
Dynamical Models

and

Machine Learning

for

Supervised Segmentation

Tony Shepherd

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

September 15, 2009



2

To Anna



Abstract

This thesis is concerned with the problem of how to outline regions of interest in medical images, when

the boundaries are weak or ambiguous and the region shapes are irregular. The focus on machine learn-

ing and interactivity leads to a common theme of the need to balance conflicting requirements. First,

any machine learning method must strike a balance between how much it can learn and how well it

generalises. Second, interactive methods must balance minimal user demand with maximal user control.

To address the problem of weak boundaries, methods of supervised texture classification are investi-

gated that do not use explicit texture features. These methods enable prior knowledge about the image to

benefit any segmentation framework. A chosen dynamic contour model, based on probabilistic boundary

tracking, combines these image priors with efficient modes of interaction. We show the benefits of the

texture classifiers over intensity and gradient-based image models, in both classification and boundary

extraction.

To address the problem of irregular region shape, we devise anew type of statistical shape model

(SSM) that does not use explicit boundary features or assumehigh-level similarity between region

shapes. First, the models are used for shape discrimination, to constrain any segmentation framework

by way of regularisation. Second, the SSMs are used for shapegeneration, allowing probabilistic seg-

mentation frameworks to draw shapes from a prior distribution. The generative models also include

novel methods to constrain shape generation according to information from both the image and user

interactions.

The shape models are first evaluated in terms of discrimination capability, and shown to out-perform

other shape descriptors. Experiments also show that the shape models can benefit a standard type of

segmentation algorithm by providing shape regularisers. We finally show how to exploit the shape

models in supervised segmentation frameworks, and evaluate their benefits in user trials.
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Chapter 1

Introduction

Image segmentation identifies regions and/or boundaries inan image to turn pixel intensities into seman-

tic information. This aids interpretation of an image and isnecessary as a pre-processing step in many

image analysis techniques. Segmentation is a fundamental challenge to image processing, encompass-

ing numerous approaches, goals and requirements dependingon the application. For many applications,

segmentation is challenged by poor image quality and variable shape of the region of interest (ROI). This

is true of many medical imaging tasks, where images are typically monospectral, low contrast and noisy.

Along with these difficulties, medical tasks such as diseasediagnosis and monitoring, treatment planning

and image guided surgery have high demands in terms of accuracy, precision and generalisation.

Automatic segmentation often fails to generalise beyond specific applications and strict experimen-

tal conditions. As a result, and due to the user’s desire for control, manual segmentation is commonplace.

However, fully manual methods are labour intensive and the results are prone to variability. Our aim is

to balance automation with user control by finding new ways tolearn from the texture and shape of

pre-segmented regions, along with the efficient use of on-line supervision in a segmentation algorithm.

1.1 Background

Segmentation has received various definitions, influenced by its many applications. A standard image

processing text states that segmentation ’subdivides an image into its constituent regions or objects’

[1]. Definitions in the computer vision literature include ’partitioning of a given image into a number

of homogeneous regions according to a given critical’ [2], while the medical image analysis literature

includes definitions such as ’identification and quantitation of tissues and organs’ [3]. Similarly, there

are numerous approaches to segmentation, depending on the application and the form of results sought.

1.1.1 Pros and cons of fully automatic and manual methods

To understand the motivation for semiautomatic methods, itis useful to look at the two extremes of fully

automatic and fully manual methods. The project can then strive to maintain the benefits, and suppress

the disadvantages, of each.

Fully automatic methods can produce the same result for repeated segmentations. The removal of

variability can make automatic methods more reliable for use in longitudinal studies, but places more

demand on the results themselves. In theory, the results of automatic methods are not affected by the
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user. However, in practice the unique segmentation presented by automatic procedures often requires

post editing before the user is satisfied with the results. Automatic methods often compensate for the

lack of user information with a relatively high amount of pre-processing such as classification of image

texture or multispectral data. Pre-processing often imposes demands upon the data, such as multispectral

acquisitions, calibrated dynamic ranges, isotropy or alighment in a standardised coordinate system. The

increased pre-processing can also lead to the loss or smoothing of information and impractical compu-

tation times.

The fully manual method of freehand boundary delineation requires maximal user input, leading

to three main disadvantages. First, the inevitable subjectivity of a single user leads to inter-operator

variability. Second, human imperfection and the ’user fatigue’ arising for longer tasks leads to intra-

operator variability when the same user repeats a segmentation task on the same region. Third, the

manual approach introduces demands on an operator, as they must have expertise in the segmentation

task and be able to spare the time to perform manual segmentation.

1.1.2 Deformable contour models

Methods of segmentation can be divided into thresholding, region-based, boundary-based and hybrid

[4]. This project focuses on boundary-based methods, whichmodel a region outline as a 2-dimensional

parametric or geometric contour. This general family of methods will be referred to asdeformable

contour models(DCMs) and, while their approaches vary widely in the literature, their frameworks share

a common set of components listed in Table 1.1. These components are separated to aid discussions

throughout this thesis, but we note that the list is not absolute and components are naturally linked. For

example a shape model (C3) might naturally yield a measure of agreement between a contour model

and shape class, which can be used in an objective function (C4). Certain sections of this thesis refer

explicitly to components in table 1.1 (with labelsC#) to help place certain topics in the context of a

segmentation framework.

1.1.3 Boundary ambiguity and variable shape

This project addresses segmentation tasks confounded by boundary ambiguity and variable shape. These

tasks pose particular challenges to a segmentation framework as the image model (C2) should identify

boundaries and a shape model (C3) generally requires some predictable features of the region’s shape.

Boundary ambiguity occurs due to weak intensity gradients,the presence of texture and ’clutter’,

and similarity of intensity histograms between ROI and surrounding data. These factors are common

in medical imaging applications because of physical limitations of the imaging technology and the fact

that a region, which is distinguished from its surroundingsby its pathology, function, or other semantic

attribute, may not be distinct in its signal response. An example of boundary ambiguity is the outline of

a liver tumour in a CT slice such as that in figure 1.1. The tumour in (a) is hardly visible and the edge

map in (c) shows that tumour edges have low gradient magnitude and are barely discernible from nearby

clutter.

Variable shape arises, for example, when shapes belonging to the same class do not share global

shape properties such as spatial correspondence between boundary points. Figure 1.2 illustrates variable
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Label Component Description Examples in the literature

C1 Contour rep-

resentation

Choice of parametrisation and co-

ordinate system. Discrete or con-

tinuous representation of 1-D ob-

ject.

Ordered list ofN pixel coordi-

nates along a discretised boundary

[5] or zero-level set of a continu-

ous function [6].

C2 Image model Interpretation of pixel informa-

tion. Often uses supervised clas-

sification.

Boundary measures derived from

intensity gradient, eg ’Gradient

Vector Flow’ (GVF) [7]. Region-

based intensity or texture classifi-

cation [8].

C3 Shape model Parametrised physical or statisti-

cal model of high- or low-level

shape information. Also used

for shape classification and object

recognition.

Local smoothness, ’tension’ and

’stiffness’ [5]. Principal Compo-

nent Analysis based on ’Point Dis-

tribution Model’ (PDM) [9]. Geo-

metrical descriptors [10].

C4 Objective

function

Probability or ’energy’ associated

with a contour, based on its shape

and position in the image model.

Often combinesC2 andC3.

Weighted sum of internal ’energy’

and proximity to high gradient

magnitudes in the image [5].

C5 Deformation

mechanism

Local or global perturbations of

a candidate contour. May use or

conform to shape a model.

Stochastic sampling of feasible

boundary sections [11], moving

contour points throughout a search

window [12].

C6 Optimisation

scheme

Fitting a contour to a region

boundary by maximising a prob-

ability or minimising an energy

functional (C4).

Variational methods [5], greedy

algorithm [12] or Monte Carlo

methods [2].

C7 Modes of in-

teraction

Information provided by mouse

cursor in initialisation, supervi-

sion and post editing.

Locating ’volcano’ points for a

contour model to avoid [5]. Mark-

ing example data to include inside

a region [13].

Table 1.1: Components of a deformable contour segmentationframework.

shape along with a counter example of regions with correspondence points. In (a) a class of shapes,

healthy vertebra, exhibits correspondence between the recurring boundary feature (spinous process)

present in all examples of this class. (b) shows a different class of shapes, namely multiple sclero-

sis lesions, which do not share obvious global properties. Many medical regions of interest have such
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(a) (b) (c) (d)

Figure 1.1: (a) Cropped slice from an axial CT image showing atumour region in the liver. (b) The same

image after contrast enhancement. (c) The boundary of the tumour (green), delineated manually by an

expert. (d) Gradient magnitude of (a), shown in grey scale from black (zero) to white (maximum).

(a) (b)

Figure 1.2: (a) Cropped slices from two separate axial CT images, each showing a cross-section of a

human vertebra. Arrows indicate thespinous process, a recurring boundary feature. (b) Cropped slices

from mid-axial regions in MRI scans of two separate human brains. Outlines (green) show a multiple

sclerosis lesion in each case, as delineated by an expert rater.

variable shape due to the complex boilogical processes thatform them.

1.1.4 Medical and biological imaging applications

Segmentation is necessary as a pre-processing step in medical image analysis techniques such as surgery

planning, diagnosis, image registration and disease monitoring to mention but a few. This work uses

data from multiple sclerosis lesion and liver tumour regions. These ROIs are often segmented manually

or semiautomatically, as combinations of boundary ambiguity and shape variability make automation

difficult.

Multiple sclerosis is a chronic disease that causes the destruction of myelin and loss of axons

throughout the central nervous system. Demyelination leads to functional and sensory impairment but

is reversible. Axonal loss, while less common, can cause permanent neurological disorder. Magnetic

Resonance (MR) is the predominant imaging tool used forin vivo studies of MS. T2- and PD-weighted

MR images are commonly used to detect and measure the white matter lesions (WML) that characterise

the disease. Precise segmentation or delineation of lesionboundaries leads to measures of lesion load

(total volume) and morphological information. Segmentation therefore aids studies of the disease itself,

and enables more informative monitoring of changes over time, for example in response to drugs in
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clinical trials. The main challenge to the future of conventional MR in MS studies is to provide better

discrimination of lesions in images [14].

