109 research outputs found

    Manufacturing Feature Recognition With 2D Convolutional Neural Networks

    Get PDF
    Feature recognition is a critical sub-discipline of CAD/CAM that focuses on the design and implementation of algorithms for automated identification of manufacturing features. The development of feature recognition methods has been active for more than two decades for academic research. However, in this domain, there are still many drawbacks that hinder its practical applications, such as lack of robustness, inability to learn, limited domain of features, and computational complexity. The most critical one is the difficulty of recognizing interacting features, which arises from the fact that feature interactions change the boundaries that are indispensable for characterizing a feature. This research presents a feature recognition method based on 2D convolutional neural networks (CNNs). First, a novel feature representation scheme based on heat kernel signature is developed. Heat Kernel Signature (HKS) is a concise and efficient pointwise shape descriptor. It can present both the topology and geometry characteristics of a 3D model. Besides informative and unambiguity, it also has advantages like robustness of topology and geometry variations, translation, rotation and scale invariance. To be inputted into CNNs, CAD models are discretized by tessellation. Then, its heat persistence map is transformed into 2D histograms by the percentage similarity clustering and node embedding techniques. A large dataset of CAD models is built by randomly sampling for training the CNN models and validating the idea. The dataset includes ten different types of isolated v features and fifteen pairs of interacting features. The results of recognizing isolated features have shown that our method has better performance than any existing ANN based approaches. Our feature recognition framework offers the advantages of learning and generalization. It is independent of feature selection and could be extended to various features without any need to redesign the algorithm. The results of recognizing interacting features indicate that the HKS feature representation scheme is effective in handling the boundary loss caused by feature interactions. The state-of-the-art performance of interacting features recognition has been improved

    A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces

    Get PDF
    This paper presents a new concept of feature for freeform surface machining that defines the changes in feature status during real manufacturing situations which have not been sufficiently addressed by current international standards and previous research in feature technology. These changes are multi-perspective, including (i) changes in depth-of-cut: the geometry of a feature in the depth-of-cut direction changes during different machining operations such as roughing, semi-finishing and finishing; (ii) changes across the surface: a surface may be divided into different machining regions (effectively sub-features) for the selection of appropriate manufacturing methods for each region such as different cutting tools, parameters, set-ups or machine tools; and (iii) changes in resources or manufacturing capabilities may require the re-planning of depth-of-cuts, division of machining regions and manufacturing operations (machines, tools, set-ups and parameters). Adding the above dynamic information to the part information models in current CAD systems (which only represent the final state of parts) would significantly improve the accuracy, efficiency and timeliness of manufacturing planning and optimisation, especially for the integrated NC machining planning for complex freeform surfaces. A case study in an aircraft manufacturing company will be included in this paper

    A Divide-and-Conquer Algorithm for Machining Feature Recognition over Network

    Get PDF
    In this paper, a divide-and-conquer algorithm for machining feature recognition over network is presented. The algorithm consists of three steps. First, decompose the part and its stock into a number of sub-objects in the client and transfer the sub-objects to the server one by one. Meanwhile, perform machining feature recognition on each sub-object using the MCSG based approach in the server in parallel. Finally, generate the machining feature model of the part by synthesizing all the machining features including decomposed features recognized from all the sub-objects and send it back to the client. With divide-and-conquer and parallel computing, the algorithm is able to decrease the delay of transferring a complex CAD model over network and improve the capability of handling complex parts. Implementation details are included and some test results are given

    On setup level tool sequence selection for 2.5-D pocket machining

    Get PDF
    Abstract This paper describes algorithms for efficiently machining an entire setup. Previously, the author developed a graph based algorithm to find the optimal tool sequence for machining a single 2.5-axis pocket. This paper extends this algorithm for finding an efficient tool sequence to machine an entire setup. A setup consists of a set of features with precedence constraints, that are machined when the stock is clamped in a particular orientation. The precedence constraints between the features primarily result from nesting of some features within others. Four extensions to the basic graph algorithm are investigated in this research. The first method finds optimal tool sequences on a feature by feature basis. This is a local optimization method that does not consider inter feature toolpath interactions. The second method uses a composite graph for finding an efficient tool sequence for the entire setup. The constrained graph and subgraph approaches have been developed for situations where different features in the setup have distinct critical tools. It is found that the first two methods can produce erroneous results which can lead to machine crashes and incomplete machining. Illustrative examples have been generated for each method.

