7,199 research outputs found

    An application of machine learning to the organization of institutional software repositories

    Get PDF
    Software reuse has become a major goal in the development of space systems, as a recent NASA-wide workshop on the subject made clear. The Data Systems Technology Division of Goddard Space Flight Center has been working on tools and techniques for promoting reuse, in particular in the development of satellite ground support software. One of these tools is the Experiment in Libraries via Incremental Schemata and Cobweb (ElvisC). ElvisC applies machine learning to the problem of organizing a reusable software component library for efficient and reliable retrieval. In this paper we describe the background factors that have motivated this work, present the design of the system, and evaluate the results of its application

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Automatic Recall of Lessons Learned for Software Project Managers

    Get PDF
    Lessons learned (LL) records constitute a software organization’s memory of successes and failures. LL are recorded within the organization repository for future reference to optimize planning, gain experience, and elevate market competitiveness. However, manually searching this repository is a daunting task, so it is often overlooked. This can lead to the repetition of previous mistakes and missing potential opportunities, which, in turn, can negatively affect the organization’s profitability and competitiveness. In this thesis, we present a novel solution that provides an automatic process to recall relevant LL and to push them to project managers. This substantially reduces the amount of time and effort required to manually search the unstructured LL repositories, and therefore, it encourages the utilization of LL. In this study, we exploit existing project artifacts to build the LL search queries on-the-fly, in order to bypass the tedious manual search process. While most of the current LL recall studies rely on case-based reasoning, they have some limitations including the need to reformat the LL repository, which is impractical, and the need for tight user involvement. This makes us the first to employ information retrieval (IR) to address the LL recall. An empirical study has been conducted to build the automatic LL recall solution and evaluate its effectiveness. In our study, we employ three of the most popular IR models to construct a solution that considers multiple classifier configurations. In addition, we have extended this study by examining the impact of the hybridization of LL classifiers on the classifiers’ performance. Furthermore, a real-world dataset of 212 LL records from 30 different software projects has been used for validation. Top-k and MAP, well-known accuracy metrics, have been used as well. The study results confirm the effectiveness of the automatic LL recall solution by a discerning accuracy of about 70%, which was increased to 74% in the case of hybridization. This eliminates the effort needed to manually search the LL repository, which positively encourages project managers to reuse the available LL knowledge – which in turn avoids old pitfalls and unleash hidden business opportunities

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    An Approach for Discovering Traceability Links between Regulatory Documents and Source Code Through User-Interface Labels

    Get PDF
    In application domains that are regulated, software vendors must maintain traceability links between the regulatory items and the code base implementing them. In this paper, we present a traceability approach based on the intuition that the regulatory documents and the user-interface of the corresponding software applications are very close. First, they use the same terminology. Second, most important regulatory pieces of information appear in the graphical user-interface because the end-users in those application domains care about the regulation (by construction). We evaluate our approach in the domain of green building. The evaluation involves a domain expert, lead architect of a commercial product within this area. The evaluation shows that the recovered traceability links are accurate

    Towards an Intelligent System for Software Traceability Datasets Generation

    Get PDF
    Software datasets and artifacts play a crucial role in advancing automated software traceability research. They can be used by researchers in different ways to develop or validate new automated approaches. Software artifacts, other than source code and issue tracking entities, can also provide a great deal of insight into a software system and facilitate knowledge sharing and information reuse. The diversity and quality of the datasets and artifacts within a research community have a significant impact on the accuracy, generalizability, and reproducibility of the results and consequently on the usefulness and practicality of the techniques under study. Collecting and assessing the quality of such datasets are not trivial tasks and have been reported as an obstacle by many researchers in the domain of software engineering. In this dissertation, we report our empirical work that aims to automatically generate and assess the quality of such datasets. Our goal is to introduce an intelligent system that can help researchers in the domain of software traceability in obtaining high-quality “training sets”, “testing sets” or appropriate “case studies” from open source repositories based on their needs. In the first project, we present a first-of-its-kind study to review and assess the datasets that have been used in software traceability research over the last fifteen years. It presents and articulates the current status of these datasets, their characteristics, and their threats to validity. Second, this dissertation introduces a Traceability-Dataset Quality Assessment (T-DQA) framework to categorize software traceability datasets and assist researchers to select appropriate datasets for their research based on different characteristics of the datasets and the context in which those datasets will be used. Third, we present the results of an empirical study with limited scope to generate datasets using three baseline approaches for the creation of training data. These approaches are (i) Expert-Based, (ii) Automated Web-Mining, which generates training sets by automatically mining tactic\u27s APIs from technical programming websites, and lastly, (iii) Automated Big-Data Analysis, which mines ultra-large-scale code repositories to generate training sets. We compare the trace-link creation accuracy achieved using each of these three baseline approaches and discuss the costs and benefits associated with them. Additionally, in a separate study, we investigate the impact of training set size on the accuracy of recovering trace links. Finally, we conduct a large-scale study to identify which types of software artifacts are produced by a wide variety of open-source projects at different levels of granularity. Then we propose an automated approach based on Machine Learning techniques to identify various types of software artifacts. Through a set of experiments, we report and compare the performance of these algorithms when applied to software artifacts. Finally, we conducted a study to understand how software traceability experts and practitioners evaluate the quality of their datasets. In addition, we aim at gathering experts’ opinions on all quality attributes and metrics proposed by T-DQA
    corecore