MS lesions have a wide variety of shapes and sizes. The morphology and internal structure of

lesions vary over time due to the complex histology of the disease [15]. A single brain can also contain

multiple lesions at different stages of their evolution [16]. For a given stage in the disease, the pathology

of a lesion also varies between patients [17]. MR images exhibit spatial intensity non-uniformity, due to

magnetic field inhomogeneities within the field of view, leading to apparent differences between lesions

in different areas of the brain. Scanner inconsistencies can also cause the same lesion in the same patient

to be presented differently in successive scans using the same machine [18].

In practice, MS lesion contouring routinely calls for manual input [19, 20, 21]. At London’s Institute

of Neurology (IoN), four people who routinely segment lesions reported that40% to 60% of automated

contouring using the tool in [22] required subsequent manual editing, of which roughly half required

complete replacement with a freehand contour [23, 24, 25, 26].

Liver tumours are among the most common tumours affecting adults, as the liver is the largest inter-

nal organ of the human body and its risk from abnormal cell growth is increased by lifestyle factors such

as alcohol consumption. Liver tumours also occur metastatically in relation to other common diseases

such as colorectal cancer [27]. Metastatic liver cancer hasa median survival rate of less than one year if

left untreated [28]. Surgical resection is the most common form of treatment for metastatic liver tumours.

This places a high demand on improved practices in image guided surgery, as reduced resection margins

leads to more patients eligible for the treatment and highersuccess rates. Radiotherapy is also used to

treat liver cancer (malignant tumours), which in turn demands accurate localisation of the radiation dose.

Surgery planning, guidance and radiotherapy all benefit from accurate tumour segmentation in medical

images.

Livers are commonly studied using abdominal X-ray CT imaging. However, tumours do not appear

with distinct intensity or texture characteristics and their boundaries are difficult to see even by the human

eye. Liver tumours pose one of the biggest challenges to the fields of tissue classification and boundary

extraction in medical image analysis [29].

To emphasise the wider applicability of the ideas presentedin this thesis, we briefly mention here

some other areas that our investigations do not consider, but where manual segmentation in 2-dimensions

is commonplace. First, biomedical research is also seeing an increase in live cell imaging thanks to ad-

vances in phase-contrast microscopy [30]. This imaging modality produces 2-dimensional data, wherein

the cell boundaries are discontinuous, have badly localised edges spanning several pixels, and are not

known to benefit from existing shape models [31].

In another area, novel neuroimaging techniques can distinguish individual synaptic structures such

as axons using data from state-of-the-art scanning electron microscopy [32]. The technology can image

tissue volumes with voxel dimensions of tens of nanometers,wherein the segmentation of axons would

allow the reconstruction of complete neuronal structures at a cellular level. For this application, boundary

ambiguity results from the presence of ’clutter’ and the proximity of neighbouring axons. State-of-the-
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art segmentation uses region-based ’graph-cuts’ [33] or geometric active contours [34]. However, in both

approaches, the boundary ambiguity problem leads to errorsthat are rectified by post editing, which is

fully manual in the case of [34]. Also, neither this nor the graph-cut approach of [33] use prior shape

models and in the latter case, the algorithm does not readilyincorporate shape priors if such knowledge

were available

Alzheimer’s disease, the most common type of dementia, is another application area calling for im-

proved supervised segmentation. Hippocampal segmentation in MRI neuroimaging plays an important

role in the diagnosis, monitoring and studying of the disease. Hippocampi can be seen to shrink over

time, serving as indicators of brain atrophy, or loss of greymatter volume, associated with the disease

[35]. At London’s Institute of Neurology (IoN), hippocampal segmentation uses the software in [36].

Depending on the extent of atrophy, a single hippocampal segmentation can take an experienced user up

to 45 minutes [37].

1.2 Problem Statement
This project focuses on applications where the region of interest is poorly defined due to variable shape

and poor image quality. This applies to a family of medical ROIs referred to in [38], as

“ natural objects, such as those found in biomedical images,whose diversity and irregu-

larity of shape make them poorly represented in terms of fixedfeatures or form”.

For these applications we maintain that

Lemma 1: There is no single perfectresultof segmentation [39], and

Lemma 2: The perfectmethodof segmentation allows for different outcomes, where a human

expert ultimately dictates the result.

Adopting Lemma 2rules out fully automatic segmentation for our purposes. Weaim instead to

develop semiautomatic tools that increase user control, but work with the user to reduce the demand on

them. We adopt the requirements stated in [40, 41, 42], of

Requirement 1: providing as complete control as possible to the user, and

Requirement 2: minimising user involvement and total user time necessarywithout compromising

precision and accuracy.

The problem falls inside the broader area of region segmentation in medical imaging, where im-

provements for accuracy, user demand and repeatability arelikely to be made for years to come. Manual

or supervised segmentation is likely to survive even as automatic methods improve in the future. As

well as the need for user input implied byLemma 1andRequirement 2, research into fully automatic

segmentation depends in turn on manual/supervised practices in two ways. First, methods that use ma-

chine learning, such as statistical shape models or supervised texture classification, require training data

defined by expert observers. Second, methods of performanceevaluation often assume some form of

’ground truth’, which is ultimately created or approved by human experts.
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1.3 Approaches
Requirements1 and2 are conflicting and need to be balanced. We believe that the requirements are bal-

anced by efficient interaction and prior knowledge. To this end we develop dynamic contour models with

on-line supervision by novel modes of interaction along with off-line machine learning to maximise the

prior knowledge available. To address boundary ambiguity we develop a support vector machine (SVM)

classifier for use as a generalised image observation model.To address variable shape and further assist

the weak boundary problem we develop novel statistical shape models based on time series analysis.

We build the texture models into a boundary tracking framework and the shape models into various

novel closed contour DCMs. These segmentation frameworks introduce novel modes of interaction for

efficient run-time supervision.

1.4 Constraints
The focus on user interaction leads to three key constraintson this work. First, the study is mainly

concerned with 2-dimensional segmentation, but suggests 3-dimensional extensions. We justify this

constraint as follows:

• The aim is to semiautomate those scenarios mentioned in section 1.1.4, where manual delineation

is common practice. Semiautomatic methods ’do some of the work’ on behalf of the user, by

pre-empting or mimicking their actions. By viewing manual delineation as a starting point to be

improved by semiautomation, we constrain the method to the same, 2-dimensional domain.

• During a segmentation procedure, it is only practical to visualise a cross-section containing the

ROI at any one time. Although 3-dimensional surface rendering is possible in contemporary image

analysis software, this is used to display theresultsof segmentation.

• Common medical imaging modalities such as MRI and CT produceimages that are isotropic in 2-

dimensions, having different (lower) resolution in the third dimension. It is therefore often sensible

to segment the whole of a 3-dimensional region by the successive segmentation of cross-sections

in the 2-dimensional plane of higher resolution.

• A 2-dimensional framework allows more natural interactivity, as a user is most likely accustomed

to drawing 2-dimensional objects, either on computer displays or with pen and paper.

• For some applications such as MS lesion contouring, the physically thin ROIs might only appear

in one image plane or otherwise show little correspondence between slices.

The second constraint concerns multiple regions. Where more than one ROI exists in a given image,

a user only pays attention to one at a time. This excludes any need for simultaneous segmentation of

multiple regions. The third constraint concerns regiondetection. We assume that user-initialisation

removes the need for automatic detection of a region of interest.
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1.5 Contributions

This project advances the field of supervised segmentation by making the following key contributions.

SVM texture classification

We develop binary SVMs for generalised texture classification in applications suffering boundary

ambiguity. Experiments motivate the use of SVMs to provide observation models (C2).

Tracking ambiguous boundaries

We develop and test interactive boundary tracking methods for segmentation by boundary tracking.

The contributions are extensions to the ’jetstream’ algorithm in [43], to use texture classification in the

observation model (C2), adapted deformation mechanisms (C5) and novel modes of interaction (C7).

Time series shape models

We introduce nonlinear time series methods to the field of global shape modelling (C3). We demon-

strate using Langevin and Gaussian Process methods for modelling 2-dimensional regions. Experiments

motivate the use of nonlinear time series analysis for shapemodelling and their extension for use in

semiautomatic segmentation.

Time series segmentation frameworks

We introduce the use of novel time series models as shape priors in interactive segmentation by de-

formable contour models. We use radial time series contour representations (C1) and design frameworks

that exploit various techniques of Langevin and Gaussian Process models. Discriminative use of time

series models leads to shape regularisation by incorporating global shape information into probabilistic

objective functions. Generative use of time series models leads to new DCM frameworks that build the

shape information into the deformation mechanism (C5) and optimisation scheme (C6). We show how

to exploit user interactions in setting key model parameters upon initialisation as well as, in the case of

Gaussian Process models, conditioning the model during runtime. Experiments demonstrate the success

of the models in these various roles.

1.6 Overview

The remainder of this thesis is organised as follows. Chapters 2 to 5 form a review of relevant literature,

divided into methods with the general goals of segmentationand shape modelling (chapters 2 to 3) and

other background material used in the project (chapters 4 to5).

The review of segmentation and shape modelling methods includes both ’state-of-the-art’ and other

approaches that bare relevance to this work. Chapter 2 focuses on interactive boundary-based segmenta-

tion methods and highlights their application to tasks involving boundary ambiguity and variable shape.

Chapter 3 focuses on global shape models with a machine learning element, highlighting when these are

used in segmentation frameworks and their applicability tomedical tasks or ROIs with variable shape.

The review of background material covers ideas that this work draws from in its methodological
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approaches, including ideas that are not directly related to image segmentation. Chapter 4 describes

supervised classification with emphasis on kernel methods,which are treated as a machine learning

approach to the image model (C3) for use in segmentation. This topic is relevant to our methods of dis-

criminating regions and their boundaries in texture images. Chapter 5 reviews chosen topics in the field

of nonlinear time-series analysis, which are treated as a machine learning approach to shape modelling

(C3) for use in segmentation.

