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Abstract 21 

Simulation is of primal importance in the prediction of the produced power and 22 

automatic fault detection in PV grid-connected systems (PVGCS). The accuracy of 23 

simulation results depends on the models used for main components of the PV system, 24 

especially for the PV module. The present paper compares two PV array models, the five-25 

parameter model (5PM) and the Sandia Array Performance Model (SAPM). Five different 26 

algorithms are used for estimating the unknown parameters of both PV models in order to 27 
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see how they affect the accuracy of simulations in reproducing the outdoor behavior of 28 

three PVGCS. The arrays of the PVGCS are of three different PV module technologies: 29 

Crystalline silicon (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/µc-30 

Si:H).  31 

The accuracy of PV module models based on the five algorithms is evaluated by means 32 

of the Route Mean Square Error (RMSE) and the Normalized Mean Absolute Error 33 

(NMAE), calculated for different weather conditions (clear sky, semi-cloudy and cloudy 34 

days). For both models considered in this study, the best accuracy is obtained from 35 

simulations using the estimated values of unknown parameters delivered by the ABC 36 

algorithm. Where, the maximum error values of RMSE and NMAE stay below 6.61% and 37 

2.66% respectively. 38 

 39 

 40 

Keywords: PV Modeling, Simulation, Parameter extraction, Metaheuristic algorithms. 41 
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1. Introduction 43 

The photovoltaic (PV) market has grown rapidly in recent years worldwide, especially 44 

in developed countries, where this growth has been exponential. One of the main reasons 45 

for the high growth of the PV industry is the reduction of the cost of PV generation as well 46 

as the improvement of the quality and performance of the electronics associated with these 47 

generation systems. The monitoring and regular performance supervision on the 48 

functioning of grid-connected PV systems is basic to ensure an optimal energy harvesting 49 

and reliable power production at competitive costs. Detecting faults in PV systems can 50 

minimize generation losses by reducing the time in which the system is working below its 51 

point of maximum power generation. In this context, the development of accurate 52 

automatic fault detection procedures is crucial [1–3]. Main faults in PV systems are caused 53 

by short circuits or open circuits in PV modules, inverter disconnections and the presence 54 

of shadows on the PV array plane [4–6]. 55 

On the other hand, the integration of grid-connected PV systems also requires the 56 

capability of managing the uncertainty related to the fluctuating energy output inherent to 57 

these generation plants. For this purpose, it is very important to develop accurate 58 

forecasting models in order to achieve an easy integration of PV generation plants into 59 

traditional power distribution systems [7,8]. 60 

Simulation plays a crucial role in both outdoor behavior forecasting and automatic fault 61 

detection of grid-connected PV systems. The precision of simulation results depends on the 62 

models used for the main components of the PV system, especially the PV module models 63 

[9,10]. Moreover, the accuracy of the PV module models is strongly affected by the way of 64 

extracting their unknown parameters. Several research works discussed the topic of PV 65 
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model parameters estimation, by applying different methods based on analytical [11], 66 

numerical [12,13] and bio-inspired optimization solution [14–20]. 67 

Previous works investigated the accuracy of PV module models focusing on the I-V 68 

curve of the PV module [21–24] or on the I-V characteristic of a PV array [25]. The 69 

objective of this study is to compare two PV array models to analyze the simulation of grid-70 

connected PV systems in real conditions of work. The accuracy of the simulations in 71 

reproducing the actual behavior of the PV system is evaluated by means of the results 72 

obtained from different parameter extraction techniques based on five algorithms: 73 

Levenberg–Marquardt algorithm (LMA), genetic algorithm (GA), particle swarm 74 

optimization (PSO), differential evolution (DE) and artificial bee colony (ABC) algorithm. 75 

The two PV array models included in this study are the five-parameter model (5PM) 76 

[26,27] and the Sandia Array Performance Model (SAPM) developed by [28]. Three real 77 

grid-connected PV systems are included in the study to validate the accuracy of the models.   78 

Each one of the PV systems is formed by PV modules of different technologies: Crystalline 79 

silicon (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/µc-Si:H) in order 80 

to outline differences in the prediction due to solar cell type. 81 

The remainder of the paper is organized as follows: In section 2, the PV systems 82 

included in the study are described. The PV array models and the parameters extraction 83 

techniques used in this study are summarized in sections 3 and 4 respectively. Results 84 

obtained are shown in section 5. Finally, conclusions are detailed in section 6. 85 

 86 

2. Description of the PV systems 87 

 Three grid connected PV systems formed by PV modules of different technologies were 88 

used in this study.  89 



5 
 

 The first PV system is located in San Sebastián (Spain). The PV array is formed by 30  90 

c-Si PV modules with a peak power of 4.8 kWp connected to a single phase inverter. 91 

The other two PV systems are sited in Jaén (Spain). Each PV array is connected to single 92 

phase inverter with AC nominal powers of 1.2kW. One of the PV arrays is formed of 15 a-93 

Si:H PV modules, rated 60-W peach, and the second PV array consists of 8 micromorph 94 

PV modules, rated 110-Wp each. Main characteristics of the PV systems and PV modules 95 

forming the arrays are given in Table 1 and Table 2 respectively. 96 

Main Parameters PV system 1 PV system 2 PV system 3 
PV Module  c-Si a-Si:H/µc-Si:H a-Si:H 
Location San Sebastián (Spain) 

Latitude: 43º 17’ 9.8'' N 
Longitude: 1º 59' 55.4 '' W 

Altitude: 41 m. 

