151 research outputs found

    Computer aided diagnosis system using dermatoscopical image

    Get PDF
    Computer Aided Diagnosis (CAD) systems for melanoma detection aim to mirror the expert dermatologist decision when watching a dermoscopic or clinical image. Computer Vision techniques, which can be based on expert knowledge or not, are used to characterize the lesion image. This information is delivered to a machine learning algorithm, which gives a diagnosis suggestion as an output. This research is included into this field, and addresses the objective of implementing a complete CAD system using ‘state of the art’ descriptors and dermoscopy images as input. Some of them are based on expert knowledge and others are typical in a wide variety of problems. Images are initially transformed into oRGB, a perceptual color space, looking for both enhancing the information that images provide and giving human perception to machine algorithms. Feature selection is also performed to find features that really contribute to discriminate between benign and malignant pigmented skin lesions (PSL). The problem of robust model fitting versus statistically significant system evaluation is critical when working with small datasets, which is indeed the case. This topic is not generally considered in works related to PSLs. Consequently, a method that optimizes the compromise between these two goals is proposed, giving non-overfitted models and statistically significant measures of performance. In this manner, different systems can be compared in a fairer way. A database which enjoys wide international acceptance among dermatologists is used for the experiments.Ingeniería de Sistemas Audiovisuale

    Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis

    Get PDF
    We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. © 2016 Optical Society of America.1

    Computer Aided Diagnostic Support System for Skin cancer: Review of techniques and algorithms

    Get PDF
    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique’s performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided

    Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence

    Get PDF

    Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms

    Full text link
    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. © 2013 Ammara Masood and Adel Ali Al-Jumaily

    Quantitative multispectral imaging differentiates melanoma from seborrheic keratosis

    Get PDF
    Funding Information: This work was supported by grants from the EFOP-3.6.3-VEKOP-16-2017-00009 (S.B., P.A.) EFOP-3.6.3-VEKOP-16 (S.B.) the ÚNKP-20-4-II-SE-7 (N.K.) and ÚNKP-20-3-I-SE-24 (S.Z.) New National Excellence Program of the Ministry For Innovation and Technology from the source of the National Research, Development and Innovation Fund of Hungary and the European Regional Development Fund projects “Time-resolved autofluorescence methodology for non-invasive skin cancer diagnostics” [No. 1.1.1.2/16/I/001, agreement No. 1.1.1.2/VIAA/1/16/014 (A.L.)] and “Development and clinical validation of a novel cost effective multi-modal methodology for early diagnostics of skin cancers” [No. 1.1.1.2/16/I/001 agreement No. 1.1.1.2/VIAA/1/16/052 (I.L.)] and the National Research, Development and Innovation Office of Hungary—NKFIH (FK_131916, 2019 (Semmelweis University, M.M.)). Publisher Copyright: © 2021 by the authors.Melanoma is a melanocytic tumor that is responsible for the most skin cancer-related deaths. By contrast, seborrheic keratosis (SK) is a very common benign lesion with a clinical picture that may resemble melanoma. We used a multispectral imaging device to distinguish these two entities, with the use of autofluorescence imaging with 405 nm and diffuse reflectance imaging with 525 and 660 narrow-band LED illumination. We analyzed intensity descriptors of the acquired images. These included ratios of intensity values of different channels, standard deviation and minimum/maximum values of intensity of the lesions. The pattern of the lesions was also assessed with the use of particle analysis. We found significantly higher intensity values in SKs compared with melanoma, especially with the use of the autofluorescence channel. Moreover, we found a significantly higher number of particles with high fluorescence in SKs. We created a parameter, the SK index, using these values to differentiate melanoma from SK with a sensitivity of 91.9% and specificity of 57.0%. In conclusion, this imaging technique is potentially applicable to distinguish melanoma from SK based on the analysis of various quantitative parameters. For this application, multispectral imaging could be used as a screening tool by general physicians and non-experts in the everyday practice.publishersversionPeer reviewe

    Dermatoscopy

    Get PDF
    This book is a collection of chapters on dermatoscopy, which is a fast, easy-to-learn, low-cost, and non-invasive diagnostic method utilizing the Rayleigh scattering phenomenon to visualize epidermal and subepidermal structures. Dermatoscopy has become increasingly popular for allowing visualization of structures that are impossible to see with the naked eye. Its use provides insight into the biological potential of skin lesions, enabling efficient management and follow-up. The book focuses on the features of some of the most common skin neoplasms, such as combined nevi, as well as those that are more challenging to assess, such as pigmented lesions of the eyelid margins. It also provides novel insights into the role of dermatoscopy in palmoplantar dermatoses and discusses precautions in dermatoscopy during the SARS-CoV2 pandemic

    Fuzzy Color Clustering for Melanoma Diagnosis in Dermoscopy Images

    Get PDF
    A fuzzy logic-based color histogram analysis technique is presented for discriminating benign skin lesions from malignant melanomas in dermoscopy images. The approach extends previous research for utilizing a fuzzy set for skin lesion color for a specified class of skin lesions, using alpha-cut and support set cardinality for quantifying a fuzzy ratio skin lesion color feature. Skin lesion discrimination results are reported for the fuzzy clustering ratio over different regions of the lesion over a data set of 517 dermoscopy images consisting of 175 invasive melanomas and 342 benign lesions. Experimental results show that the fuzzy clustering ratio applied over an eight-connected neighborhood on the outer 25% of the skin lesion with an alpha-cut of 0.08 can recognize 92.6% of melanomas with approximately 13.5% false positive lesions. These results show the critical importance of colors in the lesion periphery. Our fuzzy logic-based description of lesion colors offers relevance to clinical descriptions of malignant melanoma
    corecore