Chapters 6 to 8 report on the research undertaken. We use machine learning techniques to increase

prior knowledge from both image and shape to reduce the amount of on-line supervision necessary (Re-

quirement 2). We build these into segmentation frameworks along with novel modes of interaction that

work with the underlying segmentation algorithm or shape model to increase user control (Requirement

1). Chapter 6 investigates a machine learning classifier to identify boundaries for use as an image model

(C2) and incorporates modes of interaction (C7) added to the jetstream algorithm in [43]. Chapter 7

introduces nonlinear time series methods for statistical shape modelling. Chapter 8 introduces novel

segmentation frameworks based on the shape models, using both discriminative and generative methods.

All demonstrations and experiments use both synthetic and medical data. For texture classification

we use synthetic textures derived from images in the ’VisionTexture’ database [44] along with textures

present in MR images. For ROI segmentation we use both medical images and synthetic images, where

synthetic images allow more robust performance evaluationdue to the availability of ’ground truth’.

Synthetic texture images in chapter 6 recreate the boundaryambiguity problem by using textures that

share first- and second-order histogram statistics with medical ROIs and surrounding tissue. Synthetic

contrast images in chapter 8 recreate shape variability by using real tumour and lesion contours as region

boundaries. .



Chapter 2

Deformable Contours for Interactive

Segmentation

This chapter reviews current segmentation methods, payingparticular attention to methods that are ap-

plicable to the problem stated in section 1.2. According toLemma 2a user must be able to influence

segmentation, so this review emphasises interactive techniques. The need to balance requirements1 and

2, of maximal user control with minimal user demand, leads to an emphasis on where methods make

efficient use of interactions and incorporate machine learning. In addition, the review is weighted toward

methods belonging to the family ofdeformable contour models(DCMs), as outlined in section 1.1.2,

which are suited to the project for two main reasons. First, these models readily allow the user to visu-

alise and interact with the various contour representations directly. Second, the contour representations

facilitate internal and global shape constraints, helpingto overcome challenges of boundary ambiguity

and variable shape. We further weight the review toward 2-dimensional practices as justified in sec-

tion 1.4. However, we naturally consider a method’s extension to 3 dimensions as an asset, and discuss

these extensions in section 2.5. Where a method uses a globalshape model (C3), this is mentioned in

passing and revisited in a more detailed review of shape models in chapter 3.

The contour representation (C1) of boundary-based methods can be geometric or parametric.Geo-

metric contours are smooth and implicit, while parametric contours comprise explicit points, which are

joined either in a spline representation, giving smooth curves (eg. [45, 46]), or by linear interpolation.

The project emphasises parametric contours as they addressour goals in two ways. First, making discrete

boundary elements visible to a user facilitates efficient modes of user interaction. Second, parametric

contours allow certain boundary tracking and shape modelling methods, which we extend in chapters 6

to 8.

This project does not use region-based methods for the reasons given above, in particular it is

harder to incorporate global shape models into these methods. However, the state of the art of interactive

segmentation includes region-based methods such as those based on graph-cuts, Markov random fields

and region growing algorithms, and a review of interactive segmentation should not overlook these. We

review these methods in terms of their modes of interaction,where this gives insight into more general

issues of supervised segmentation.
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The remainder of this chapter is organised as follows. Section 2.1 looks at closed contour models,

divided into geometric contours 2.1.1 and parametric contours 2.1.2. Section 2.2 reviews a certain type

of parametric contour, which start as an open contour and track a closed region boundary. Section 2.3

goes into more detail on where these and other segmentation methods make use of run-time interactions.

Section 2.4 elaborates on how deformable contour frameworks have been evaluated and section 2.5

discusses the main findings in the review, summarising the implications for the present research goals.

2.1 Closed Contour Models

This section reviews segmentation frameworks that use closed contour models. We first discuss a ge-

ometric contour approach in section 2.1.1, which introduces some common aspects and challenges of

deformable contours, while the rest of the review is weighted toward parametric contours.

2.1.1 Level sets

Geometric Active Contours or ’level sets’, were introducedby Malladi et al [6] and developed by

Caselleset al [47]. Level set methods define a contour as a continuous function of the image field,

discretised at pixel level. The task is to find the continuousfunction for which a constant value (the

zero level set) coincides with a region boundary. Classicallevel sets evolve under the influence of edge

information and internal energy minimisation. For an evolving functionφ(x, t) of the fieldx = (x, y),

the fundamental equation of level sets is [48]

∂φ

∂t
= V (x) × (x − φ∇φ), (2.1)

whereV (x) is the velocity of the points on the zero-level curve, actingin the direction normal to the

curve at(x, y) with magnitude governed by local curvature. At any timet there is a set ofn solutions

(x0, x1, ...xn−1), (y0, y1, ...yn−1) for whichφ(x) = 0. These are then coordinates of a discrete contour

in the image frame, at the interface of a propagating surfaceand the image. Equation 2.1 is iteratively

solved forφ, until the propagating ’front’ finds the region boundary.

As with many deformable contours, the classical framework based the image observation model

(C2) on intensity gradient. This causes problems in low contrast or noisy images wherein boundaries

defined by gradient are ambiguous. For example, a contour mayfail to recognise weak edges and extend

into areas outside the ROI - an artefact known as ’leaking’ (see eg. [49]). Conversely, stronger gradients

at nearby disconnected features or ’clutter’ may erroneously attract the contour.

Leaking is avoided by the use of ’regularisers’ in the velocity term, such as region information or a

global shape model. There have been numerous studies into the inclusion of shape priors in a level set

framework [50, 51, 52, 53]. In a different approach to spatial regularisation, Shenet al [54] present a

method specific to segmenting individual vertebrae in images of the spine. The authors identify a centre-

line along the spinal canal and define planes that intersect the centre-line and lie between vertebrae.

These planes constrain the level sets so that individual closed contours do not merge or overlap.

More recent improvements to level sets involve developing new, stochastic optimisation schemes

(C6). Two examples use stochastic calculus [55] and Bayesian probability [56]. The ’stochastic active
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contours’ in [55] minimise an objective function by solvinga stochastic partial differential equation. The

results demonstrate, without proof, that this method does not converge to local minima. However, the

contour model fails to delineate concave boundary sectionsin some of the results shown. The contour

also appears jagged over long, straight sections where a region boundary itself is smooth. This latter

artefact may affect medical applications if segmenting long, thin anatomical structures such as vessels

or aorta.

The probabilistic level sets in [56] use Markov Chain Monte Carlo (MCMC) optimisation. The

MCMC algorithm is a general optimisation method, and as suchwill be seen in other parts of this thesis.

In [56] the algorithm seeks to draw sample curvesC from a distributionp(C|I), given the image data

I, where this distribution is intractable. Consider the zerolevel setsC and Γ as continuous curves

parametrised by arc lengths ∈ [0, 1]. Proposal curves are generated for the next time step(t+ 1) by the

prediction

Γ(t+1)(s) = C(t)(s) + r(t+1)(s)NC(t)(s) (2.2)

wherer(t+1) is a random perturbation field at timet + 1 andNC(t)(s) is the normal to the curveC at

timet. The perturbation is constructed from Gaussian noise convolved with a smoothing kernel, and also

incorporates a curve length penalty to ensure that a curve initialised at the image boundary will shrink

in the absence of external forces. Each proposal has an associated acceptance probabilitya(Γt+1|Ct)
that uses probabilities conditional on the previous stateq(Γ|C) and the image priorsp(Γ|I). The authors

calculate the acceptance probability by the Hastings ratio

a(Γt+1|Ct) =
p(Γ(t+1)|I)q(Ct|Γ(t+1))

p(C(t)|I)q(Γ(t+1)|Ct) , (2.3)

whereq(Ct|Γ(t+1)) is thereverseproposal distribution that must be approximated. After a reasonable

number of iterations referred to as ’burn-in’, the samples are equivalent to a set drawn from the unknown

distributionp(C|I).
The data driven probabilitiesp(C,Γ|I) must incorporate an image model to favour level sets lying

on edges or separating distinct segments. In a demonstration applied to medical ROI segmentation, the

authors use supervised classification to segment prostate regions in MR images. These results demon-

strate qualitatively the success of the method.

A major benefit of this kind of probabilistic framework, is that they give a distribution over likely

results, in line withLemma 1. Probabilistic observation models can tighten this distribution using ex-

ternal information provided interactively. In an elegant example of this, the tool in [56] allows the user

to mark accepted sections of a contour model at intermediatestages. Evolution then continues with a

conditional probability distribution, having zero variance on accepted sections of the curve.

2.1.2 Active contour models

Active contour models (ACMs) or ’snakes’ introduced by Kasset al [5] are a family of parametric

contour models. The contour representation is a set of points s = {s0, . . . , si, . . . , sn−1} along the

arc-lengths. The evolving model, at timet, is defined byu(s, t) = {x(s, t),y(s, t)}. ACMs are

characterised by an energy functional of the contourE(u), which changes with the shape of the contour
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and its position in the image. The energy is the objective function (C4), designed to be minimum when

the contour outlines the ROI, and generally involves two terms

E = Eint(u) + Eext(u), (2.4)

where the ’internal’ energyEint constrains the shape of the contour and the ’external’, energyEext drives

the contour to align with region boundaries. Internal energy is traditionally calculated by two terms that

measure local ’tension’ and ’stiffness’ of a contour respectively, given by

Eint(u, t) =

∫

α|∂u
∂s

(s, t)|2 + β|∂
2u

∂2s
(s, t)|2 ds, (2.5)

where the first increases with distance between successive contour points and the second penalises high

curvature. Constantsα andβ allow relative weighting of tension and stiffness constraints. As ACMs

use a discretised contour, the continuous integrals in equation 2.5 are approximated by finite element

equations, summed overn boundary points.