Jaén (Spain) 
Latitude: 37º 47' 14.35'' N 

Longitude: 3º 46' 39.73 '' W 
Altitude: 511 m 

Nominal power 4.8 kWp 880 Wp 900 Wp 
Modules per inverter 30 8 15 
Modules in series (Nsg) 15 4 3 
Strings in parallel (Npg) 2 2 5 
Tilt - Orientation 20º - 9º  East 30º - 0º  South 35º- 0º  South 
Inverter Ingecon SUN 5 

Single-phase inverter 
5kW 

Sunny Boy SB1200 
Single-phase inverter 

1.2 kW 
Table 1. PV systems description. 97 

 98 

PV module Parameters PV system 1 PV system 2 PV system 3 
Isc (A) 9.46 2.5 1.19 
Voc (V) 22.2 71 92 
Current at Maximum Power Point: Impp (A) 8.65 2.04 0.9 
Voltage at Maximum Power Point: Vmpp (V) 18.5 54 67 
Temperature Coefficient of Voc βVoc (V/ºC) - 0.084 -0.248 -0.280 
Temperature Coefficient of Isc αIsc (A/ºC) 4.60 10-3 1.4010-3 0.89 10-3 

Table 2. Main parameters of PV modules. 99 

 100 

 The following parameters were monitored in the three PV arrays: Current, voltage, 101 

power (DC and AC), cosine (ϕ), frequency, irradiance and module temperature with a 102 

sampling rate of 5 min. 103 
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 In the PV system located in San Sebastián, the irradiance was measured by using a 104 

calibrated solar cell installed in the plane of the modules. The module temperature was 105 

measured using a Pt100 sensor fitted to the back of the module, in the middle of a cell. The 106 

internal data acquisition card of the inverter recorded both parameters.  107 

 The monitoring system included in the PV arrays located in Jaén consists of three SMA 108 

Sunny SensorBox devices, installed in the same plane as the PV generators, capable to 109 

measure solar radiation, module and ambient temperatures together with wind speed. Two 110 

Pt100 RTD were pasted to the rear surface of the modules under test to measure the cell 111 

temperature in each PV array. An anemometer and a temperature probe were also available. 112 

All sensors were supplied by SMA and connected to three Sunny SensorBox devices. An 113 

additional irradiance sensor, aKipp & Zonen CMP11pyranometer, was also installed and 114 

connected to one of the latter devices. The three of them were serially connected to the 115 

inverters via a RS-485 bus and then to a Sunny Webbox, from which environmental and 116 

operation could be retrieved. 117 

 118 

3. PV array models 119 

As it has been previously mentioned, the two PV array models included in this study 120 

are the 5PM [26,27,29] and the SAPM developed by [28]. 121 

The 5PM, also called one diode model, is one of the most used in simulation of PV 122 

modules and arrays. Moreover, root mean square errors (RMSE) of 4.26% [3], 4.39 % [30] 123 

and 5.12 % [31] were reported in the estimation of the energy produced by grid-connected 124 

PV systems in simulations of dynamic behavior of c-Si PV generators by using this model. 125 

On the other hand, simulations of a-Si PV arrays by using the SAPM model have obtained 126 

errors below 4.1% on sunny days [32]. In our approach, the model parameters are 127 
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calculated by means of parameter extraction methods having as main input data daily actual 128 

profiles of module temperature, irradiance on the PV array plane and output voltage and 129 

current of the PV array.   130 

 131 

3.1 Five-parameter model 132 

The 5PM of a solar cell includes a parallel combination of a photogenerated controlled 133 

current source Iph, a diode, described by the well-known single-exponential Shockley 134 

equation [33], a shunt resistance Rsh and a series resistance Rs modeling the power losses. 135 

The I-V characteristic of a solar cell is given by an implicit and nonlinear equation as 136 

follows: 137 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 �𝑒
�𝑉+𝑅𝑠𝐼𝑛𝑉𝑡

� − 1� − �𝑉+𝑅𝑠𝐼
𝑅𝑠ℎ

�    (1) 138 

 139 

where Io and n are the reverse saturation current and ideality factor of the diode respectively 140 

and Vt is the thermal voltage. 141 

Eq. (1) can also be written as follows, 142 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ      (2) 143 

 144 

where Id and Ish are the currents across the diode and shunt resistance respectively. 145 

The photogenerated current can be evaluated for any arbitrary value of irradiance, G, 146 

and cell temperature, Tc, by using the following equation: 147 

𝐼𝑝ℎ = 𝐺
𝐺∗
𝐼𝑠𝑠 + 𝑘𝑖(𝑇𝑠 − 𝑇𝑠∗)     (3) 148 

 149 
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where G* and Tc* are respectively the irradiance and cell temperature at standard test 150 

conditions (STC): 1000 W/m2 (AM1.5) and 25ºC, ki (A/ºC) is the temperature coefficient 151 

of the current and Isc (A) is the solar cell short circuit current at STC. 152 

Some PV modules are formed by parallel strings of solar cells connected in series. 153 

However, most PV modules include one single string of solar cells. Therefore, the model of 154 

the solar cell can be scaled up to the model of the PV module using the following equations 155 

(4) – (8): 156 

𝐼𝑀 = 𝑁𝑝𝐼       (4) 157 

𝐼𝑠𝑠𝑀 = 𝑁𝑝𝐼𝑠𝑠      (5) 158 

𝑉𝑀 = 𝑁𝑠𝑉       (6) 159 

𝑉𝑜𝑠𝑀 = 𝑁𝑠𝑉𝑜𝑠      (7) 160 

𝑅𝑠𝑀 = 𝑁𝑠
𝑁𝑝
𝑅𝑠      (8) 161 

 162 

Where subscript M stands for ‘Module’, Ns is the number of solar cells connected in 163 

series and Np is the number of parallel branches of solar cells forming the module.    164 

Then, the output current of the PV module, IM, is obtained rewriting Eq. (2) as follows: 165 

