11,275 research outputs found

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Static and Dynamic Photovoltaic Cell/Module Parameters Identification

    Get PDF
    The accurate parameters extraction is an important step to obtain a robust PV outputs forecasting for static or dynamic modes. For these aims, several approaches have been proposed for photovoltaic (PV) cell modeling including electrical circuit-based model, empirical models, and non-parametrical models. Moreover, numerous parameter extraction methods have been introduced in the literature depending on the proposed model and the operating mode. These methods can be classified into two main approaches including automatic numerical and analytical approaches. These approaches are commonly applied in the static mode, whereas they can be employed for dynamic parameters extraction. In this chapter, as a first stage, the static parameters extraction for both single and double diodes models is exposed wherein Genetic Algorithm and outdoor measurements are considered for fixed irradiation and temperature. In the second stage, a dynamic parameters extraction is carried out using Levenberg-Marquardt algorithm, where 1 day profile outdoor measurement is considered. After that, the robustness of the proposed approaches is evaluated and the parameters obtained by the static method and that given by the dynamic technique are compared. The test is carried out using 3 days with different weather conditions profiles. The obtained results show that the parameters extraction by dynamic techniques gives satisfactory performances in terms of agreement with the real data

    Multi-time-horizon Solar Forecasting Using Recurrent Neural Network

    Full text link
    The non-stationarity characteristic of the solar power renders traditional point forecasting methods to be less useful due to large prediction errors. This results in increased uncertainties in the grid operation, thereby negatively affecting the reliability and increased cost of operation. This research paper proposes a unified architecture for multi-time-horizon predictions for short and long-term solar forecasting using Recurrent Neural Networks (RNN). The paper describes an end-to-end pipeline to implement the architecture along with the methods to test and validate the performance of the prediction model. The results demonstrate that the proposed method based on the unified architecture is effective for multi-horizon solar forecasting and achieves a lower root-mean-squared prediction error compared to the previous best-performing methods which use one model for each time-horizon. The proposed method enables multi-horizon forecasts with real-time inputs, which have a high potential for practical applications in the evolving smart grid.Comment: Accepted at: IEEE Energy Conversion Congress and Exposition (ECCE 2018), 7 pages, 5 figures, code available: sakshi-mishra.github.i

    Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification

    Get PDF
    Simulation is of primal importance in the prediction of the produced power and automatic fault detection in PV grid-connected systems (PVGCS). The accuracy of simulation results depends on the models used for main components of the PV system, especially for the PV module. The present paper compares two PV array models, the five-parameter model (5PM) and the Sandia Array Performance Model (SAPM). Five different algorithms are used for estimating the unknown parameters of both PV models in order to see how they affect the accuracy of simulations in reproducing the outdoor behavior of three PVGCS. The arrays of the PVGCS are of three different PV module technologies: Crystalline silicon (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/µc-Si:H). The accuracy of PV module models based on the five algorithms is evaluated by means of the Route Mean Square Error (RMSE) and the Normalized Mean Absolute Error (NMAE), calculated for different weather conditions (clear sky, semi-cloudy and cloudy days). For both models considered in this study, the best accuracy is obtained from simulations using the estimated values of unknown parameters delivered by the ABC algorithm. Where, the maximum error values of RMSE and NMAE stay below 6.61% and 2.66% respectively.Peer ReviewedPostprint (author's final draft
    corecore