    Solid reconstruction using recognition of quadric surfaces from orthographic views

    Get PDF
    International audienceThe reconstruction of 3D objects from 2D orthographic views is crucial for maintaining and further developing existing product designs. A B-rep oriented method for reconstructing curved objects from three orthographic views is presented by employing a hybrid wire-frame in place of an intermediate wire-frame. The Link-Relation Graph (LRG) is introduced as a multi-graph representation of orthographic views, and quadric surface features (QSFs) are defined by special basic patterns of LRG as well as aggregation rules. By hint-based pattern matching in the LRGs of three orthographic views in an order of priority, the corresponding QSFs are recognized, and the geometry and topology of quadric surfaces are recovered simultaneously. This method can handle objects with interacting quadric surfaces and avoids the combinatorial search for tracing all the quadric surfaces in an intermediate wire-frame by the existing methods. Several examples are provided

    Modeling of an automatic CAD-based feature recognition and retrieval system for group technology application

    Get PDF
    In recent time, many researches have come up with new different approaches and means for Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) integration. Computer-Aided Process Planning (CAPP) is considered to be a bridge that connects these both technologies. CAPP may involve such an important technique as automatic feature extraction - a procedure that is engaged in process plans generation to be used in producing a designed part. Also in terms of CAD, the feature extraction procedure facilitates a cooperative design and process planning within the entire product development process. The main objective of the thesis is to present a new automatic feature extraction and classification system that is able to process mechanical rotational and non-rotational parts from the Opitz Code System point of view. The implemented system takes Standard for Exchange of Product data (STEP) - a neutral product representation format as input and extracts features of parts required for further manufacturing. The STEP format is used to provide geometrical and topological information about machining parts. A methodology to extract shape features was developed based on these geometrical and topological data. As output, the proposed system codes the extracted part features to Opitz Code System. CAD product files were taken from official manufacturers of mechanical parts in order to evaluate the developed system

    Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in CAD Models

    Get PDF
    This research presents a feature recognition algorithm for the automated identification of duplicate geometries in the CAD assembly. The duplicate geometry is one of the seven indicators of the lazy parts mass reduction method. The lazy parts method is a light weight engineering method that is used for analyzing parts with the mass reduction potential. The duplicate geometry is defined as any geometries lying equal to or within the threshold distance with the user-defined orientation between them and have the percentage similarity that is equal to or greater than the threshold value. The feature recognition system developed in this research for the identification of duplicate geometries is also extended to retrieve the weighted bipartite graph of part connections for the assembly time estimation. The weighted bipartite graph is used as input for the part connectivity based assembly time estimation method. The SolidWorks API software development kit is used in this research to develop a feature recognition system in SolidWorks CAD software package using C++ programming language. The feature recognition system built in the SolidWorks CAD software uses a combination of topology and geometric data for the evaluation of duplicate geometry. The measurement of distances between the sampling points strategy is used for the duplicate geometry feature recognition. The feature recognition algorithm has three phases of evaluation: first, is the evaluation for threshold distance condition of parts in the CAD assembly. Second, the part pairs that have satisfied the threshold distance condition are evaluated for the orientation condition. The threshold distance and orientation are the necessary but not the sufficient conditions for duplicate geometries. In the third phase, the geometries that have satisfied orientation condition are evaluated for the percentage similarity condition. The geometries that satisfy the percentage similarity condition are highlighted in order to help designers review the results of the duplicate geometry analysis. The test cases are used to validate the algorithm against the requirements list. The test cases are designed to check the performance of the algorithm for the evaluation of the threshold distance, orientation, and percentage similarity condition. The results indicate that the duplicate geometry algorithm is able to successfully conduct all the three phases of evaluation. The algorithm is independent of the geometric type and is able to analyze planar, cylindrical, conical, spherical, freeform, and toroidal shapes. The number of sampling points generated on the faces of parts for the orientation and percentage similarity evaluation has the significant effect on the analysis time. The worst case complexity of the algorithm is the big O (nC2x m12 x m22x p4), where n = the number of parts in the assembly m1 = the number of faces in the parts that meet the threshold distance condition m2 = the number of faces that meet the orientation condition p = the number of sampling points on the face The duplicate geometry feature recognition approach is used to demonstrate the applicability in the extraction of assembly relations for the part connectivity based assembly time estimation method. The algorithm is also able to extract part connectivity information for the patterns. Further research is required to automate the identification of other laziness indicators in order to make the lazy parts method a completely automated tool. With regards to the complete automation of part connectivity based assembly time estimation method, the duplicate geometry feature recognition system needs integration with the algorithm for the computation of bipartite graph of part connections for the prediction of assembly time

    IDETC2005 -85431 RECOGNITION OF INTERACTING TURNING FEATURES FOR MILL/TURN PARTS

    Get PDF
    ABSTRACT This paper focuses on efficient automatic recognition algorithms for turning features. As with other domains, recognition of interacting features is a difficult issue, because feature interaction removes faces and alters the topology of the existing turned features. This paper presents a method for efficiently recognizing both isolated (without interaction with other features) and interacting rotational features from geometrical CAD model of mill/turn parts. Additionally, the method recognizes Transient Turned Features (TTFs) that are defined as maximal axisymmetric material volumes from a nonturning feature that can be removed by turning. A TTS may not share any faces with the finished part. First, the rotational faces on a solid model are explored to extract isolated rotational features and some of the interacting ones. Then portions of the 3D model where no rotational faces can be used to recognize turning features are cut out and processed by a novel algorithm for finding their transient turning features
    • …
    corecore