𝐼𝑀 = 𝑁𝑝�𝐼𝑝ℎ − 𝐼𝑑𝑀 − 𝐼𝑠ℎ𝑀�     (9) 166 

 167 

The diode current, IdM, included in Eq (9) is given by: 168 

𝐼𝑑𝑀 = 𝐼𝑜𝑀 �𝑒
�𝑉𝑀+𝐼𝑀𝑅𝑠𝑀

𝑛 𝑁𝑠𝑉𝑡
� − 1�     (10) 169 

 170 

where VM (V) and IM (A), are the output voltage and current of the PV module respectively. 171 
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The saturation current of the diode IoM (A) depends strongly on temperature and it is 172 
given by: 173 

𝐼𝑜𝑀 =  𝐼𝑠𝑠𝑀𝑒
�
𝐸𝑔𝑔
𝑉𝑡𝑔

−
𝐸𝑔
𝑉𝑡

�

𝑁𝑝�𝑒
�
𝑉𝑔𝑠𝑀

𝑛 𝑁𝑠𝑉𝑡𝑔
�
−1�

�𝑇𝑠
𝑇𝑠∗
�
3
    (11) 174 

 175 

where IscM and VocM are the short-circuit current and the open-circuit voltage of the PV 176 
module respectively, Vto is the thermal voltage at STC, Eg the energy bandgap of the 177 
semiconductor and Ego is the energy bandgap at T=0 K. 178 

The value of the energy bandgap of the semiconductor at any cell temperature Tc is 179 
given by: 180 

𝐸𝑔 = 𝐸𝑔𝑜 −
𝛼𝑔𝛼𝑝 𝑇𝑠2

𝛽𝑔𝛼𝑝+𝑇𝑠
      (12) 181 

 182 

where αgap and βgap are fitting parameters characteristic of the semiconductor. 183 

Finally, the current IshM, also included in Eq. (9) is given by the following equation: 184 

𝐼𝑠ℎ𝑀 = 𝑉𝑀+𝐼𝑀𝑅𝑠𝑀
𝑁𝑝𝑅𝑠ℎ𝑀

      (13) 185 

 186 

The same procedure can be applied to scale up the model of the PV module to the 187 

model of a PV array by taking into account the number of PV modules connected in series 188 

by string, Nsg, and the number of parallel strings in the PV array, Npg [27]. 189 

 190 

3.2 SAPM Model 191 

The SAPM model is an empirical model defined by the following equations [28]. The 192 

PV array power at the maximum power point (MPP), Pmp (W), is evaluated as follows:  193 

𝑃𝑃𝑃𝑃 =  𝐼𝑃𝑃𝑃 × 𝑉𝑃𝑃𝑃     (14) 194 

 195 
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where, Impg (A) and Vmpg (V) are the coordinates of the MPP of the PV array.  196 

The model uses the normalized irradiance, Ee, defined as follows,  197 

𝐸𝑒 = 𝐺
𝐺∗

       (15) 198 

 199 

Then, the current and voltage of the MPP of the PV array can be calculated by using the 200 

following equations: 201 

𝐼𝑃𝑃𝑃 = 𝑁𝑝𝑔 �𝐼𝑃𝑃𝑚(𝐶0𝐸𝑒 +  𝐶1𝐸𝑒2) �1 +  𝛼𝐼𝐼𝑝(𝑇𝑠 − 𝑇𝑠∗)��  (16) 202 

𝑉𝑃𝑃𝑃 = 𝑁𝑠𝑔�𝑉𝑃𝑃𝑚 + 𝐶2𝑁𝑠𝛿(𝑇𝑠)𝑙𝑙(𝐸𝑒) + 𝐶3𝑁𝑠(𝛿(𝑇𝑠)𝑙𝑙(𝐸𝑒))2 + 𝛽𝑉𝐼𝑝𝐸𝑒(𝑇𝑠 − 𝑇𝑠∗)� 203 

      (17) 204 

𝛿(𝑇𝑠) = 𝑙𝑘(𝑇𝑠 + 273.15)/𝑞     (18) 205 

 206 

where, Impo (A) and Vmpo (V) are the PV module current and voltage of the MPP at STC, 207 

C0 and C1 are empirically determined coefficients (dimensionless) which relate Imp to the 208 

effective irradiance, C0+C1=1, αImp (°C-1) is the normalized temperature coefficient for 209 

Imp, C2 (dimensionless ) and C3 (V-1) are empirical coefficients which relate Vmp to the 210 

effective irradiance, δ(Tc) is the thermal voltage per cell at temperature Tc, q is the 211 

elementary charge, 1.60218 10-19 (coulomb), k is the Boltzmann’s constant, 1.38066 10-23 212 

(J/K) and βVmp (V/°C) is the temperature coefficient for module Vmp at STC. 213 

The models contain several coefficients and parameters that must be calculated because 214 

are not routinely provided by the PV module’s manufacturer. For this purpose, we used the 215 

parameter extraction technique described in the following section. 216 

  217 

 218 
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4. Parameter extraction techniques 219 

The parameter extraction techniques employed in this study are based on five 220 

optimization algorithms that evaluate the model parameters of the two PV array models in 221 

real conditions of work, using as inputs daily profiles of solar irradiance and cell 222 

temperature together with monitored DC output current and voltage. 223 

For the five-parameter model of the PV module, the model parameters: Iph, Io, n, Rs, 224 

and Rsh are evaluated by using Eqs. (3) – (13) and actual daily profiles of monitored current 225 

and voltage at the DC output of the three PV arrays included in the study, together with 226 

actual daily profiles of G and Tc at the specific locations detailed in section 2.  227 

Regarding the SAPM, the same idea is considered for the estimation of the empirical 228 

coefficients of the model parameters: C0, C1, C2, C3, n, αImp and βVmp using Eqs. (15) – (18). 229 

The objective function for optimization using metaheuristic algorithms is defined as 230 

the RMSE of the error of all data points given by Eq. (19) [19,34], where the N represent 231 

the number of measured data, Vi and Ii represent the measured voltage and current of the 232 

data point i.  233 

𝑆(𝜃) = �1
𝑁
∑ [𝐼𝐼 − 𝐼(𝑉𝐼,𝜃)]2𝑁
𝑖=1       (19) 234 

 235 

where θ = f (Iph,Io,n,Rs,Rsh) for the five parameter model and θ = f (C0, C1, C2, C3, n, αImp, 236 

