39 research outputs found

    Robotic micromanipulation for microassembly : modelling by sequencial function chart and achievement by multiple scale visual servoings.

    No full text
    International audienceThe paper investigates robotic assembly by focusing on the manipulation of microparts. This task is formalized through the notion of basic tasks which are organized in a logical sequence represented by a function chart and interpreted as the model of the behavior of the experimental setup. The latter includes a robotic system, a gripping system, an imaging system, and a clean environment. The imaging system is a photon videomicroscope able to work at multiple scales. It is modelled by a linear projective model where the relation between the scale factor and the magnification or zoom is explicitly established. So, the usual visual control law is modified in order to take into account this relation. The manipulation of some silicon microparts (400 μm×400 μm×100 μm) by means of a distributed robotic system (xyθ system, ϕz system), a two-finger gripping system and a controllable zoom and focus videomicroscope shows the relevance of the concepts. The 30 % of failure rate comes mainly from the physical phenomena (electrostatic and capillary forces) instead of the accuracy of control or the occultations of microparts

    Robotic Micromanipulation and Microassembly using Mono-view and Multi-scale visual servoing.

    No full text
    International audienceThis paper investigates sequential robotic micromanipulation and microassembly in order to build 3-D microsystems and devices. A mono-view and multiple scale 2-D visual control scheme is implemented for that purpose. The imaging system used is a photon video microscope endowed with an active zoom enabling to work at multiple scales. It is modelled by a non-linear projective method where the relation between the focal length and the zoom factor is explicitly established. A distributed robotic system (xy system, z system) with a twofingers gripping system is used in conjunction with the imaging system. The results of experiments demonstrate the relevance of the proposed approaches. The tasks were performed with the following accuracy: 1.4 m for the positioning error, and 0.5 for the orientation error

    Robust trajectory tracking and visual servoing schemes for MEMS manipulation.

    No full text
    International audienceThis paper focuses on the automation of manipulation and assembly of microcomponents using visual feedback controls. Trajectory planning and tracking methods are proposed in order to avoid occlusions during microparts manipulation and to increase the success rate of pick-and-place manipulation cycles. The methods proposed are validated using a five degree-of-freedom (DOF) microrobotic cell including a 3 DOF mobile platform, a 2 DOF micromanipulator, a gripping system and a top-view imaging system. Promising results on accuracy and repeatability of microballs manipulation tasks are obtained and presented

    A direct visual servoing scheme for automatic nanopositioning.

    Get PDF
    International audienceThis paper demonstrates an accurate nanopositioning scheme based on a direct visual servoing process. This technique uses only the pure image signal (photometric information) to design the visual servoing control law. With respect to traditional visual servoing approaches that use geometric visual features (points, lines ...), the visual features used in the control law is the pixel intensity. The proposed approach has been tested in term of accuracy and robustness in several experimental conditions. The obtained results have demonstrated a good behavior of the control law and very good positioning accuracy. The obtained accuracies are 89 nm, 14 nm, and 0.001 degrees in the x, y and axes of a positioning platform, respectively

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    Posicionamiento visual con resolución subpixel de objetos marcados que se desplazan en un plano: conceptos básicos y aplicaciones

    Get PDF
    Vision is a convenient tool for position measurements. In this paper, we present several applications in which a reference pattern can be defined on the target for a priori knowledge of image features and further optimization by software. Selecting pseudoperiodic patterns leads to high resolution in absolute phase measurements. This method is adapted to position encoding of live cell culture boxes. Our goal is to capture each biological image along with its absolute highly accurate position regarding the culture box itself. Thus, it becomes straightforward to find again an already observed region of interest when a culture box is brought back to the microscope stage from the cell incubator where it was temporarily placed for cell culture. In order to evaluate the performance of this method, we tested it during a wound healing assay of human liver tumor-derived cells. In this case, the procedure enabled more accurate measurements of the wound healing rate than the usual method. It was also applied to the characterization of the in-plane vibration amplitude from a tapered probe of a shear force microscope. The amplitude was interpolated by a quartz tuning fork with an attached pseudo-periodic pattern. Nanometer vibration amplitude resolution is achieved by processing the pattern images. Such pictures were recorded by using a common 20x magnification lens.La visión es una herramienta conveniente para mediciones de posición. En este artículo, presentamos aplicaciones en las que un patrón de referencia puede ser adherido al objeto de interés. Ésto permite tener un conocimiento a priori de las características de la imagen y así poder optimizar el software. Como patrón de referencia se usan patrones pseudo-periódicos, los cuales permiten una alta resolución en las mediciones de fase absoluta. El método es adaptado para codificar la posición de soportes de cultivos celulares, con el fin de documentar cada imagen biológica registrada con su posición absoluta. Por lo tanto, resulta sencillo encontrar de nuevo una región de interés, observada previamente, cuando una caja de cultivo es traída de nuevo al microscopio luego de estar en una incubadora. Para evaluar el método, éste se utilizó durante un ensayo de “cicatrización de herida” de un cultivo celular derivado de tumores hepáticos. En este caso, el método permite obtener mediciones más precisas de la tasa de “cicatrización”, comparado a los resultados obtenidos con el método usual. El método propuesto también se aplica a la caracterización de la amplitud de vibración en el plano de una sonda de un microscopio de fuerza atómica. La amplitud fue interpolada por medio de un diapasón de cuarzo al cual se la adhirió un patrón pseudo-periódico. A partir del procesamiento de las imágenes del patrón, se logra obtener resolución nanométrica en la medida de la amplitud de la vibración. Estas imágenes fueron obtenidas con un microscopio óptico con magnificación 20x