External energyEext is the image observation model (C2) and, as with level sets, the classical

framework uses the magnitude of the image gradient. The total snake energy becomes a weighted sum

of three terms

E(u, t) ≈
n−1
∑

i=0

(

α|∂u
∂s

(si, t)|2 + β|∂
2u

∂2s
(si, t)|2 − γEext(si, t)

)

, (2.6)

where constantsα, β andγ weight the relative influence of each term. In a snake framework the opti-

misation scheme (C4) must minimise the functional in equation 2.6. Kasset al. use variational calculus,

which has several drawbacks summarised in [57]. Dynamic Programming [57] and the greedy algorithm

presented in [12] offer common alternatives. The greedy algorithm involves iteratively searching local

to each boundary point in turn, for a new position that reduces the total energy. An ACM evolving with

the greedy algorithm can become stuck in an oscillatory state and never converge. This happens when

information regarding the image and local shape propertiesare conflicting.

Snakes are sensitive to the weightsα, β andγ in equation 2.6. Optimal pairsα andβ depend on

the shape and smoothness of the true boundary while the choice of γ depends on the reliability of the

image observation model. These factors vary between images, reducing the generality of the method.

The parameters can be tuned to the application at hand by userinteraction as in the implementation of

Jacobet al. [45]. However, fixed values might not be suitable for some medical applications where a

ROI boundary has spatially varying smoothness or corners [58]. Some improvements to classical snakes

allow adaptive energy weights [12] and [59].

The authors in [12] and [59] modify different components of the ACM framework. The method in

[12] changes the objective function (C4) enabling the stiffness to vary around the contour. The authors

setβ = 0 at ’corners’ identified by limits of local curvature and edgestrength. The method in [59]

modifies the framework by changing the optimisation scheme (C6). The authors use a localminmax

search that simultaneously solves the minimisation of the contour energy with an optimisation of the

energy term weights. The weights are first combined in a single parameterλ, which is allowed to vary

with position along the contour asλ = λ0, λ1..λn−1. All λi are then varied independently, along with
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the neighbourhood search of eachsi, and the method finds the uniqueminimumwith respect tou, of the

maximumenergy over allλ.

The tension and stiffness definitions above are not necessarily optimal for a given application. Perrin

and Smith redefine tension based on the mid-point between neighbouring boundary points and curvature

based on third derivative∂
3

∂s3
in the 5-point neighbourhood centred onsi [60]. This curvature definition

successfully segments ventricles in MR brain images in [61].

As in the case of level sets, the classical snake framework was driven by gradient magnitude and

subsequent improvements replaced this component of the framework (C2). A popular alternative to

gradient magnitude is the ’Gradient Vector Flow’ (GVF) introduced by Xu and Prince [7]. Computed by

minimising a functional of the intensity field, the GVF givesa map of gradient vectors that can attract a

contour over larger distances. The main benefit of this energy is that contours are less likely to traverse

concave boundary sections. Another benefit is that the GVF reduces the need to initialise a contour close

to the true ROI, hence demand on the user. The occurrence of concave boundary sections makes GVF

a popular choice of observation model in medical image segmentation (eg. [62]). However, problems

associated with false edges or clutter common in medical images are not addressed by the GVF.

Again, in common with level set frameworks, another family of observation models overcome

leaking artefacts by incorporating region information. Region models were first introduced to ACM

frameworks by Ivins and Porrill [63] and independently by Ronfard [64]. The ’Active Region Model’

(ARM) of Ivins and Porrill is equivalent to an ACM in all but the image energy term in equation 2.6,

which is replaced by a region model. Some authors use region models based on histograms of region

and background intensity [8, 65, 66]. For multidimensionaldata the distributions can be used to de-

rive the Mahalanobis distance from Gaussian joint probabilities. The Mahalanobis distance serves as a

’goodness’ measure, of the agreement with training data, asdemonstrated in [65] and more recently in

[66], and assessed in detail in [67]. Ivinset. al [8] use the ARM to segment medical images, where

the multidimensional data are made up of co-registered NMR and CT images. However, with the ex-

ception of hybrid imaging modalities such as PET/CT or multi-weighted MRI, this approach relies on

numerical registration methods, which reduce the accuracyand resolution of boundary definition. When

only monospectral data is available, some authors improve region models by calculating texture features

derived, for example, from Laws masks [68] or grey-level co-occurrence matrices [69, 70]. In addition to

an image model (C2), external energy can incorporate information provided byuser interaction (C7). In

their seminal work, Kasset al [5] suggest an extra term in equation 2.6, being a function ofthe distance

to points located by the mouse cursor. This so called ’volcano’ concept allows the user to guide the

contour toward the target region by specifying points of repulsion.

2.1.3 Brownian strings

In 1997 Grzeszczuk and Levin introduced ’Brownian Strings’for interactive boundary extraction [11].

We discuss Brownian Strings as they use novel or uncommon examples of several components (C1, C2,

C5, C6 andC7). The work also highlights the way in which certain components are inextricably linked,

and the difference between validation and performance evaluation.
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As a contour representation (C1) the authors use connected ’cracks’ between pixels inside and

outside the region. This representation removes the ambiguity in the resulting segmentation, where

’boundary pixels’ in the representations above may strictly belong to either region or background. In

practice, contours are stored as a 2-dimensional array of cracks called a ’crack diagram’, rather than a

1-dimensional list. This data structure retains the relative positions of each crack and allows constraints

to avoid self-intersection of the contour.

The observation model (C2) exploits the contour representation. The authors derive aprobabilistic

boundary measure from training examples of crack diagrams aligned with true ROI boundaries. This

boundary measure is based on the 2-dimensional histogram ofpixel intensities on either side of a single

crack. In the medical example of whole-brain extraction in MRI volumes, this supervised approach to an

observation model makes use of interactive initialisation, as the histogram is built up from a boundary

defined manually in a single slice and used to segment the brain in neighbouring slices.

The deformation mechanism (C5) is also specific to the contour representation. The authorspresent

two stochastic methods to generate proposal boundary sections in the form of small crack diagrams.

In one case, crack diagrams are simulated by novel geometricprocesses that ensure non-intersecting

boundary sections. In the second case, valid crack diagramsare drawn at random from a library.

The contour evolves under a stochastic method of energy minimisation (C6), namely simulated

annealing [71]. The authors state that this method is guaranteed to find the global energy minimum,

although strictly speaking this is only true if the algorithm runs for infinite time.

As mentioned above, the algorithm is initialised by the user(C7) in one image slice for subsequent

segmentation of another. Rather than manual drawing, the user must perform interactive, iterative thresh-

olding. It is not clear whether this method is faster or more accurate than manual drawing. The initial

contour has two roles. First, the user defined contour provides training data for the image model. Second,

the authors use morphological operations of dilation and erosion to define an annular region, for use as a

binary mask in neighbouring slices. The mask speeds up the simulated annealing by reducing the search

space.

The results in [11] do not evaluate the performance of Brownian Strings. The authors merely

demonstrate the method by segmenting synthetic and MR images. In the latter case the contour variously

delineates the intended brain boundary and the boundary between grey and white matter in the cortex.

The synthetic images also provide only qualitative resultsbut are powerful validation tools. The authors

create images designed specifically to pose the challenges of local minima, broken edges and clutter.

Results clearly show the ability of the algorithm to overcome these challenges.

2.1.4 1D Cyclic Markov Random Fields

The 1D Cyclic Markov Random Field (1D-CMRF), first seen in [72], is one of a family of con-

tour models that represent a contour in polar coordinates{r, θ}. The representation (C1) is a list

r = {r0, . . . rt . . . rN−1}, of N radial distances from a fixed point inside the ROI to its boundary,

separated by angular incrementsθ = {θ0, . . . θt . . . θN−1}. This representation will be referred to here-

after as aradial time series. The 1D-CMRF model treats the radial time series as a vector of N discrete
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random variablesri, and each radiusri as a site in a Markov Random Field (MRF). After choosing a

point inside the region, the 1D-CMRF is defined by

Pr(r = ρ) ≥ 0 (2.7)

and

Pr(ri = ρi|rj = ρj , j 6= i) = Pr(ri = ρi|rj = ρj , j ∈ Wi), (2.8)

whereρ = {ρ0, . . . , ρi, . . . , ρN} is a possible configuration forr, ρi is a ’hidden variable’ or sample

point forri andWi is a ’clique’ or neighbourhood ofi (W = {i− 1, i+ 1} for the example in [73]).

Equation 2.8 simply states the Markovian property that the probability for a givenri = ρi is con-

ditional only on a (small) neighbourhood. MRF methods follow on from the Hammersley Clifford

theorem [74] which states that if equation 2.7 holds then thejoint probability Pr(r) is uniquely de-

termined by conditional probabilities in equation 2.8 and that these follow a Gibbs distribution, i.e.

Pr(r) ∝ exp[−∑

j∈Wi
Uj ] whereUj is an energy function or ’clique potential’ that embodies the a

priori information, combining image and shape priors. In [73] the clique potential is a weighted sum

of both ’low-level’ and ’high-level’ information. The high-level information is a crude statistical shape

model, revisited in the next chapter. The low-level information is a weighted sum of a smoothness term

and a ’step’ term designed to align the radial time series with points of high image gradient. The smooth-

ness term penalises local variation of radial distances inside a small angular window (the clique) and can

be considered a re-formulation of the stiffness term of a classical ACM.

Subsequent work by [75] and [76] present 1D-CMRF models to extract contours of the left ven-

tricle in X-ray angiography and ECG cardiology respectively. The different applications call for dif-

ferent clique potentials and likelihood functions (C2), and the authors also choose different optimisa-

tion schemes (C6). The clique potentials are all low-level according to the distinction above, imposing

smoothness of different derivative-order by using neighbourhoodsWi of different sizes. The image ob-

servation models reflect the characteristics of the different image modalities but all assume an intensity

difference between the region and background. Experimentsin [76] use the segmentation method to

derive the secondary results of ventricular volume and wallthickness and show that results agree with

the same measures derived from manual segmentation. Qualitative results of ventricle segmentation in

[75] further support the use of 1D-CMRF in medical images butdo not allow for comparison.