βVmp) for the SAPM. 237 

The parameter extraction algorithms implemented in MATLAB/Simulink environment 238 

are executed until function S(θ), given by Eq. (19), is minimized. Figs. 1 and 2 show the 239 

Simulink block diagram of the 5PM and SAPM used in the parameter extraction 240 

procedures. Thus, the result of the parameter extraction algorithms is a set of PV module 241 

parameters for the 5PM and a set of empirical parameters for the SAPM that allow the best 242 

approach to the real daily evolution of DC output current and voltage of the PV arrays. 243 
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 244 

Fig. 1. Simulink block diagram for the 5PM. 245 

 246 

 247 

Fig. 2. Simulink block diagram for the SAPM. 248 

 249 

Two parameter extraction methods are used in this study. The first method is a 250 

numerical solution based on Levenberg–Marquardt algorithm (LMA) detailed in a previous 251 

work [12]. The second method is based on different metaheuristic algorithms (GA, DE, 252 

PSO and ABC) which are described below. 253 

4.1 Genetic algorithm 254 

The Genetic Algorithm (GA) developed by John Holland in the 1970s is a technique 255 

for solving constrained and unconstrained optimization problems inspired from the 256 

biological evolution. 257 
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The optimization function is encoded as arrays of binary character strings representing 258 

the chromosomes. The fitness of chromosomes in the population is evaluated by the 259 

objective function for each iteration. Fitter chromosomes are stochastically selected in 260 

terms of the elitist strategy, which ensures the progeny chromosomes inherit the best 261 

possible combination of the genes of their parents. Some of the chromosomes in the 262 

population are modified via genetic operators like crossover and mutation, forming new 263 

chromosomes for the next generation. The reason why GA applies crossover and mutation 264 

may lie in their capability of avoiding local optima in the searching process. Several 265 

researches applied GA to extract the parameters of a PV model from measured I–V curves 266 

[17,35]. 267 

 In this paper, the genetic algorithm available in the Global Optimization toolbox of 268 

MATLAB has been used for minimizing the objective function Eq. (19) [17]. 269 

4.2 Differential evolution 270 

Differential evolution (DE) was proposed by Rainer Storn and Kenneth Price in 1997 271 

[36]. Similar to other evolutionary algorithms, DE is a population based, derivative-free 272 

function optimizer. An advantage of DE over GA is that DE treats possible solutions as 273 

real-number strings, and thus encoding and decoding are not required.  274 

The target vector x = [x1, x2,…, xi] where i =1,2,…, NP represents a population of NP 275 

random candidate solutions. The vector of the ith particle, xi indicates a series of parameters 276 

to be extracted, e.g. xi = [Iph,Io,n,Rs,Rsh] for the one-diode model and xi = [C0, C1, C2, C3, n, 277 

αImp, βVmp]. For a D-dimension optimization problem, a random candidate solution is given 278 

by: 279 

𝑥𝑗𝑙𝑜𝑙 ≤ 𝑥𝑖,𝑗 ≤ 𝑥𝑗
𝑢𝑝`     (20) 280 

 281 

where xj
low and xj

up are the lower and the upper limits of the jth vector component 282 

respectively, i = 1, 2, …, NP and j = 1, 2, …, D. 283 
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After the initialization DE enters a loop of evolutionary operations: mutation, crossover 284 

and selection considering the maximum number of generations tmax, where t = 1, 2,…, tmax.  285 

In the mutation step, for each xi at generation t, three vectors xr0, xr1 and xr2 are chosen 286 

randomly from the set {1, 2, …,NP}\{i} to generate a donor vector by: 287 

𝑣𝑖𝑡+1 = 𝑥𝑟0𝑡 + 𝐹(𝑥𝑟1𝑡 − 𝑥𝑟2𝑡 )     (21) 288 

 289 

where F is a differential weight, known as scaling parameter, usually ranges in the interval 290 

[0, 1].  291 

The crossover operation is used to decide whether to exchange with donor vector. By 292 

generating a random integer index Jr ∈ [1, D] and a randomly distributed number ki ∈ [0, 293 

1], the jth dimension of vi, namely ui,j, is updated according to: 294 

𝑢𝑖,𝑗𝑡+1 = �
𝑣𝑖,𝑗𝑡+1,     𝑘𝑖 ≤ 𝐶𝑅 𝑚𝑜 𝐼 =  𝐽𝑟
𝑥𝑖,𝑗𝑡 ,     𝑘𝑖 > 𝐶𝑅 𝑎𝑙𝑎 𝐼 ≠ 𝐽𝑟

      (22) 295 

 296 

where CR is a crossover probability in the interval [0, 1]. The crossover scheme 297 

formulated by Eq. (22) used in the present work is called binomial strategy. 298 

The selection operation, selects the best one from the parent vector xit, and the trial 299 

vector 𝑢𝐼t+1 solution with the minimum objective value, using the following expression: 300 

𝑥𝑖𝑡+1 = �
𝑢𝑖𝑡+1,     𝑓(𝑢𝑖𝑡+1) ≤ 𝑓(𝑥𝑖𝑡)
𝑥𝑖𝑡 ,                       𝑚𝑜ℎ𝑒𝑒𝐼𝑒𝑒

     (23) 301 

 302 

where f(x) is the fitness function to be minimized. Therefore, if a particular trial vector is 303 

found to result in lower fitness value, it will replace the existing target vector; otherwise, 304 

the target vector is retained. 305 

 306 



15 
 

4.3 Particle swarm optimization 307 

Particle swarm optimization (PSO) is a population based stochastic optimization 308 

technique developed by Kennedy and Eberhart [16] and is inspired by the social behavior 309 

of bird flocking or fish schooling. 310 

PSO search possible solution in a search space by adjusting the trajectories of particles. 311 

