55,907 research outputs found

    Facial Expression Recognition

    Get PDF

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Laryngoscopic Image Stitching for View Enhancement and Documentation - First Experiences

    Get PDF
    One known problem within laryngoscopy is the spatially limited view onto the hypopharynx and the larynx through the endoscope. To examine the complete larynx and hypopharynx, the laryngoscope can be rotated about its main axis, and hence the physician obtains a complete view. If such examinations are captured using endoscopic video, the examination can be reviewed in detail at a later time. Nevertheless, in order to document the examination with a single representative image, a panorama image can be computed for archiving and enhanced documentation. Twenty patients with various clinical findings were examined with a 70 rigid laryngoscope, and the video sequences were digitally stored. The image sequence for each patient was then post-processed using an image stitching tool based on SIFT features, the RANSAC approach and blending. As a result, endoscopic panorama images of the larynx and pharynx were obtained for each video sequence. The proposed approach of image stitching for laryngoscopic video sequences offers a new tool for enhanced visual examination and documentation of morphologic characteristics of the larynx and the hypopharynx

    Facial Asymmetry Analysis Based on 3-D Dynamic Scans

    Get PDF
    Facial dysfunction is a fundamental symptom which often relates to many neurological illnesses, such as stroke, Bell’s palsy, Parkinson’s disease, etc. The current methods for detecting and assessing facial dysfunctions mainly rely on the trained practitioners which have significant limitations as they are often subjective. This paper presents a computer-based methodology of facial asymmetry analysis which aims for automatically detecting facial dysfunctions. The method is based on dynamic 3-D scans of human faces. The preliminary evaluation results testing on facial sequences from Hi4D-ADSIP database suggest that the proposed method is able to assist in the quantification and diagnosis of facial dysfunctions for neurological patients

    Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video

    Full text link
    We present an automatic method to describe clinically useful information about scanning, and to guide image interpretation in ultrasound (US) videos of the fetal heart. Our method is able to jointly predict the visibility, viewing plane, location and orientation of the fetal heart at the frame level. The contributions of the paper are three-fold: (i) a convolutional neural network architecture is developed for a multi-task prediction, which is computed by sliding a 3x3 window spatially through convolutional maps. (ii) an anchor mechanism and Intersection over Union (IoU) loss are applied for improving localization accuracy. (iii) a recurrent architecture is designed to recursively compute regional convolutional features temporally over sequential frames, allowing each prediction to be conditioned on the whole video. This results in a spatial-temporal model that precisely describes detailed heart parameters in challenging US videos. We report results on a real-world clinical dataset, where our method achieves performance on par with expert annotations.Comment: To appear in MICCAI, 201

    Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images via Optimised Concurrent Hough Transform

    No full text
    Low back pain is a very common problem in the industrialised countries and its associated cost is enormous. Diagnosis of the underlying causes can be extremely difficult. Many studies have focused on mechanical disorders of the spine. Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage. Thus determining vertebrae position within the image sequence presents a considerable challenge. In this paper, we show how our new approach can automatically detect the positions and borders of vertebrae concurrently, relieving many of the problems experienced in other approaches. First, we use phase congruency to relieve difficulty associated with threshold selection in edge detection of the illumination variant DVF images. Then, our new Hough transform approach is applied to determine the moving vertebrae, concurrently. We include optimisation via a genetic algorithm as without it the extraction of moving multiple vertebrae is computationally daunting. Our results show that this new approach can indeed provide extractions of position and rotation which appear to be of sufficient quality to aid therapy and diagnosis of spinal disorders

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques
    corecore