In a novel adaptation of the 1D-CMRF, Martı́n-Fernández and Albertola-López define the radial

time series as a list of radialperturbationsabout a ’mean contour’ [77, 78]. Theirs is a supervised frame-

work, wherein the mean contour is defined manually by the user. This is an example of making efficient

use of interactivity, as the initial contour only approximates the ROI and is therefore fast to produce,

but provides high-level information that is integral to thecontour model. The authors demonstrated

acceptable results for whole-organ segmentation of kidneyregions in ultrasound images.

The polar representation leads to certain advantages and disadvantages of the 1D-CMRF. As pointed

out in [72], the representation requires a 1-dimensional array of sizeN , saving considerable computation

compared to region-based MRFs (see eg. [79, 80, 81]). The region-based counterpart operates on a
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random field of sizeW ×H whereW andH are the width and height of the image. A minor drawback

of the 1D-CMRF is that a point near the centre of the ROI must beidentified to fix the polar coordinates

in the image frame. In [72] the authors use an automatic detection procedure, which introduces extra

computation time possible of errors, especially for low contrast or otherwise badly defined regions in

medical images. However, as we will see in chapter 8, sufficient estimates of a region centre can be

provided with little effort by user interaction.

The main drawback of the polar representation is the assumption that each radius intersects with the

boundary only once. By definition, this limits the approach to model regions that are ’star-shaped’ [82].

However, some applications naturally involve ROIs that areinherently star-shaped. In these cases other

authors have chosen star-shaped representations of regionboundaries. Examples in the biomedical field

are tumours in PET images [83], kidney and pelvis regions in echography [77] and the left ventricle in

cardiac images [75, 76].

2.2 Boundary Tracking Methods

This section describes deformable contour models thattrack a region boundary using open contours.

Starting from a point on the boundary, an open contour progresses around the ROI and forms a closed

contour if the whole boundary is tracked, as illustrated in figure 2.1.

(a) (b) (c) (d)

Figure 2.1: Schematic diagram of boundary tracking methods, illustrated on a region (MS lesion) in

an axial MR image of the brain. (a) A single boundary point (red) is located. (b) Starting from the

boundary point, a contour model progresses around the region, here in an anticlockwise direction. (c) As

the algorithm continues the contour approaches the starting point. (d) In this case, the algorithm achieves

a closed contour.

An appropriate starting point could be detected automatically or defined interactively by a point or

anchorlocated by the the user. Boundary tracking methods are distinct from other open contour models

by their deformation mechanism (C5). Boundary trackers deform at one end as the open section grows

in arc-length.

2.2.1 Active testing and particle filtering

The contour representation (C1) in a boundary tracking framework is a chain of successive elements

{x0, . . . ,xi, . . . ,xN}, wherex is the position vectorx = {x, y}. One family of boundary tracking

algorithms treats the contour as the result ofN decisions, made to follow the boundary at eachstep. The
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earliest example of this is the ’Active Testing’ algorithm developed by Geman and Jedynak [84, 85]. The

algorithm iteratively appends the contour with straight line sections of equal length. Each iteration must

choose the angle, from a discrete set, between the current section and the next.

If the contour model is made up ofN sections, and each decision chooses from three directions

{−ϕ, 0,+ϕ}, the resulting ’decision-tree’ involves3N potential outcomes. Ultimately, the segmenta-

tion task is to choose the outcome that is most likely to trackthe boundary. Active testing is a general

technique for estimating the true ’hypothesis’x whilst only considering a fraction of the possible out-

comes. This involves discarding sections of the tree at any given decision, thus reducing computational

complexity. The ternary decision that selects from{−ϕ, 0,+ϕ} involves testing candidate directions

(or pixels in those directions) against a prior observationmodel (C2). The example in [85] uses a filter

based on a statistical model of the relative intensity between pixels on and off the desired boundary. The

outcome of a test is to accept one direction while the other two are rejected, which discards subsequent

branches in the decision tree. Acceptance is based on a statistical test derived from information theory.

The authors demonstrate using both ’entropy testing’ rule and a maximum likelihood estimator. The

authors demonstrated active testing for the application oftracking roads in satellite imagery. However,

as noted in [85], the filters designed to distinguish roads from background can be replaced to generalise

the algorithm for other applications.

Active testing can alternatively be performed using Monte Carlo rejection sampling in place of the

statistical tests above. The resulting ’particle filter’ algorithm was first used for multi-dimensional object

tracking in Isard and Blake’s ’CONDENSATION’ algorithm [86]. In one dimension, the same algorithm

extends to the task of tracking boundaries in images. The resulting algorithm, introduced as ’jetstreams’

by Perezet al. [43] stores a set ofM contours or ’particles’(xm0,...,i)m=0,...,M−1. Tracking is based on

the iterative computation of posterior densities over the next step atxi+1. Given image dataD(x, y) the

posterior probability for the next step is given by

pi+1(x0,...,i+1|D) ∝ pi(x0,...,i|D) × q(xi+1|xi−1,...,i) × l(D(xi+1)), (2.9)

whereq(xi+1|xi−1,...,i) is the prior distribution over steps andl(D(xi+1)) is the likelihood that a contour

section lies on the region boundary, given the data. This distribution is defined over the continuous angle

ϕ, made betweenxi−1,...,i andxi+1, makingx0,...,i a Markov chain.

The jetstream algorithm computespi+1 in three stages. Apredictionstage randomly selectsM

locations for the next pointxi+1, from the normal prior angular distributionq(xi+1|xi−1,...,i) = q(ϕ) =

N (0, σϕ). By choosing angles distributed about zero, the jetstream maintains a smoothness constraint

governed by the parameterσϕ. Next, aweightingstage weights theseM proposals by the product

q(xi+1|xi−1,...,i)× l(D(xi+1)). The likelihood comprises the image observation model (C2) and is given

by the ratio of two probabilities, for pointxi+1 being on or off the boundary. The probability that a point

is on the boundary is given by

pon(D(xi+1)) = pon(ψ) ∝ N (0,
σψ
|GI |

), (2.10)

whereψ is the angle between the proposed direction and the local boundary direction estimated by
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the normal to the image gradient. Equation 2.10 constrains the jetstream to follow the local boundary

direction. The spread ofpon is modified by the magnitude of the intensity gradient|GI | so that this

constraint is relaxed where the edge strength is weak. The probability that a point is off the boundary is

given by

poff(D(xi+1)) ∝ exp
[

(
−|GI |
< GI >

)2
], (2.11)

where< GI > is the mean gradient magnitude, so that the jetstream prefers to lie on strong edges. Note

that the weighting only depends on the proposed point location and the last completed particle section

xi−1,...,i, making this a Markov process. TheM weights are used as a discrete approximation of the

posterior density onϕ. The third stage of the algorithm,importance sampling, draws samples from this

posterior with replacement, to complete onestepof the boundary tracker.

Jetstreams terminate after a fixed number of steps, referredto hereafter as arun. The open contour

is then defined as the mean path over the particle set, obtained by taking the meanx andy coordinates

at each point.

The jetstream algorithm incorporates an extra procedure for handling sharp corners. A pre-

processing stage uses a standard corner detector to identify sharp corners. The algorithm then relaxes

the smoothness constraint by replacing the normal prior angular distribution with a uniform distribution

at suspected corner pixels. Recently Famaoet al. [87] improved the corner handling by introducing a

variable step length (or ’speed’ in the motion tracking analogy).

The fact that jetstream particles progress with Markovian dynamics means that local contour shape

is treated as being independent from the whole of a contour. This approach is suitable for ROIs of

interest to this project in the absence of a global shape. However, the Markov property means that any

jetstream diverging from the desired boundary will fail forsubsequent iterations, having no ’memory’

of the boundary pixels in its history. Another limitation ofparticle filter tracking is that the posterior

distribution at a given step can be multi-modal, caused by nearby clutter or afork in the tracked boundary.

Recently Allenet al. [88] presented a similar particle filter for tracking blood vessels in medical images,

which handles bifurcations in the forked structures being tracked by a ’rejuvenation’ procedure in the

Markov Chain.

Another drawback of jetstreams is the lack of a pre-defined termination point for a single run. A

user selects the start of the boundary tracker without beingable to assert where the tracked section

should terminate. Perezet al. imply that the boundary tracker should be allowed to divergefrom the true

boundary, and the user identify the point of divergence. A related drawback is the lack of a global shape

model. The algorithm must draw from a static prior angular distribution which gives local smoothness,

but discounts any prior knowledge of global shape. In turn, ajetstream is very unlikely to track the whole

of a boundary in one run, and so a closed contour is built up in user-defined sections. It is not clear how

the final run is expected to reach, and terminate at, the startof the contour. Indeed, examples given in

[43] are not closed contours but rather start and end at points on the image border.
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2.2.2 Dynamic programming methods

Mortensenet al introduced the boundary tracking framework of ’live wires’[89] or ’intelligent scissors’

[90], which use dynamic programming as the optimisation scheme (C6). A live wire is initialised by

selecting an anchor on the region boundary. Dynamic programming computes the minimal cost path

between the anchor and the moving cursor, where the cost (C4) is designed to favour short paths that lie

along intensity gradients.

After initialisation, the fully interactive framework displays the pathas the cursor movesallowing

the user to ’steer’ the contour. When the cursor approximately follows the ROI boundary, a section of

the live wire ’snaps’ to the boundary in minimising edge energy. At any moment the user can accept a

contour section by locating an anchor point to lock the live wire in place, and the process continues with

any minimum cost path being that from the cursor to the last anchor point. Performance evaluations in

[42] suggest that a live wire leads to higher reproducibility than manual segmentation (98% compared to

96%) although the time taken to segment a region is, on average, twice as long.