The best position encountered of the particle i is designed by pbesti. In a swarm of particles, 312 

there are N local best positions, and the best solution is denoted by gbest.  313 

The velocities and positions of particles, as well as the algorithm parameters (inertia 314 

weight w and learning parameters α, β) are firstly initialized. In an iteration t, the fitness of 315 

particles is evaluated individually by the objective function. By attracted toward pbesti and 316 

gbest, the particle moves according to the following expression: 317 

𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑣𝑖𝑡+1     (24) 318 

 319 

where vi
t+1 is the velocity, expressed as: 320 

𝑣𝑖𝑡+1 = 𝑒𝑣𝑖𝑡 + 𝛼𝛼1(𝑥𝑖𝑡 − 𝑃𝑔𝑒𝑒𝑜𝑡) + 𝛽𝛼2(𝑥𝑖𝑡 − 𝑃𝑔𝑒𝑒𝑜𝑖𝑡)   (25) 321 

 322 

α = 1.5, β = 2. The random vectors ϵ1 and ϵ2 are in the range [0, 1]. The w is the inertia 323 

weight, used to balance global and local search abilities, it is considered constant and set 324 

equal to 0.9. 325 

Finally, lower and upper boundaries are set to ensure that particles are within the 326 

predetermined range. The PSO will continue to search for better solutions until it meets the 327 

stopping criterion. 328 

4.4 Artificial bee colony algorithm 329 

The artificial bee colony algorithm (ABC) is an optimization algorithm inspired by the 330 

natural foraging behavior of honey bees. It was successfully applied in the parameter 331 

extraction of solar cell models [19,34]. In the ABC, there are food sources representing the 332 
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solutions of optimization problems and honey bees (classified into employed bees, 333 

onlooker bees and scout bees) representing the operations to the solutions. The employed 334 

bees investigate potential food sources and share information with onlooker bees. The food 335 

sources of higher quality will have higher possibility to be selected by onlooker bees. If the 336 

quality of the employed bees’ food sources is relatively low, they will change to scout bees 337 

to randomly explore new potential food sources. Consequently, the exploitation is 338 

promoted by employed and onlooker bees while the exploration is performed by scout bees. 339 

The implementation of the ABC algorithm in MATLAB is carried out by following the 340 

same steps of given in the previous works [19,34,37]. 341 

 342 

5. Results 343 

The results of simulation of grid-connected PV systems in real conditions of work were 344 

obtained under different weather conditions: clear sky, semi-cloudy, and cloudy weather. 345 

The two PV array models described above were used for forecasting the output power of 346 

the three different PV systems using the extracted parameters delivered by the five 347 

algorithms. 348 

The adjustable parameters chosen for the GA, DE, PSO and ABC algorithms and the 349 

lower and upper boundaries selected for each parameter are summarized in Table 3 and 4. 350 

Algorithm parameters GA PSO DE ABC 
Population (colony) size, (NP) 100 100 100 100 
Inertia weight, (w) – 0,9 – – 
α and β  – 1.5 and 2 – – 
Crossover probability (CR) – – 0.4 – 
Number of onlooker bees – – – 50 
Limit of scout bees – – – 420 
Maximum number of iteration 1000 1000 1000 1000 

Table. 3 Selected parameters of each algorithm 351 

C0 [0 – 2] Iph [A] [0 – 10] 
C1 [-1– 1] Io [A] [10-7 – 10-11] 
C2 [-10 – 10] n [1 – 2] 
C3 [-10 – 100] Rs [Ω] [0 – 20] 
αImp [°C-1] [10-4 – 10-2] Rsh [Ω] [50 – 105] 
βVmp [V/°C] [-1 – 0]   Table. 4 Lower and upper boundaries selected for each PV module model parameter. 352 
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 The optimization algorithms used in the parameter extraction techniques evaluate the 353 

model parameters of the PV module; Iph, Io, n, Rs, Rsh, in case of the 5PM, and C0, C1, C2, 354 

C3, n, αImp, βVmp, in case of SAPM.  355 

In the case of using the extraction method based on LMA, an average number of 10 356 

iterations are needed in order to find a set of solar cell model parameters for an input data 357 

set corresponding to one day of real operation of the PV array. On the other hand, for the 358 

extraction method relied on the metaheuristic algorithms (GA, PSO, DE and ABC) the 359 

average number of iterations is much higher, by around 500 iterations are needed.  360 

Moreover, the parameter extraction methods were applied for each sample day 361 

separately, in order to get the optimal set of parameters of the two PV models that allows 362 

reproducing the real behavior of the PV systems with best accuracy. As the extracted 363 

parameters values obtained by the different algorithms are very close to each other, it is 364 

decided to show the mean value of each extracted parameter. The set of the extracted 365 

parameters are listed in Tables 5 and 6. 366 

 367 

PV  
system Day Weather 

conditions Rs [Ω] Rsh [Ω] Io [A] Iph [A] n 

1 
09/12/2013 Clear sky 0.662 660.011 1.07 10-8 8.7268 1.191 
18/12/2013 Semi cloudy 0.701 651.880 1.14 10-8 8.7366 1.192 
20/12/2013 Cloudy 0.701 651.894 1.14 10-8 8.7366 1.192 

2 
05/07/2012 Clear sky 5.771 25.96 103 2.32 10-7 2.2055 1.223 
12/05/2012 Semi cloudy 7.321 20.34 103 4.90 10-7 2.2462 1.290 
12/11/2012 Cloudy 8.010 21.31 103 1.20 10-7 2.2462 1.289 

3 
07/08/2011 Clear sky 12.354 3.358 103 8.82 10-9 1.0751 1.343 
12/05/2012 Semi cloudy 17.915 2.365 103 7.92 10-9 1.0627 1.351 
12/11/2012 Cloudy 19.796 2.865 103 1.36 10-9 1.0686 1.351 

