286 research outputs found

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF

    Preoperative trajectory planning for percutaneous procedures in deformable environments

    Get PDF
    International audienceIn image-guided percutaneous interventions, a precise planning of the needle path is a key factor to a successful intervention. In this paper we propose a novel method for computing a patient-specific optimal path for such interventions, accounting for both the deformation of the needle and soft tissues due to the insertion of the needle in the body. To achieve this objective, we propose an optimization method for estimating preoperatively a curved trajectory allowing to reach a target even in the case of tissue motion and needle bending. Needle insertions are simulated and regarded as evaluations of the objective function by the iterative planning process. In order to test the planning algorithm, it is coupled with a fast needle insertion simulation involving a flexible needle model and soft tissue finite element modeling, and experimented on the use-case of thermal ablation of liver tumors. Our algorithm has been successfully tested on twelve datasets of patient-specific geometries. Fast convergence to the actual optimal solution has been shown. This method is designed to be adapted to a wide range of percutaneous interventions

    Liver Biopsy

    Get PDF
    Liver biopsy is recommended as the gold standard method to determine diagnosis, fibrosis staging, prognosis and therapeutic indications in patients with chronic liver disease. However, liver biopsy is an invasive procedure with a risk of complications which can be serious. This book provides the management of the complications in liver biopsy. Additionally, this book provides also the references for the new technology of liver biopsy including the non-invasive elastography, imaging methods and blood panels which could be the alternatives to liver biopsy. The non-invasive methods, especially the elastography, which is the new procedure in hot topics, which were frequently reported in these years. In this book, the professionals of elastography show the mechanism, availability and how to use this technology in a clinical field of elastography. The comprehension of elastography could be a great help for better dealing and for understanding of liver biopsy

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Liver Segmentation and its Application to Hepatic Interventions

    Get PDF
    The thesis addresses the development of an intuitive and accurate liver segmentation approach, its integration into software prototypes for the planning of liver interventions, and research on liver regeneration. The developed liver segmentation approach is based on a combination of the live wire paradigm and shape-based interpolation. Extended with two correction modes and integrated into a user-friendly workflow, the method has been applied to more than 5000 data sets. The combination of the liver segmentation with image analysis of hepatic vessels and tumors allows for the computation of anatomical and functional remnant liver volumes. In several projects with clinical partners world-wide, the benefit of the computer-assisted planning was shown. New insights about the postoperative liver function and regeneration could be gained, and most recent investigations into the analysis of MRI data provide the option to further improve hepatic intervention planning

    CT-Fluoroskopie-gesteuerte Interventionen

    Get PDF

    New Technology and Techniques for Needle-Based Magnetic Resonance Image-Guided Prostate Focal Therapy

    Get PDF
    The most common diagnosis of prostate cancer is that of localized disease, and unfortunately the optimal type of treatment for these men is not yet certain. Magnetic resonance image (MRI)-guided focal laser ablation (FLA) therapy is a promising potential treatment option for select men with localized prostate cancer, and may result in fewer side effects than whole-gland therapies, while still achieving oncologic control. The objective of this thesis was to develop methods of accurately guiding needles to the prostate within the bore of a clinical MRI scanner for MRI-guided FLA therapy. To achieve this goal, a mechatronic needle guidance system was developed. The system enables precise targeting of prostate tumours through angulated trajectories and insertion of needles with the patient in the bore of a clinical MRI scanner. After confirming sufficient accuracy in phantoms, and good MRI-compatibility, the system was used to guide needles for MRI-guided FLA therapy in eight patients. Results from this case series demonstrated an improvement in needle guidance time and ease of needle delivery compared to conventional approaches. Methods of more reliable treatment planning were sought, leading to the development of a systematic treatment planning method, and Monte Carlo simulations of needle placement uncertainty. The result was an estimate of the maximum size of focal target that can be confidently ablated using the mechatronic needle guidance system, leading to better guidelines for patient eligibility. These results also quantified the benefit that could be gained with improved techniques for needle guidance

    In vivo assessment of diet-induced rat hepatic steatosis development by percutaneous single-fiber spectroscopy detects scattering spectral changes due to fatty infiltration

    Get PDF
    This study explores percutaneous single-fiber spectroscopy (SfS) of rat livers undergoing fatty infiltration. Eight test rats were fed a methionine-choline-deficient (MCD) diet, and four control rats were fed a normal diet. Two test rats and one control rat were euthanized on days 12, 28, 49, and 77 following initiation of the diet, after percutaneous SfS of the liver under transabdominal ultrasound guidance. Histology of each set of the two euthanized test rats showed mild and mild hepatic lipid accumulations on day 12, moderate and severe on day 28, severe and mild on day 49, and moderate and mild on day 77. Livers with moderate or higher lipid accumulation generally presented higher spectral reflectance intensity when compared to lean livers. Livers of the eight test rats on day 12, two of which had mild lipid accumulation, revealed an average scattering power of 0.37±0.14 in comparison to 0.07±0.14 for the four control rats (p<0.01). When livers of the test rats with various levels of fatty infiltration were combined, the average scattering power was 0.36±0.15 in comparison to 0.14±0.24 of the control rats (0.05<p<0.1). Increasing lipid accumulation in concentration and size seemed to cause an increase of the scattering power prior to increasing total spectral reflectance.Electrical and Computer EngineeringVeterinary Clinical Science

    Infective/inflammatory disorders

    Get PDF
    • …
    corecore