Falc̃ao et al [42] improve live wires with three key modes of interaction to create the ’live lane’

algorithm. First, the user ’trains’ the live wire in an initialisation procedure. The operator uses brushes of

variable width to define example sections of the region boundary. The program calculates the minimum,

maximum, mean and standard deviation of pixel values from these examples. These features are used to

update the cost map and the contour subsequently avoids pixels that differ too much from values in the

training set. Second, during calculation of the optimal path, the live wire is constrained to exist within a

’lane’ that contains the true boundary. This lane is centredon a rough estimate of the ROI boundary as

it is traced in real time by the user. Third, when the contour is close to completion, the user constrains

the contour to terminate at the starting point with a keyboard interaction. The training step is shown to

improve the segmentation of knee bone regions in CT images, where variable edge strength confounds

other edge-based segmentation methods. Subsequent experiments in [41] show that an experienced user

of live lanes segments talus bones in MR images of the foot with the same accuracy and precision as

with original live wires but with up to 31 times the speed.

The main attraction of the live wire method is in its user friendliness. However, live wires have no

internal constraints, which can lead to jagged sections in the presence of noise and artificially straight

sections between anchors at either side of a weak section [40]. Another limitation of dynamic program-

ming methods is that they give a unique (minimum cost) path between a given pair of anchors, which

violatesLemma 2. This is in contrast with probabilistic algorithms such as jetstreams, which can in

principle produce more than one solution as we will see in chapter 6. If the minimum cost path is not

that desired by the user, the only method of control is to place many, close anchors along the boundary,

which overrides the algorithm with manual drawing.

Because of these limitations, live wires are often used in conjunction with other interactive tools.

In one medical example, Parket al. [91] present a protocol for segmenting various anatomical regions

in MR images using the live wire, thresholding, region growing and other 2-dimensional, interactive

tools in Adobe’s ’Photoshop’ software. In another medical example, the ’United Snakes’ framework
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of Liang et al. [40] use live-wires to initialise an active contour algorithm. This both speeds up the

initialisation process and alleviates problems associated with the sensitivity of snakes to initialisation.

Although not necessarily smooth or accurate, the live wire satisfies the requirement that a classical ACM

is initialised close to the ROI boundary. The contour then evolves under internal and external energies

that introduce smoothness. In addition, a hard constraint forces the final contour to include the initial

anchors. The authors segment heart and lungs in X-ray fluoroscopy images, blood vessels, bladder and

corpus callosum in MR images, vertebra in X-ray CT images andvessels in an angiogram. Results are

compared qualitatively with the use of live wire alone and shown to be superior. The benefits over ACMs

alone are in the speed of accurate initialisation. The results above required only around 5 – 10 initialising

anchors, and 3 anchors were sufficient to accurately segmentthe breast region occupying most of a large

mammogram (3691 × 6466 pixels).

2.2.3 Greedy methods

Plummer [22] designed a contouring tool that combines boundary following with local automatic thresh-

olding. The algorithm has never been formally written up (D.Plummer, in correspondence), but is

summarised in [92], which compares the tool with thresholding and freehand techniques for MS lesion

segmentation. The boundary follower is initialised by a ’seed’ pixel located close to, but inside, a lesion

boundary. The algorithm initially defines a local point of ’strongest edge’ as the largest difference of in-

tensity between any two connected pixels in a square search window centred on the seed. Starting from

this point, the algorithm searches four directions (±x and±y) for that with the strongest gradientθ∗.

The next boundary pixel is chosen from the four-connected set based uponθ∗ and an extra requirement

that the corresponding pixel value is above a threshold derived from the seed neighbourhood (it is not

clear how the threshold is obtained). The algorithm proceeds by making single-pixel steps around the

boundary until the final step reaches the initial boundary point (it is not clear how the steps are guaranteed

to terminate at the intended point to close the loop).

Plummer’s algorithm frequently fails to extract part of a lesion’s boundary and, as a result, freehand

delineation is necessary to edit or replace around half of the results [23, 24, 25, 26]. This, and the

method’s sensitivity to initialisation, could be due to theuse of a single seed to initialise both the local

search for boundary pixels and the region model.

In a similar boundary tracking framework, Luanet al. [93] introduced the ’Filter Function Algo-

rithm’. The filter function is a symmetrical function over anglesθ made with the horizontal, in polar

coordinates centred on the current boundary pixel. Given aninitial anchor on the boundary, the algo-

rithm uses the filter function to track the boundary in the clockwise direction. The algorithm convolves

the filter function with ’candidate’ pixels that lie on the clockwise side of a radial line passing through

the current pixel. By rotating the filter function through discrete orientations, the method seeks both the

pixel and the direction that give the maximum response.

As with Plummer’s algorithm, it is not clear how the steps areguaranteed to terminate at the starting

point to close the loop, the authors merely state that the algorithm ’repeats until the starting pixel becomes

a candidate pixel’.
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The authors demonstrate the algorithm by tracking the boundary of cranial cross sections in foetal

ultrasound images. The results are a visual improvement over the results of gradient filters and an

implementation of classical snakes driven by gradient magnitude.

2.3 Modes of Interaction

Recent literature has aimed to improve the efficiency of userinteraction rather than removing it. In this

section we review the modes of interaction in more detail, inorder to highlight their strengths/weaknesses

and how they relate to the underlying segmentation algorithm. While we are primarily concerned with

boundary-based segmentation, some interactive procedures are more common in region-based methods.

We include these interactions for their general applicability to supervised segmentation. In particular,

interactions that train a region-based observation model extend naturally to any deformable contour

framework driven by a similar model (C2).

We stated in chapter 1, that balancing requirements of maximal control (Requirement 1) and min-

imal demand (Requirement 2) calls for efficient interactions. An efficient interactionmaximises the

information provided to the algorithm. This means not only providingmoreinformation, but providing

types of information readily used by the underlying algorithms. The remainder of this section discusses

interactive procedures in the literature, in terms of efficiency and other merits. We divide the procedures

into the categories ofinitialisation, run-time interactionsandpost editing.

2.3.1 Initialisation

Initialisation can be region-based or boundary based and can train an observation model or locate the

approximate centre or boundary of the ROI. Initialisation can provide both spatial information and image

data to train an observation model, which we refer to as thedual roleof initialisation.

Some initialisation procedures are common to both boundary- and region-based segmentation. A

simple example is seeding, where the user locates a pixel or pixels belonging to the ROI, and sometimes

the background. Seeding is the only interaction used in classical seeded region growing (SRG), where a

single mouse-click provides the location and image intensity to initialise the model [94]. The growing

region is an evolving list of connected pixels and the statistics of the corresponding pixel intensities

provides the observation model. Instead of a single pixel, seeding can identify a small collection of

seeds from a region or background, outlined by the user or marked with a ’brush’ stroke. Adams and

Bischof [94] suggested that this would provide a more stablemodel for region growing segmentation,

and the approach is commonplace in graph-cut methods [95, 96, 97, 98, 33, 81].

Graph-cut methods are interactively trained upon initialisation by user-defined foreground and

background pixels. Following seminal works by Boykovet al. [99, 100], interactive graph-cut algo-

rithms have become popular for segmentation in digital photo and video editing [95, 96, 97, 98] and

have recently received interest in the biomedical imaging field, for example to segment liver tumours

in CT images [13] and neuronal axon regions in electron microscopy images [33]. The method in [13]

combines the graph-cut method with watershed and Markov Random Field (MRF) algorithms, but re-

sults still rely on interactive post editing by a user-controlled morphological opening operation. The
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method in [33] complements the graph-cut algorithm with gradient filtering, but satisfactory results also

demand extra interactions in the form of iterative re-training and manual post editing to remove erroneous

sub-regions.

Seeding can be region- or boundary-based, reflecting the corresponding segmentation framework

and image observation models. Examples of boundary-based seeding are the anchors used in the Live

Wire [90] and jetstream [43] algorithms. Classically, these use single pixel locations to initialise the con-

tour model. However, there are examples of boundary-based initialisation with the dual role of training

a boundary-based observation model and providing spatial constraint [22, 42]. First hand accounts of

using Plummer’s algorithm [22] suggest that the dual role can cause adverse sensitivity to initialisation.

One regular user of the tool reported great sensitivity, especially for seeds close to the true boundary

[19]. This highlights that, while we desire to maximise the information gained from a single interaction,

there is a balance between the value of an interaction and howaccurate the user input must be. However,

despite the need to edit or manually replace around half of the contours, this tool has survived years

of routine use at UCL’s Institute of Neurology, due in part tothe ability for a user to correct erroneous

results.

Other than seeding, the literature includes frameworks initialised by placing bounding boxes or

initial closed contours. The bounding box initialisation in [33] has the dual role of building a model

of the background, and defining a sub-image to be segmented. The spatial constraint of a sub-image

greatly reduces the computation time of the associated graph-cut algorithm. Placing an initial closed

contour initialises the contour model without training an observation model [5, 9, 77, 78]. The closed

contour could be a manual approximation of the ROI boundary or taken from a prior shape model.

When no shape model is available, approximate manual initialisation can constrain as well as speed up

the evolution [77, 78]. This introduces more demand on the user, which can be reduced by using a

second semiautomatic tool to provide the initial contour quickly, as in the use of live wire initialisation

in [91, 40].

2.3.2 Run-time interactions

Closed contour models and boundary-tracking methods naturally involve different modes of interaction

during run-time. In the case of closed contour models, an intermediate contour can be displayed dur-

ing evolution, prompting user guidance. Here, ’intermediate’ could mean before the termination of an

iterative optimisation scheme (C6) or when the algorithmhasterminated but the results not yet accepted

by the user. Interactions constrain subsequent evolution,either for the remainder of the optimisation

scheme, or in a repeated run of the optimisation. An early example is provided by the ’volcanoes’ of

classical ACMs [5]. Where a deformable contour framework uses a probabilistic objective function, this

can incorporateconditionalprobabilities, where the condition is derived from the userinteractions. In

[56] the authors condition the location of boundary sections in response to interactions.