Table. 5 Mean values of the main PV module parameters obtained from the parameter 368 

extraction algorithms for the 5PM. 369 

 370 

 371 
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PV 
System Day Weather 

conditions C0 C1 C2 C3 n αImp 
[°C-1] 

βVmp 
[V/°C] 

1 
09/12/2013 Clear sky 1.0438 - 0.2000 2.0686 21.2425 1.1619 4.32 10-3 - 0.1067 
18/12/2013 Semi cloudy 0.9138 - 0.0552 1.6104 10.9348 1.1613 4.32 10-3 - 0.1168 
20/12/2013 Cloudy 0.9762 - 0.1468 2.0351 12.7702 1.162 4.32 10-3 - 0.0554 

2 
05/07/2012 Clear sky 0.8887 0.0662 2.575 31.7208 1.2177 5.8 10-4 - 0.2819 
12/05/2012 Semi cloudy 0.9237 0.0500 2.995 43.1182 1.2459 5.8 10-4 - 0.2692 
12/11/2012 Cloudy 0.9208 0.0608 2.4241 20.0134 1.2466 5.8 10-4 - 0.4632 

3 
07/08/2011 Clear sky 0.8229 0.0500 2.1346 18.999 1.3162 7.52 10-3 - 0.2467 
12/05/2012 Semi cloudy 0.7973 0.0400 2.7898 27.9781 1.3537 7.52 10-3 - 0.3299 
12/11/2012 Cloudy 1.0010 - 0.1086 1.7077 7.8209 1.2941 7.52 10-3 - 0.4998 

Table. 6 Average values of main parameters obtained from the parameter extraction 372 

algorithms for the SAPM. 373 

 374 

In order to present the best variety of results, and see the performance of the two 375 

models using real conditions of solar irradiance and cell temperature, it was chosen to 376 

display the DC output current evolution over the course of a clear sky day for PV system 1, 377 

a semi-cloudy day for PV system 2 and a cloudy day for PV system 3.  378 

 379 

 380 

Fig. 3. Evolution of the DC-current of the PV system 1 using SAPM for clear sky day  381 

(December 09th, 2013). 382 

 383 

 384 
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 385 

Fig. 4. Evolution of the DC-current of the PV system 1 using 5PM for clear sky day  386 

(December 09th, 2013). 387 

 388 

 389 

 390 

Fig. 5. Evolution of the DC-current of the PV system 2 using SAPM for semi-cloudy day  391 

(May 12th, 2012). 392 

 393 

 394 
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 395 

Fig. 6. Evolution of the DC-current of the PV system 2 using 5PM for semi-cloudy day  396 

(May 12th, 2012). 397 

 398 

 399 

 400 

Fig. 7. Evolution of the DC-current of the PV system 3 using SAPM for cloudy day  401 

(November 12th, 2012). 402 

 403 

 404 

 405 
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 406 

Fig. 8. Evolution of the DC-current of the PV system 3 using 5PM for cloudy day  407 

(November 12th, 2012). 408 

 409 

Figs. 3 – 8 show the measured DC output current of the three PV systems, compared 410 

with the simulation results obtained with the two PV array models using the extracted set of 411 

parameters estimated by the five optimization algorithms considered in this study.  412 

As it can be seen in the figures, a good agreement is always found between the 413 

measured data and the SAPM simulation curves, while the curves obtained with the 5PM 414 

are less close to the real monitored curve. Moreover, it is found that a better agreement 415 

between real and simulated curve is always reached in clear sky days rather than in cloudy 416 

days. It is qualitatively noted that the worse the weather conditions, the more difficult is for 417 

the models to approximate real data as expected. 418 

By comparing the optimization algorithms used for the estimation of the unknown 419 

parameters of the two PV array models, it can be clearly seen that the metaheuristic 420 

algorithms provide good results compared to the LMA in all weather conditions and for 421 

both PV models.  422 
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These considerations are confirmed by values of errors calculated for the two PV 423 

models given in Table 7 and 8. The values quantify discrepancies between measured data 424 

(DC output current, voltage and power) versus simulated ones predicted by the two PV 425 

array models using the five algorithms (LMA, GA, PSO, DE and ABC). Two metrics were 426 

used: The Route Mean Square Error (RMSE) [32] and the Normalized Mean Absolute 427 

Error (NMAE) [10]. For the error calculation an irradiance filter was applied to the data set. 428 

Only the data corresponding to irradiance values above 200 W/m2 were considered, since 429 

the inverters start working in these conditions. Below this irradiance value, the PV systems 430 

are in an open circuit configuration, and the resulting values are misleading. 431 

The DC output power of the PV array is obtained as a product of current and voltage in 432 

both real and simulated results. 433 

 434 

PV system Day Weather Error [%] 
LMA GA PSO DE ABC 

I V P I V P I V P I V P I V P 

1 

09/12/2013 clear sky 
RMSE 0.64 2.09 1.72 0.64 1.26 1.18 0.64 0.84 1.00 0.65 0.84 0.99 0.65 0.71 063 
NMAE 0.27 1.43 0.77 0.25 0.97 0.58 0.26 0.62 0.45 0.26 0.62 0.45 0.27 0.48 0.25 

18/12/2013 semi cloudy 
RMSE 2.91 4.09 2.87 2.51 2.98 2.68 2.50 2.98 2.63 2.50 2.90 2.59 2.50 2.89 2.59 
NMAE 1.29 2.11 1.12 0.86 1.83 0.97 0.83 1.84 0.94 0.83 1.70 0.89 0.83 1.69 0.91 

20/12/2013 cloudy 
RMSE 6.37 5.06 6.02 6.41 4.90 5.84 6.36 4.91 5.77 6.35 4.87 5.79 6.37 4.91 5.78 
NMAE 2.43 3.51 2.40 2.54 3.34 2.35 2.44 3.34 2.26 2.44 3.32 2.27 2.44 3.35 2.26 

