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.Comment: Accepted to ACM TOG 2018, to be presented on SIGGRAPH 201

    Motion capture and human pose reconstruction from a single-view video sequence

    Get PDF
    Cataloged from PDF version of article.We propose a framework to reconstruct the 3D pose of a human for animation from a sequence of single-view video frames. The framework for pose construction starts with background estimation and the performer's silhouette is extracted using image subtraction for each frame. Then the body silhouettes are automatically labeled using a model-based approach. Finally, the 3D pose is constructed from the labeled human silhouette by assuming orthographic projection. The proposed approach does not require camera calibration. It assumes that the input video has a static background, it has no significant perspective effects, and the performer is in an upright position. The proposed approach requires minimal user interaction. (C) 2013 Elsevier Inc. All rights reserved

    PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

    Get PDF
    Marker-less 3D human motion capture from a single colour camera has seen significant progress. However, it is a very challenging and severely ill-posed problem. In consequence, even the most accurate state-of-the-art approaches have significant limitations. Purely kinematic formulations on the basis of individual joints or skeletons, and the frequent frame-wise reconstruction in state-of-the-art methods greatly limit 3D accuracy and temporal stability compared to multi-view or marker-based motion capture. Further, captured 3D poses are often physically incorrect and biomechanically implausible, or exhibit implausible environment interactions (floor penetration, foot skating, unnatural body leaning and strong shifting in depth), which is problematic for any use case in computer graphics. We, therefore, present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture with a single colour camera at 25 fps. Our algorithm first captures 3D human poses purely kinematically. To this end, a CNN infers 2D and 3D joint positions, and subsequently, an inverse kinematics step finds space-time coherent joint angles and global 3D pose. Next, these kinematic reconstructions are used as constraints in a real-time physics-based pose optimiser that accounts for environment constraints (e.g., collision handling and floor placement), gravity, and biophysical plausibility of human postures. Our approach employs a combination of ground reaction force and residual force for plausible root control, and uses a trained neural network to detect foot contact events in images. Our method captures physically plausible and temporally stable global 3D human motion, without physically implausible postures, floor penetrations or foot skating, from video in real time and in general scenes. The video is available at http://gvv.mpi-inf.mpg.de/projects/PhysCapComment: 16 pages, 11 figure

    {PhysCap}: {P}hysically Plausible Monocular {3D} Motion Capture in Real Time

    Get PDF

    VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera

    Full text link
    We present the first real-time method to capture the full global 3D skeletal pose of a human in a stable, temporally consistent manner using a single RGB camera. Our method combines a new convolutional neural network (CNN) based pose regressor with kinematic skeleton fitting. Our novel fully-convolutional pose formulation regresses 2D and 3D joint positions jointly in real time and does not require tightly cropped input frames. A real-time kinematic skeleton fitting method uses the CNN output to yield temporally stable 3D global pose reconstructions on the basis of a coherent kinematic skeleton. This makes our approach the first monocular RGB method usable in real-time applications such as 3D character control---thus far, the only monocular methods for such applications employed specialized RGB-D cameras. Our method's accuracy is quantitatively on par with the best offline 3D monocular RGB pose estimation methods. Our results are qualitatively comparable to, and sometimes better than, results from monocular RGB-D approaches, such as the Kinect. However, we show that our approach is more broadly applicable than RGB-D solutions, i.e. it works for outdoor scenes, community videos, and low quality commodity RGB cameras.Comment: Accepted to SIGGRAPH 201

    Modelling human pose and shape based on a database of human 3D scans

    Get PDF
    Generating realistic human shapes and motion is an important task both in the motion picture industry and in computer games. In feature films, high quality and believability are the most important characteristics. Additionally, when creating virtual doubles the generated charactes have to match as closely as possible to given real persons. In contrast, in computer games the level of realism does not need to be as high but real-time performance is essential. It is desirable to meet all these requirements with a general model of human pose and shape. In addition, many markerless human tracking methods applied, e.g., in biomedicine or sports science can benefit greatly from the availability of such a model because most methods require a 3D model of the tracked subject as input, which can be generated on-the-fly given a suitable shape and pose model. In this thesis, a comprehensive procedure is presented to generate different general models of human pose. A database of 3D scans spanning the space of human pose and shape variations is introduced. Then, four different approaches for transforming the database into a general model of human pose and shape are presented, which improve the current state of the art. Experiments are performed to evaluate and compare the proposed models on real-world problems, i.e., characters are generated given semantic constraints and the underlying shape and pose of humans given 3D scans, multi-view video, or uncalibrated monocular images is estimated.Die Erzeugung realistischer Menschenmodelle ist eine wichtige Anwendung in der Filmindustrie und bei Computerspielen. In Spielen ist Echtzeitsynthese unabdingbar aber der Detailgrad muß nicht so hoch sein wie in Filmen. Für virtuelle Doubles, wie sie z.B. in Filmen eingesetzt werden, muss der generierte Charakter dem gegebenen realen Menschen möglichst ähnlich sein. Mit einem generellen Modell für menschliche Pose und Körperform ist es möglich alle diese Anforderungen zu erfüllen. Zusätzlich können viele Verfahren zur markerlosen Bewegungserfassung, wie sie z.B. in der Biomedizin oder in den Sportwissenschaften eingesetzt werden, von einem generellen Modell für Pose und Körperform profitieren. Da diese ein 3D Modell der erfassten Person benötigen, das jetzt zur Laufzeit generiert werden kann. In dieser Doktorarbeit wird ein umfassender Ansatz vorgestellt, um verschiedene Modelle für Pose und Körperform zu berechnen. Zunächst wird eine Datenbank von 3D Scans aufgebaut, die Pose- und Körperformvariationen von Menschen umfasst. Dann werden vier verschiedene Verfahren eingeführt, die daraus generelle Modelle für Pose und Körperform berechnen und Probleme beim Stand der Technik beheben. Die vorgestellten Modelle werden auf realistischen Problemstellungen getestet. So werden Menschenmodelle aus einigen wenigen Randbedingungen erzeugt und Pose und Körperform von Probanden wird aus 3D Scans, Multi-Kamera Videodaten und Einzelbildern der bekleideten Personen geschätzt
    corecore