1,831 research outputs found

    Automatic laser and camera extrinsic calibration for data fusion using road plane

    Get PDF
    Driving Assistance Systems and Autonomous Driving applications require trustable detections. These demanding requirements need sensor fusion to provide information reliable enough. But data fusion presents the problem of data alignment in both rotation and translation. Laser scanner and video cameras are widely used in sensor fusion. Laser provides operation in darkness, long range detection and accurate measurement but lacks the means for reliable classification due to the limited information provided. The camera provides classification thanks to the amount of data provided but lacks accuracy for measurements and is sensitive to illumination conditions. Data alignment processes require supervised and accurate measurements, that should be performed by experts, or require specific patterns or shapes. This paper presents an algorithm for inter-calibration between the two sensors of our system, requiring only a flat surface for pitch and roll calibration and an obstacle visible for both sensors for determining the yaw. The advantage of this system is that it does not need any particular shape to be located in front of the vehicle apart from a flat surface, which is usually the road. This way, calibration can be achieved at virtually any time without human intervention.This work was supported by Automation Engineering Department from de La Salle University, Bogotá-Colombia; Administrative Department of Science, Technology and Innovation (COLCIENCIAS), Bogotá-Colombia and the Spanish Government through the Cicyt projects (GRANT TRA2010-20225-C03-01) and (GRANT TRA 2011-29454- C03-02)

    Multi-FEAT: Multi-Feature Edge AlignmenT for Targetless Camera-LiDAR Calibration

    Full text link
    The accurate environment perception of automobiles and UAVs (Unmanned Ariel Vehicles) relies on the precision of onboard sensors, which require reliable in-field calibration. This paper introduces a novel approach for targetless camera-LiDAR extrinsic calibration called Multi-FEAT (Multi-Feature Edge AlignmenT). Multi-FEAT uses the cylindrical projection model to transform the 2D(Camera)-3D(LiDAR) calibration problem into a 2D-2D calibration problem, and exploits various LiDAR feature information to supplement the sparse LiDAR point cloud boundaries. In addition, a feature matching function with a precision factor is designed to improve the smoothness of the solution space. The performance of the proposed Multi-FEAT algorithm is evaluated using the KITTI dataset, and our approach shows more reliable results, as compared with several existing targetless calibration methods. We summarize our results and present potential directions for future work

    Sensor fusion in driving assistance systems

    Get PDF
    Mención Internacional en el título de doctorLa vida diaria en los países desarrollados y en vías de desarrollo depende en gran medida del transporte urbano y en carretera. Esta actividad supone un coste importante para sus usuarios activos y pasivos en términos de polución y accidentes, muy habitualmente debidos al factor humano. Los nuevos desarrollos en seguridad y asistencia a la conducción, llamados Advanced Driving Assistance Systems (ADAS), buscan mejorar la seguridad en el transporte, y a medio plazo, llegar a la conducción autónoma. Los ADAS, al igual que la conducción humana, están basados en sensores que proporcionan información acerca del entorno, y la fiabilidad de los sensores es crucial para las aplicaciones ADAS al igual que las capacidades sensoriales lo son para la conducción humana. Una de las formas de aumentar la fiabilidad de los sensores es el uso de la Fusión Sensorial, desarrollando nuevas estrategias para el modelado del entorno de conducción gracias al uso de diversos sensores, y obteniendo una información mejorada a partid de los datos disponibles. La presente tesis pretende ofrecer una solución novedosa para la detección y clasificación de obstáculos en aplicaciones de automoción, usando fusión vii sensorial con dos sensores ampliamente disponibles en el mercado: la cámara de espectro visible y el escáner láser. Cámaras y láseres son sensores comúnmente usados en la literatura científica, cada vez más accesibles y listos para ser empleados en aplicaciones reales. La solución propuesta permite la detección y clasificación de algunos de los obstáculos comúnmente presentes en la vía, como son ciclistas y peatones. En esta tesis se han explorado novedosos enfoques para la detección y clasificación, desde la clasificación empleando clusters de nubes de puntos obtenidas desde el escáner láser, hasta las técnicas de domain adaptation para la creación de bases de datos de imágenes sintéticas, pasando por la extracción inteligente de clusters y la detección y eliminación del suelo en nubes de puntos.Life in developed and developing countries is highly dependent on road and urban motor transport. This activity involves a high cost for its active and passive users in terms of pollution and accidents, which are largely attributable to the human factor. New developments in safety and driving assistance, called Advanced Driving Assistance Systems (ADAS), are intended to improve security in transportation, and, in the mid-term, lead to autonomous driving. ADAS, like the human driving, are based on sensors, which provide information about the environment, and sensors’ reliability is crucial for ADAS applications in the same way the sensing abilities are crucial for human driving. One of the ways to improve reliability for sensors is the use of Sensor Fusion, developing novel strategies for environment modeling with the help of several sensors and obtaining an enhanced information from the combination of the available data. The present thesis is intended to offer a novel solution for obstacle detection and classification in automotive applications using sensor fusion with two highly available sensors in the market: visible spectrum camera and laser scanner. Cameras and lasers are commonly used sensors in the scientific literature, increasingly affordable and ready to be deployed in real world applications. The solution proposed provides obstacle detection and classification for some obstacles commonly present in the road, such as pedestrians and bicycles. Novel approaches for detection and classification have been explored in this thesis, from point cloud clustering classification for laser scanner, to domain adaptation techniques for synthetic dataset creation, and including intelligent clustering extraction and ground detection and removal from point clouds.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Cristina Olaverri Monreal.- Secretario: Arturo de la Escalera Hueso.- Vocal: José Eugenio Naranjo Hernánde