Boundary tracking methods of live-wires [90] and jetstreams [43] rely on run-time interactions to

progress open contour sections around a region boundary. Both methods use anchoring to mark the

last accepted pointafter a tracked section veers from the true boundary. In the case of live-wires the
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termination of the optimal path at the mouse cursor leads to the real-timesteeringprocess. Steering has

two distinct advantages. First, displaying the optimal path in real-time influences the user’s movement

of the cursor, and the resultingfeedbackmaximises the length of an accepted section. Second, as the

path terminates at the cursor, the user can easily create a closed contour from the open-ended live wire.

In the case of jetstreams, the particle filtering is not steered in a similar way, but the authors devise

run-time interactions that take advantage of the probabilistic nature of the algorithm. Whilst tracking a

boundary the user notices or anticipates where image features cause the tracker to take a false path (due

to a multimodal posterior as mentioned above). By marking the false paths with a thick line or ’dam’,

the user assigns zero-probability to any proposal steps that land there.

Another type of user interaction allows the adjustment of parameters between executions of an algo-

rithm. Parameters controlling properties such as contour smoothness can be reset between segmentation

attempts (as in [45]) or for different parts of an image. Thisremoves the need for the optimisation of

hard-coded parameters and can allow a tool to generalise across multiple applications.

2.3.3 Post editing

Freehand post editing can be used to replace part of a closed contour. However, in this case, contour

sections must be both created and removed. This could be doneby the successive use of an ’erase’ and

a drawing tool, but other mechanisms exist. The image analysis package ’MIDAS’ (see [36]) realises

freehand post editing in the following three steps. First, the user draws manually, along a section of the

true boundary missed by the displayed contour (in this case the result of intensity thresholding). This

leaves an ambiguous contour comprising two segments that share one boundary section. Second, the

user places a marker in any new segment to be included in the region, removing the ambiguity regarding

which side of a shared boundary is desired. Finally, the userinvokes a ’clean up’ procedure to remove

the unwanted section and leave a simple closed contour. A similar mechanism is used in the ROI analysis

module of the popular ’Analyze’ software [101] and in the graph-cut tool recently proposed to segment

axonal cross sections in electron microscopy images [33].

Some post editing procedures better exploit characteristics of the underlying contour model. One

example is to display the contour as a polygon and allow vertices to bedraggedto new positions. The

authors of [95] report that, overall, users were more satisfied with this interactive tool than with live wires

that use run-time steering. The dragging mechanism can be adapted so that boundary points adjacent

to that being dragged will also move, maintaining any internal energy constraints. The ’SplineSnake’

software in [45] is one example.

In a second example, the authors in [102] provide a novel modeof post editing specific to the

underlying segmentation algorithm. Their framework involves a weighted combination of an observation

model (image), global shape model and internal constraintsof boundary smoothness. Where a section

of the contour has missed the true boundary, the user identifies this erroneous region approximately by

dragging lines that are displayed perpendicular to the contour, resembling ’error bars’. The observation

model is re-weighted according to a Gaussian distribution between these error bars and the boundary

section is re-computed. This software is designed for the segmentation of atria in cardiac imaging, but
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the general idea of updating a global model in response to post-interaction extends to other applications

and models as we will see in chapter 8.

Post editing can also incorporate prior knowledge of the specific application and the type of seg-

mentation error. For example, Heimannet al. [103] design efficient post editing for the case where

leaking causes a segmented liver region to include the neighbouring kidney in an abdominal CT scan. In

this context the authors can be confident that that the leaking originates from the narrowest point between

the two regions. The method identifies this point automatically using morphological skeletonisation of

the combined regions, and estimates the boundary between the two anatomical regions. Subsequent

interaction need only tell the algorithm which of the two regions is the desired (liver) region.

2.4 Notes on Performance Evaluation
Throughout the literature there are varying approaches to performance evaluation of a segmentation

framework. This section discusses issues regarding the definition and evaluation of accuracy, and the

evaluation of other aspects of a framework’s performance.

Accuracy metrics are based on the similarity between a segmentation result and some notion of

’ground truth’. Accuracy is badly defined for the biomedicalapplications central to the project because

of the lack of ground truth. An alternative is to use synthetic images where the ground truth is known.

These images must reproduce real-world image conditions ifmeaningful conclusions are to be drawn

from the results. On the other hand, synthetic images allow certain properties of a region or image

to be exaggerated and controlled to validate and evaluate the robustness and specific capabilities of a

segmentation framework. As well as accuracy, authors evaluate the repeatability of segmentation results.

Repeatability metrics are derived from the similarity between two instances of a contour model assumed

to segment the same ROI.

Performance metrics that use the similarity between contours must first define what is meant by

similarity. Similarity can be computed from a region- or boundary-based definition of the spatial overlap

between segmented regions. Common region-based measures are the Dice similarity coefficient [104]

and Tanimoto coefficient [105]. For a ’true’ regionS containingNS pixels, and its segmentationS

containingNT pixels, these measures are derived from the intersecting regionT ∩ S. For example, the

Dice Similarity coefficient is computed by the ratio2NT∩S

NT +NS
. This project is particularly interested in

boundary-based similarity, as we focus on boundary-based segmentation methods and modes of interac-

tion. A popular boundary-based measure is the Hausdorff distance [106]. The Hausdorff distance is a

’maxmin’ measure, computed by taking theminimumdistance from each point on the boundary ofS, to

the boundary ofT , and then taking themaximumof these distances over all points on the boundary ofS.

This measure is sensitive to outlying points of high disagreement and can give misleading evaluations

when contours are similar for all but a small section. A popular alternative is to take themeanrather

than the maximum of the minimum distances [107, 108].

In some cases, overlap measures are replaced by a similaritymeasure that reflects the application

at hand. These use a derived quantity of a segmented region, rather than its spatial properties. Examples

include the ’lesion load’ relevant to multiple sclerosis studies [92] and the ventricular volume and wall
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thickness relevant to cardiology [76].

The literature also reveals qualitative approaches to performance evaluation, to evaluate qualities of

an interactive framework such as ’user satisfaction’ [109]. This relates to the user’s experience, such as

how ’easy’ or ’frustrating’ they found the tool, which is measured using questionnaires. Standard ques-

tionnaires such as that in [110] are popular in the wider fieldof human-computer interaction. However,

for systems with the single aim of segmenting ROIs, more specific questions might be appropriate as

used in [95].

When comparing one segmentation method with another, the choice of reference method governs

what conclusions can be drawn. In many cases, results are compared with manual delineation. The re-

sults of manual delineation represent a form of ground truthand, separately, the method itself represents

a benchmark. In this study,Lemma 1and the implication ofLemma 2, that with enough interaction any

deformable contour model should give the same result as the user’s best manual delineation, justifies the

use of manual contours as ground truth when evaluating accuracy. However, for the same reasons, we

cannot expect any framework to be more accurate than freehand delineation.

Other authors choose ’state-of-the-art’ frameworks to compare with their own. Conclusions drawn

from these comparisons are limited as the state-of-the-artis badly defined. A definition based on popu-

larity might reflect a method’s age, ease of implementation or user satisfaction rather than the accuracy

or chosen performance metric used in experiments. A definition based on the best results quoted in a

research paper only holds for the performance evaluation methods and specific data sets used in that

paper. Liet al. [95] use many performance metrics and test their method on many data sets, but still

their evaluation is based on the direct comparison with a somewhat arbitrary reference method.

In order to address the requirement of minimal user demand, (Requirement 2in section 1.2), we

must also evaluate segmentation methods in terms of demand on the user. The overall segmentation

time is not a reliable measure for two reasons. First, a user is likely to use a tool faster as he/she gains

experience with it. Second, a user can interrupt a segmentation task before completion, as the framework

waits indefinitely for user input. Total time might be used asan indicator of useability in experiments

where the user has been instructed to complete the task as quickly as possible as in [42, 41], but this false

scenario might compromise segmentation quality. Where twosupervised methods share similar modes

of interaction it is possible to compare the useability moredirectly. For example, experiments in [43]

compare the demand on the user of two anchor-based interactive boundary-tracking algorithms, in terms

of the number of anchors placed by the user.

2.5 Discussion and Conclusions
Interactive segmentation methods in the literature fall short of balancing the requirements of (1) maximal

user control and (2) minimal user demand. The most promising improvements arise from the use of

machine learning and the ability to exploit information from the user in an efficient manner. We are

motivated to combine machine learning with boundary tracking methods and radial time series.

Boundary-based image models are traditionally based on themagnitude of the image gradient,

although some also incorporate gradient direction (eg. [7,43]). However, for many medical applications



2.5. Discussion and Conclusions 42

the image gradient is insufficient, and some authors seek more discriminative visual cues including

region-based models. In the absence of multispectral data,models based on texture classification give

promising results [68, 69, 70]. While some image energies incorporate machine learning, the internal

energies of smoothness, stiffness and tension energies do not.

The review motivates the use boundary-based contour models. The Brownian String method taught

us that an image model (C2) and deformation mechanism (C5) can be particularly suited to, and designed

to exploit, the chosen contour representation. In another example, the 1D Cyclic Markov Random Field

exploits the radial time series representation. This representation is suitable for star-shaped ROIs, includ-

ing medical examples in the literature noted in section 2.1.4. Furthermore, we propose that by allowing

the user to identify a point near the centre of a ROI, frameworks based on radial time series gain a lot of

information from a simple interaction, helping to minimiseuser demand (Requirement 2).

Boundary tracking appeals to our focus on interactive methods. The general scheme of progressing

around a region boundary in the arc-length direction (figure2.1) is consistent with the way that a user’s

fixation follows a boundary during manual delineation. Judging by the popularity of the live-wire algo-

rithm, this results in a user friendly method. Also, it should be possible to make particularly efficient

use of user input during segmentation by boundary tracking.However, there is a need for methods that

ensure a closed contour.

Where parametric contour models extend to 3 dimensions, methods either replace the 2-dimensional

contour representation with a surface mesh [111, 112, 113] or create a 3-dimensional surface by stacking

2-dimensional contours [114, 42, 41, 115, 58, 34]. In the latter case the contour models deform in 2-

dimensions only, but information regarding the shape and location of a contour can propagate through

successive planes. In principle any 2-dimensional DCM framework can be extended to 3 dimensions by

contour stacking but we note that a good DCM should exploit the information between image planes in

an efficient manner.

