7 research outputs found

    Dynamical models and machine learning for supervised segmentation

    Get PDF
    This thesis is concerned with the problem of how to outline regions of interest in medical images, when the boundaries are weak or ambiguous and the region shapes are irregular. The focus on machine learning and interactivity leads to a common theme of the need to balance conflicting requirements. First, any machine learning method must strike a balance between how much it can learn and how well it generalises. Second, interactive methods must balance minimal user demand with maximal user control. To address the problem of weak boundaries,methods of supervised texture classification are investigated that do not use explicit texture features. These methods enable prior knowledge about the image to benefit any segmentation framework. A chosen dynamic contour model, based on probabilistic boundary tracking, combines these image priors with efficient modes of interaction. We show the benefits of the texture classifiers over intensity and gradient-based image models, in both classification and boundary extraction. To address the problem of irregular region shape, we devise a new type of statistical shape model (SSM) that does not use explicit boundary features or assume high-level similarity between region shapes. First, the models are used for shape discrimination, to constrain any segmentation framework by way of regularisation. Second, the SSMs are used for shape generation, allowing probabilistic segmentation frameworks to draw shapes from a prior distribution. The generative models also include novel methods to constrain shape generation according to information from both the image and user interactions. The shape models are first evaluated in terms of discrimination capability, and shown to out-perform other shape descriptors. Experiments also show that the shape models can benefit a standard type of segmentation algorithm by providing shape regularisers. We finally show how to exploit the shape models in supervised segmentation frameworks, and evaluate their benefits in user trials

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    Temporal refinement of 3D CNN semantic segmentations on 4D time-series of undersampled tomograms using hidden Markov models

    Get PDF
    Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is much more strenuous than in 2D images. For 4D time-series tomograms, this is usually handled by segmenting the constituent tomograms independently through time with 3D convolutional neural networks. Inter-volume information is therefore not utilized, potentially leading to temporal incoherence. In this paper, we attempt to resolve this by proposing two hidden Markov model variants that refine 4D segmentation labels made by 3D convolutional neural networks working on each time point. Our models utilize not only inter-volume information, but also the prediction confidence generated by the 3D segmentation convolutional neural networks themselves. To the best of our knowledge, this is the first attempt to refine 4D segmentations made by 3D convolutional neural networks using hidden Markov models. During experiments we test our models, qualitatively, quantitatively and behaviourally, using prespecified segmentations. We demonstrate in the domain of time series tomograms which are typically undersampled to allow more frequent capture; a particularly challenging problem. Finally, our dataset and code is publicly available

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    corecore