    Multimodal perception for autonomous driving

    Get PDF
    Mención Internacional en el título de doctorAutonomous driving is set to play an important role among intelligent transportation systems in the coming decades. The advantages of its large-scale implementation –reduced accidents, shorter commuting times, or higher fuel efficiency– have made its development a priority for academia and industry. However, there is still a long way to go to achieve full self-driving vehicles, capable of dealing with any scenario without human intervention. To this end, advances in control, navigation and, especially, environment perception technologies are yet required. In particular, the detection of other road users that may interfere with the vehicle’s trajectory is a key element, since it allows to model the current traffic situation and, thus, to make decisions accordingly. The objective of this thesis is to provide solutions to some of the main challenges of on-board perception systems, such as extrinsic calibration of sensors, object detection, and deployment on real platforms. First, a calibration method for obtaining the relative transformation between pairs of sensors is introduced, eliminating the complex manual adjustment of these parameters. The algorithm makes use of an original calibration pattern and supports LiDARs, and monocular and stereo cameras. Second, different deep learning models for 3D object detection using LiDAR data in its bird’s eye view projection are presented. Through a novel encoding, the use of architectures tailored to image detection is proposed to process the 3D information of point clouds in real time. Furthermore, the effectiveness of using this projection together with image features is analyzed. Finally, a method to mitigate the accuracy drop of LiDARbased detection networks when deployed in ad-hoc configurations is introduced. For this purpose, the simulation of virtual signals mimicking the specifications of the desired real device is used to generate new annotated datasets that can be used to train the models. The performance of the proposed methods is evaluated against other existing alternatives using reference benchmarks in the field of computer vision (KITTI and nuScenes) and through experiments in open traffic with an automated vehicle. The results obtained demonstrate the relevance of the presented work and its suitability for commercial use.La conducción autónoma está llamada a jugar un papel importante en los sistemas inteligentes de transporte de las próximas décadas. Las ventajas de su implementación a larga escala –disminución de accidentes, reducción del tiempo de trayecto, u optimización del consumo– han convertido su desarrollo en una prioridad para la academia y la industria. Sin embargo, todavía hay un largo camino por delante hasta alcanzar una automatización total, capaz de enfrentarse a cualquier escenario sin intervención humana. Para ello, aún se requieren avances en las tecnologías de control, navegación y, especialmente, percepción del entorno. Concretamente, la detección de otros usuarios de la carretera que puedan interferir en la trayectoria del vehículo es una pieza fundamental para conseguirlo, puesto que permite modelar el estado actual del tráfico y tomar decisiones en consecuencia. El objetivo de esta tesis es aportar soluciones a algunos de los principales retos de los sistemas de percepción embarcados, como la calibración extrínseca de los sensores, la detección de objetos, y su despliegue en plataformas reales. En primer lugar, se introduce un método para la obtención de la transformación relativa entre pares de sensores, eliminando el complejo ajuste manual de estos parámetros. El algoritmo hace uso de un patrón de calibración propio y da soporte a cámaras monoculares, estéreo, y LiDAR. En segundo lugar, se presentan diferentes modelos de aprendizaje profundo para la detección de objectos en 3D utilizando datos de escáneres LiDAR en su proyección en vista de pájaro. A través de una nueva codificación, se propone la utilización de arquitecturas de detección en imagen para procesar en tiempo real la información tridimensional de las nubes de puntos. Además, se analiza la efectividad del uso de esta proyección junto con características procedentes de imágenes. Por último, se introduce un método para mitigar la pérdida de precisión de las redes de detección basadas en LiDAR cuando son desplegadas en configuraciones ad-hoc. Para ello, se plantea la simulación de señales virtuales con las características del modelo real que se quiere utilizar, generando así nuevos conjuntos anotados para entrenar los modelos. El rendimiento de los métodos propuestos es evaluado frente a otras alternativas existentes haciendo uso de bases de datos de referencia en el campo de la visión por computador (KITTI y nuScenes), y mediante experimentos en tráfico abierto empleando un vehículo automatizado. Los resultados obtenidos demuestran la relevancia de los trabajos presentados y su viabilidad para un uso comercial.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Jesús García Herrero.- Secretario: Ignacio Parra Alonso.- Vocal: Gustavo Adolfo Peláez Coronad