2 

05/07/2012 clear sky 
RMSE 1.33 1.42 1.55 1.29 0.82 1.14 1.31 0.81 1.14 1.29 1.02 1.06 1.27 0.84 1.03 
NMAE 0.46 1.48 0.78 0.53 1.23 0.70 0.47 1.29 0.58 0.51 1.73 0.55 0.53 1.47 0.52 

12/05/2012 semi cloudy 
RMSE 1.54 1.13 1.55 1.52 0.98 1.53 1.52 1.11 1.41 1.75 1.49 1.36 1.53 1.11 1.32 
NMAE 0.62 1.67 0.88 0.59 1.50 0.88 0.59 1.90 0.87 0.75 2.68 0.85 0.61 1.89 0.83 

12/11/2012 cloudy 
RMSE 2.75 3.50 3.51 2.78 3.32 3.17 2.76 3.22 3.15 2.76 3.22 3.15 2.76 3.31 3.13 
NMAE 0.70 5.91 1.84 0.68 4.59 1.65 0.69 4.32 1.62 0.68 4.31 1.61 0.69 4.57 1.61 

3 

07/08/2011 clear sky RMSE 1.37 0.92 1.43 1.04 0.95 1.17 1.04 0.88 1.10 1.04 0.77 0.99 1.04 0.76 0.98 
NMAE 1.25 0.56 0.78 0.90 0.64 0.66 0.90 0.56 0.59 0.91 0.64 0.51 0.90 0.61 0.48 

12/05/2012 semi cloudy RMSE 1.91 0.89 2.20 1.23 0.81 1.10 1.24 0.90 0.93 1.24 0.82 1.07 1.23 0.89 0.91 
NMAE 1.70 0.81 1.07 1.05 0.68 0.49 1.08 0.82 0.43 1.07 0.68 0.48 1.07 0.81 0.41 

12/11/2012 cloudy RMSE 2.67 2.39 4.00 2.40 1.87 2.16 2.42 1.62 1.98 2.42 1.68 2.07 2.25 1.62 1.42 
NMAE 2.12 3.27 1.86 1.75 2.34 1.09 1.79 2.04 0.66 1.75 2.08 1.06 1.75 2.04 1.01 

Table 7. Calculated RMSE (%) and NMAE (%) for the SAPM. 435 

 436 

 437 

 438 
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PV system Day Weather Error 
[%] 

LMA GA PSO DE ABC 
I V P I V P I V P I V P I V P 

1 

09/12/2013 clear sky 
RMSE 1.78 1.39 2.29 1.76 1.39 2.23 1.75 1.39 2.22 1.75 1.38 2.21 1.75 1.38 2.21 

NMAE 0.89 0.98 1.05 0.88 0.98 1.05 0.88 0.98 1.05 0.87 0.97 1.04 0.87 0.96 1.04 

18/12/2013 semi cloudy 
RMSE 3.42 3.93 4.96 3.37 3.84 4.88 3.37 3.80 4.05 2.84 3.82 3.72 2.55 4.84 3.69 

NMAE 1.38 2.48 2.19 1.35 2.48 2.13 1.34 2.45 1.94 1.28 2.46 1.80 0.97 3.08 1.74 

20/12/2013 cloudy 
RMSE 10.34 4.92 13.55 9.34 5.80 11.23 7.73 4.87 6.96 6.41 6.29 7.79 5.60 4.91 6.60 

NMAE 4.37 3.63 5.30 4.30 3.51 4.12 3.63 3.32 2.91 3.17 4.76 2.99 2.14 3.62 2.67 

2 

05/07/2012 clear sky 
RMSE 1.35 2.07 2.43 1.34 2.07 2.42 1.34 2.06 2.41 1.34 2.06 2.40 1.34 1.38 2.09 

NMAE 0.48 3.03 1.59 0.48 3.02 1.59 0.48 3.03 1.59 0.47 3.01 1.57 0.47 2.47 1.45 

12/05/2012 semi cloudy 
RMSE 1.60 2.98 3.51 1.60 2.92 3.41 1.60 2.28 3.13 1.60 2.27 3.13 1.61 2.12 3.07 

NMAE 0.64 5.40 2.50 0.65 5.24 2.42 0.65 3.71 2.10 0.65 3.70 2.10 0.64 3.72 2.08 

12/11/2012 cloudy 
RMSE 4.13 3.24 5.01 3.16 3.25 4.86 2.44 2.98 3.98 3.70 3.24 4.60 3.50 3.14 3.64 

NMAE 1.53 5.83 3.87 1.15 5.83 3.17 0.87 5.09 2.54 1.27 5.83 2.72 1.16 5.29 2.06 

3 

07/08/2011 clear sky 
RMSE 1.91 2.44 3.32 1.90 2.43 3.31 1.91 2.16 1.57 1.83 1.92 2.12 0.85 2.31 1.28 
NMAE 1.61 1.77 1.71 1.60 1.75 1.73 1.61 1.59 1.69 1.09 0.89 1.01 0.79 1.88 0.67 

12/05/2012 semi cloudy 
RMSE 1.66 2.68 3.53 1.72 2.09 3.36 1.67 1.97 3.34 1.65 1.95 3.17 1.66 1.95 3.02 
NMAE 1.51 2.49 1.78 1.52 1.74 1.67 1.52 1.76 1.66 1.51 1.74 1.60 1.51 1.75 1.53 

12/11/2012 cloudy 
RMSE 5.36 5.10 6.99 3.44 5.10 4.84 2.53 2.36 2.63 2.12 2.52 1.89 2.09 2.53 1.78 
NMAE 4.25 3.22 3.29 2.76 3.21 2.44 1.89 2.18 1.42 1.60 2.24 0.91 1.51 2.26 0.80 