    Posicionamiento visual con resolución subpixel de objetos marcados que se desplazan en un plano: conceptos básicos y aplicaciones

    Get PDF
    Vision is a convenient tool for position measurements. In this paper, we present several applications in which a reference pattern can be defined on the target for a priori knowledge of image features and further optimization by software. Selecting pseudoperiodic patterns leads to high resolution in absolute phase measurements. This method is adapted to position encoding of live cell culture boxes. Our goal is to capture each biological image along with its absolute highly accurate position regarding the culture box itself. Thus, it becomes straightforward to find again an already observed region of interest when a culture box is brought back to the microscope stage from the cell incubator where it was temporarily placed for cell culture. In order to evaluate the performance of this method, we tested it during a wound healing assay of human liver tumor-derived cells. In this case, the procedure enabled more accurate measurements of the wound healing rate than the usual method. It was also applied to the characterization of the in-plane vibration amplitude from a tapered probe of a shear force microscope. The amplitude was interpolated by a quartz tuning fork with an attached pseudo-periodic pattern. Nanometer vibration amplitude resolution is achieved by processing the pattern images. Such pictures were recorded by using a common 20x magnification lens.La visión es una herramienta conveniente para mediciones de posición. En este artículo, presentamos aplicaciones en las que un patrón de referencia puede ser adherido al objeto de interés. Ésto permite tener un conocimiento a priori de las características de la imagen y así poder optimizar el software. Como patrón de referencia se usan patrones pseudo-periódicos, los cuales permiten una alta resolución en las mediciones de fase absoluta. El método es adaptado para codificar la posición de soportes de cultivos celulares, con el fin de documentar cada imagen biológica registrada con su posición absoluta. Por lo tanto, resulta sencillo encontrar de nuevo una región de interés, observada previamente, cuando una caja de cultivo es traída de nuevo al microscopio luego de estar en una incubadora. Para evaluar el método, éste se utilizó durante un ensayo de “cicatrización de herida” de un cultivo celular derivado de tumores hepáticos. En este caso, el método permite obtener mediciones más precisas de la tasa de “cicatrización”, comparado a los resultados obtenidos con el método usual. El método propuesto también se aplica a la caracterización de la amplitud de vibración en el plano de una sonda de un microscopio de fuerza atómica. La amplitud fue interpolada por medio de un diapasón de cuarzo al cual se la adhirió un patrón pseudo-periódico. A partir del procesamiento de las imágenes del patrón, se logra obtener resolución nanométrica en la medida de la amplitud de la vibración. Estas imágenes fueron obtenidas con un microscopio óptico con magnificación 20x

    Real-time vision-based microassembly of 3D MEMS.

    Get PDF
    International audienceRobotic microassembly is a promising way to fabricate micrometric components based three dimensions (3D) compound products where the materials or the technologies are incompatible: structures, devices, Micro Electro Mechanical Systems (MEMS), Micro Opto Electro Mechanical Systems (MOEMS),... To date, solutions proposed in the literature are based on 2D visual control because of the lack of accurate and robust 3D measures from the work scene. In this paper the relevance of the real-time 3D visual tracking and control is demonstrated. The 3D poses of the MEMS is supplied by a model-based tracking algorithm in real-time. It is accurate and robust enough to enable a precise regulation toward zero of a 3D error using a visual servoing approach. The assembly of 400 mm 400 mm 100 mm parts by their 100 mm 100 mm 100 mm notches with a mechanical play of 3 mm is achieved with a rate of 41 seconds per assembly. The control accuracy reaches 0.3 mm in position and 0.2 in orientation

    Recent advances in the study of Micro/Nano Robotics in France.

    No full text
    International audienceIn France, during the last decade, significant research activities have been performed in the field of micro and nano robotics. Generally speaking the microrobotic field deals with the design, the fabrication and the control of microrobots and microrobotic cells. These microrobots are intended to perform various tasks in the so-called Microworld. The scale effects from macroworld to microworld deeply affect robots in the sense that new hard constraints appear as well as new manufacturing facilities. Concerning the nanorobotics, in order to achieve high-efficiency and three-dimensional nanomanipulation and nanoassembly, parallel imaging/manipulation force microscopy and three-dimensional manipulation force microscope, as well as nanmanipulation in the scanning electron microscope, have been developed. Manipulation of nanocomponents, such as nanoparticles, nanowires and nanotubes, have been addressed to build two-dimensional nano patterns and three-dimensional nano structure
    corecore