    Robust Extrinsic Self-Calibration of Camera and Solid State LiDAR

    Full text link
    This letter proposes an extrinsic calibration approach for a pair of monocular camera and prism-spinning solid-state LiDAR. The unique characteristics of the point cloud measured resulting from the flower-like scanning pattern is first disclosed as the vacant points, a type of outlier between foreground target and background objects. Unlike existing method using only depth continuous measurements, we use depth discontinuous measurements to retain more valid features and efficiently remove vacant points. The larger number of detected 3D corners thus contain more robust a priori information than usual which, together with the 2D corners detected by overlapping cameras and constrained by the proposed circularity and rectangularity rules, produce accurate extrinsic estimates. The algorithm is evaluated with real field experiments adopting both qualitative and quantitative performance criteria, and found to be superior to existing algorithms. The code is available on GitHub

    Building an Omnidirectional 3D Color Laser Ranging System through a Novel Calibration Method

    Get PDF
    3D color laser ranging technology plays a crucial role in many applications. This paper develops a new omnidirectional 3D color laser ranging system. It consists of a 2D laser rangefinder (LRF), a color camera, and a rotating platform. Both the 2D LRF and the camera rotate with the rotating platform to collect line point clouds and images synchronously. The line point clouds and the images are then fused into a 3D color point cloud by a novel calibration method of a 2D LRF and a camera based on an improved checkerboard pattern with rectangle holes. In the calibration, boundary constraint and mean approximation are deployed to accurately compute the centers of rectangle holes from the raw sensor data based on data correction. Then, the data association between the 2D LRF and the camera is directly established to determine their geometric mapping relationship. These steps make the calibration process simple, accurate, and reliable. The experiments show that the proposed calibration method is accurate, robust to noise, and suitable for different geometric structures, and the developed 3D color laser ranging system has good performance for both indoor and outdoor scenes

    Real-Time fusion of visual images and laser data images for safe navigation in outdoor environments

    Get PDF
    [EN]In recent years, two dimensional laser range finders mounted on vehicles is becoming a fruitful solution to achieve safety and environment recognition requirements (Keicher & Seufert, 2000), (Stentz et al., 2002), (DARPA, 2007). They provide real-time accurate range measurements in large angular fields at a fixed height above the ground plane, and enable robots and vehicles to perform more confidently a variety of tasks by fusing images from visual cameras with range data (Baltzakis et al., 2003). Lasers have normally been used in industrial surveillance applications to detect unexpected objects and persons in indoor environments. In the last decade, laser range finder are moving from indoor to outdoor rural and urban applications for 3D imaging (Yokota et al., 2004), vehicle guidance (Barawid et al., 2007), autonomous navigation (Garcia-Pérez et al., 2008), and objects recognition and classification (Lee & Ehsani, 2008), (Edan & Kondo, 2009), (Katz et al., 2010). Unlike industrial applications, which deal with simple, repetitive and well-defined objects, cameralaser systems on board off-road vehicles require advanced real-time techniques and algorithms to deal with dynamic unexpected objects. Natural environments are complex and loosely structured with great differences among consecutive scenes and scenarios. Vision systems still present severe drawbacks, caused by lighting variability that depends on unpredictable weather conditions. Camera-laser objects feature fusion and classification is still a challenge within the paradigm of artificial perception and mobile robotics in outdoor environments with the presence of dust, dirty, rain, and extreme temperature and humidity. Real time relevant objects perception, task driven, is a main issue for subsequent actions decision in safe unmanned navigation. In comparison with industrial automation systems, the precision required in objects location is usually low, as it is the speed of most rural vehicles that operate in bounded and low structured outdoor environments. To this aim, current work is focused on the development of algorithms and strategies for fusing 2D laser data and visual images, to accomplish real-time detection and classification of unexpected objects close to the vehicle, to guarantee safe navigation. Next, class information can be integrated within the global navigation architecture, in control modules, such as, stop, obstacle avoidance, tracking or mapping.Section 2 includes a description of the commercial vehicle, robot-tractor DEDALO and the vision systems on board. Section 3 addresses some drawbacks in outdoor perception. Section 4 analyses the proposed laser data and visual images fusion method, focused in the reduction of the visual image area to the region of interest wherein objects are detected by the laser. Two methods of segmentation are described in Section 5, to extract the shorter area of the visual image (ROI) resulting from the fusion process. Section 6 displays the colour based classification results of the largest segmented object in the region of interest. Some conclusions are outlined in Section 7, and acknowledgements and references are displayed in Section 8 and Section 9.projects: CICYT- DPI-2006-14497 by the Science and Innovation Ministry, ROBOCITY2030 I y II: Service Robots-PRICIT-CAM-P-DPI-000176- 0505, and SEGVAUTO: Vehicle Safety-PRICIT-CAM-S2009-DPI-1509 by Madrid State Government.Peer reviewe

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction
    corecore