Table 8. Calculated RMSE (%) and NMAE (%) for the 5PM. 439 

 440 

As a general trend, the errors obtained in the case of SAPM model were smaller than in 441 

the case of the 5PM for all PV systems and weather conditions regardless of the solar cell 442 

technology. Similarly, for each PV system the error decreases with improving weather 443 

conditions: The error for clear sky day was smaller than for semi-cloudy day, while for 444 

cloudy day the largest discrepancy was always found, as anticipated from the inspection of 445 

Figs. 3 – 8. 446 

The maximum values of RMSE and NMAE obtained for the output power using the 447 

SAPM model were 6.02 % and 2.40 % respectively. These values were provided by 448 

simulations based on LMA of the PV system 1 with c-Si PV modules in a cloudy day. 449 

Nevertheless, for the PV systems 2 and 3 based on different PV module technologies, the 450 

RMSE and NMAE errors obtained for DC output power were below 4 % and 1.86 %. 451 

On the other hand, in the simulations based on the 5PM the maximum values of RMSE 452 

and NMAE obtained regarding the DC output power were increased up to 13.55 % and 453 
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5.30 % for PV system 1 based on LMA. However, for the PV systems 2 and 3, even based 454 

on the LMA, the obtained values of RMSE and NMAE were 6.99 % and 3.29 %. 455 

The accuracy of the PV module models in reproducing the behavior of the PV array 456 

under outdoor conditions of solar irradiance and cell temperature depends also on the used 457 

methods for parameters estimation. As it can be seen from Tables 7 and 8, the metaheuristic 458 

algorithms provide lower values of RMSE and NMAE than the numerical traditional 459 

method based on the LMA.  460 

Considering the SAPM, the passage from using the LMA to GA as a main algorithm of 461 

the parameter extraction, reduces the maximum values of RMSE and NMAE of the DC 462 

output power to 5.84 % and 2.35 % taking into account all the PV systems and weather 463 

conditions. This passage from LMA to GA also affects the accuracy of the 5PM, where the 464 

maximum values of RMSE and NMAE of the DC output power were reduced to 11.23 % 465 

and 4.12 % respectively. 466 

The best accuracy of simulations using the SAPM was obtained by using the ABC 467 

algorithm for the estimation of the unknown parameters. The greatest RMSE and NMAE 468 

values obtained regarding the DC power of the PV system 1 were 5.78 % and 2.26 %. 469 

Otherwise for PV system 2 the errors values don’t exceed 3.13 % and 1.61 %, and for PV 470 

system 3 the best accuracy is achieved, whatever the weather condition, the RMSE and 471 

NMAE are below 1.43 % and 1.02 % respectively. 472 

On the other hand, for the 5PM, the best forecasting of the DC output power of the PV 473 

systems is also obtained from simulations using the estimated parameters provided by the 474 

ABC algorithm. Considering the worst weather condition, the RMSE and NMAE values 475 

related to DC output power obtained for the PV system 1 are 6.6 % and 2.67 %. However, 476 

for the PV systems 2 and 3 the errors values remain below 3.65 % and 2.07%. 477 
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Finally, regarding the DC output current, the highest values of RMSE obtained in clear 478 

sky and semi cloudy day, are below 2.91% in case of SAPM and 3.42% in case of 5PM. In 479 

order to make the obtained results more comprehensive, other machines learning used for 480 

modeling the DC output current of PV arrays were considered. Ameen et al [13] reported 481 

RMSE of 5.67% in a work based on artificial neural networks for forecasting the output 482 

current of a PV array. Ibrahim et al [38] published a novel machine learning consisting in 483 

using random forests technique for modeling the output current of a PV array, the RMSE 484 

provided is of 2.74%.  485 

 486 

 487 

6. Conclusions  488 

Two PV array models have been compared in this work for simulation purposes: The 489 

5PM and the SAPM. These models were applied to reproduce the behavior of three grid 490 

connected PV systems with different topologies and solar cell technologies. The models 491 

parameters were obtained from daily monitored profiles of G, Tc, and output DC current 492 

and voltage of the PV arrays using five different optimization algorithms (LMA, GA, PSO, 493 

DE and ABC). 494 

The metaheuristic algorithms are more efficient than the traditional LMA algorithm in 495 

estimating the unknown parameters of both PV module models, essentially in bad weather 496 

conditions. The GA provides high values of RMSE compared to the other bio-inspired 497 

algorithms. The ABC algorithm is slightly more accurate than the DE and PSO algorithms. 498 

The 5PM allowed simulating the dynamic behavior of the PV systems included in this 499 

study with an acceptable accuracy degree for applications of supervision and forecasting of 500 

energy production. The RMSE obtained in the comparison of the daily evolution of main 501 
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electrical parameters of the PV systems is below 8 % in all cases except the case of using 502 

LMA and GA algorithms to simulate the c-Si PV module working in cloudy conditions. 503 

This effect can be explained taking into account that the values of series, Rs, and shunt, Rsh, 504 

resistances forming part of the model parameter set vary with the irradiance, whereas both 505 

parameters have been assumed constant in the performed simulations. An advantage of the 506 

5PM lies in the physical meaning of the set of model parameters that provides relevant 507 

information about the PV array and allows an easy comparison between different PV 508 

modules. 509 

On the other hand, the SAPM model is an empirical model including a set of model 510 

parameters in which some of them have little physical meaning. Nevertheless, the SAPM 511 

model showed a high accuracy degree in the simulation of the PV systems behavior 512 

independently of the solar cell technology. The RMSE values obtained for the DC output 513 

power of the PV arrays in the simulations stayed below 6.05 % for the PV system 1 even in 514 

cloudy days. For the PV system 2 this error dropped below 3.52 %. However, for the PV 515 

system 3 the RMSE values are below 4 % even in cloudy days and case of using LMA. The 516 

SAPM model demonstrated best potential for the simulation of PV systems in real 517 

operating conditions; this holds even when using thin film technologies of PV modules. 518 
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