3,093 research outputs found

    Probabilistic generation of weather forecast texts

    Get PDF

    Generating Weather Forecast Texts with Case Based Reasoning

    Full text link
    Several techniques have been used to generate weather forecast texts. In this paper, case based reasoning (CBR) is proposed for weather forecast text generation because similar weather conditions occur over time and should have similar forecast texts. CBR-METEO, a system for generating weather forecast texts was developed using a generic framework (jCOLIBRI) which provides modules for the standard components of the CBR architecture. The advantage in a CBR approach is that systems can be built in minimal time with far less human effort after initial consultation with experts. The approach depends heavily on the goodness of the retrieval and revision components of the CBR process. We evaluated CBRMETEO with NIST, an automated metric which has been shown to correlate well with human judgements for this domain. The system shows comparable performance with other NLG systems that perform the same task.Comment: 6 page

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    AEMIX: semantic verification of weather forecasts on the web

    Get PDF
    Ponencia presentada en: 12th International Conference on Web Information Systems and Technologies celebrada en Roma del 23 al 25 de abril de 2016The main objectives of a meteorological service are the development, implementation and delivery of weather forecasts. Weather predictions are broadcasted to society through different channels, i.e. newspaper, television, radio, etc. Today, the use of theWeb through personal computers and mobile devices stands out. The forecasts, which can be presented in numerical format, in charts, or in written natural language, have a certain margin of error. Providing automatic tools able to assess the precision of predictions allows to improve these forecasts, quantify the degree of success depending on certain variables (geographic areas, weather conditions, time of year, etc.), and focus future work on areas for improvement that increase such accuracy. Despite technological advances, the task of verifying forecasts written in natural language is still performed manually by people in many cases, which is expensive, time-consuming, and subjected to human errors. On the other hand, weather forecasts usually follow several conventions in both structure and use of language, which, while not completely formal, can be exploited to increase the quality of the verification. In this paper, we describe a methodology to quantify the accuracy of weather forecasts posted on the Web and based on natural language. This work obtains relevant information from weather forecasts by using ontologies to capture and take advantage of the structure and language conventions. This approach is implemented in a framework that allows to address different types of predictions with minimal effort. Experimental results with real data are promising, and most importantly, they allow direct use in a real meteorological service.This research work has been supported by the CICYT project TIN2013-46238-C4-4-R, and DGAFS
    • 

    corecore