Stochastic optimisation schemes are particularly attractive to the present research for two reasons.

The first relates to the prior probability distributions inherent to a stochastic sampling algorithm. These

probability distributions are derived from properties of the image or the contour model. Through the

use ofconditionalprobabilities, we propose that the optimisation can (i) make efficient use of user

interactions to condition the observation model, as demonstrated in [56], and (ii) readily incorporate

a probabilistic shape models for regularisation. The second attraction to stochastic optimisation stems

from their ability to sample from a posterior distribution over contours. The notion of a distribution

over plausible results is in keeping withLemma 2, which says that a segmentation algorithm should

offer different solutions. We will see in chapter 6, that a distribution over contours lends itself to on-line

supervision, whereby alternative solutions are presentedto the user for manual selection.

In conclusion, this project will aim to develop DCM frameworks that

• alleviate user demand by incorporating machine learning into one or more of internal energy,

global shape models and image observation models,

• seek an image or shape model that will generalise, so that it can be trained on any region-type
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having boundary ambiguity or variable shape,

• choose contour representations and optimisation schemes that reflect the other components of a

framework,

• use probabilistic optimisation schemes that allow efficient interaction,

• use open contours with on-line supervision based on ’steering’ mechanisms,

• use Markovian open contour models for their suitability to unpredictable shapes, but therefore

seek methods of closing a contour,

• exploit the simple global constraint offered by polar contour representations,

• seek generalised frameworks that readily exploit information from the user and the image, and

potentially from segmentations in neighbouring slices, where the latter allows generalisation for

3-dimensional segmentation by contour propagation,

• use synthetic images in evaluations, for more robuse measures of accuracy, and

• use reference frameworks that have similar modes of interaction to measure relative levels of user

demand.



Chapter 3

Statistical Shape Models

Many of the deformable contour models in the previous chapter have been adapted to use machine learn-

ing to acquire prior knowledge of the region’s shape. Shape priors constrain the segmentation to ensure

plausible results and alleviate problems associated with noise and occlusion. They draw from the more

general field of shape modelling, which has applications notonly in segmentation but also classification,

object recognition/categorisation and data compression.Where a model is used in a segmentation frame-

work, this commonly has the role of ’shape regularisation’,whereby the objective function (C4) includes

a penalty for contours disagreeing with the prior model (eg.[116, 52, 117]). Shape regularisation is an

example of usingdiscriminativeshape models in segmentation. Another way to introduce shape priors

into segmentation is in the use ofgenerativemodels (eg. [118, 119, 120, 121, 122]). In the generative

case, a model produces candidate, orproposalshapes which share shape properties with the training set.

Generating proposal shapes can be viewed as a constrained deformation mechanism (C5) in a deformable

contour framework.

This chapter reviews approaches to shape modelling, with emphasis on methods suited to a super-

vised segmentation framework. In particular, we are interested in various types of statistical shape model

(SSM). We consider as a SSM, any shape model that uses machinelearning to give a compact represen-

tation of shape information present in training data. The review also focuses onglobal shape models.

We use the terms ’global’ to refer to information that characterises a whole contour. This definition is

not restricted to the case where a boundary has recurring features, but is distinct from the case where

local information is simply integrated around a contour (authors such as [11] claim that this leads to a

global model). The review looks at SSMs from the point of viewof 2-dimensional shape, but some of

the methods extend to 3-dimensions.

Two popular SSMs are point distribution models and medial representations. We discuss both of

these approaches in order to highlight a fundamental balance between the discriminative power of a

SSM and the assumptions it makes about a class of shapes. These SSMs capture high-level information

about an object’s shape, giving them much discrimination capability, but rely on a high level of similarity

between shapes in a given class.

Another family of shape models use the radial time series boundary representation described in the

previous chapter. We review radial time series models because they assume relatively little shape simi-
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larity, and therefore apply to the types of region considered in this project. The review shows that time

series contour representations lend themselves to dynamical modelling techniques, which potentially

characterise global shape.

The rest of this chapter is organised as follows. Section 3.1discusses point distribution models

and medial representations, introducing common aims and challenges of statistical shape modelling.

Section 3.2 reviews radial time series models, discussing their relevance to the aims of this project, in

acquiring prior knowledge of shape and using this in supervised segmentation. Section 3.3 reviews other

methods that demonstrate the intention of capturing the most discriminative information with the least

complex model.

3.1 SSMs for High-Level Shape Information

This section describes two families of SSM, namely the ’point distribution model’ (PDM) and ’medial

axis representations’ (M-reps). These capture high-levelinformation about global shape characteristics,

by virtue of the similarity and points of correspondence between any two shapes of the same semantic

class. The PDM and M-reps are both generative SSMs, and use similar methods from information theory.

Due to their similarities we review PDMs in more detail and give a shorter overview of M-reps, where

the former bares more relation to the current project due to its boundary-based representation.

3.1.1 Point Distribution Models

A Point Distribution Model (PDM) represents a shape as a vector ofN points, i.e. coordinates around

an object’s boundary or, in the case of 3-dimensional models, over its surface [118]. The method is

an example of machine learning, where the PDM learns fromM training shapes belonging to the

class of ROI. The PDM assumes spatial correspondence throughout the training set, between the lo-

cations defining each of theN points in a given shape. In general, the correspondence points are dis-

tributed evenly between commonlandmarkpoints, which serve to align the training shapes. The training

shapes must be co-registered by iterative adjustment of pose (translation, rotation and scaling). The

M aligned shapes are stored in the vectorsY0,Y1, . . .YM−1 where theith shape vector is given by

Yi = (xi0, yi0, · · · , xiN−1, yiN−1)
T . The mean shape and covariance matrix are then given by

Ȳ =
1

M

M−1
∑

i=0

Yi (3.1)

and

S =
1

M − 1

M−1
∑

i=0

(Yi − Ȳ)(Yi − Ȳ)T (3.2)

respectively. By Principal Component Analysis (PCA), mostof the variability in the training set is rep-

resented by the eigenvectors ofS that correspond to the largest eigenvalues. From the2N eigenvectors,

the firstm are chosen, wherem << 2N , and stored in the matrixP = (p0, p1, · · · , pm−1). The PDM

is then defined by

Y ≈ Ȳ + Pa, (3.3)

wherea = (a0, a1, · · · , am−1) is vector of weights, or ’shape parameters’.
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The assumption of correspondence leads to two main drawbacks of the PDM approach. First, it

assumes that there is correspondence in the first place, between any two shapes in a training set. Consid-

ering the simple illustrative example of ’quadrilaterals’, the four corners would serve as correspondence

points after removing the ambiguity as to which is the ’top left’ point and so on. As noted in section 1.1.3,

some anatomical regions have recurring features that serveas corresponding points, such as thespinous

processpresent on all vertebra (figure 1.2). However, regions such as tumours and lesions can be variable

in shape, having arbitrary undulations around the boundaryand no sense of ’top’ and ’bottom’.

The second drawback of the correspondence assumption is that PDMs require points to be marked

on all training shapes by manual or automatic labelling. Manual labelling is labour intensive and not

guaranteed to preserve anatomical correspondence. There is active research into automating this proce-

dure, primarily using registration-based methods [123, 124, 125, 126] or ’minimum description length’

(MDL) methods [127, 128].

The registration-based method in [123] involves aligning shapes in a training set with their best

matching pair, computing a mean shape from each pair and repeating until a single mean shape rep-

resents the whole training set. Landmarks placed on the meanshape can then be projected back onto

each original shape. This approach, in common with all registration methods, relies on procedures for

’aligning’, and measuring the agreement between, pairs of shapes. The authors in [123] use dynamic pro-

gramming to match boundary sections of high curvature. In [124], the same team replace this alignment

procedure with a nonlinear registration method that transforms shapes to minimise the local disagree-

ment between boundaries, defined by non-overlapping areas.Other registration-based approaches in

[125, 126] borrow from more familiar medical image registration literature.

Methods of MDL are based on the assumption that the ’simplest’ point distribution model is that

in which the pointsYi correspond the most between training shapes. Davieset al. [127, 128] borrow

from information theory, to define the ’simplest’ PDM as thatwith the minimum ’description length’

[129]. Landmark placement then becomes an optimisation problem, where the description length is the

objective function and the pointsYi are first initialised throughout a training set and then manipulated

during optimisation. The algorithm requires that each shape is projected into a base domain, eg. a circle

in the 2-dimensional case, which causes problems for convexshapes.

At the same time as this project was investigating new shape models (presented in chapters 7 and 8),

Berkset al. [130] suggested that the MDL method can be used to build a PDMwithoutexplicit corre-

spondence between shapes. Their method starts with training shapes that have landmarks placed at equal

arc-length intervals, starting from a chosen origin. In their example of mammographic masses, there is

no obvious choice of starting point, which would correspondbetween examples. In the absence of a

single landmark, the authors choose the optimal starting point for each shape during alignment, being

that which gives rise to the minimum variance in the resulting model. The goal of modelling this type

of shape (tumour masses) without assuming explicit correspondence is in common with this project. We

consider the work of Berkset al. to be the closest competitor of methods that we develop in chapters 7

and 8. However, the ultimate aim of [130] is to simulate the shape and appearance of mammographic
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masses to provide training and testing data, and more work would be needed to base segmentation al-

gorithms on these models. Also, the evaluation of the methodis somewhat limited. The authors use the

models to simulate ground truth instances and define a performance metric based on the similarity be-

tween generated and original tumours, in terms of combined shape and appearance (texture). Results are

compared with an earlier method proposed by the same group [131] which overcame the correspondence

problem by enforcing a single landmark point on the tumour mass boundary. The landmark was defined

in relation to a nearby, anatomical landmark (the nipple) but there is no confirmed physiological basis

for assuming this to be a consistent geometrical relationship.

Other methods of automatic landmark placement draw from thewider geometry and shape litera-

ture such as the ’growing neural gas’ method [132], ’node splitting and merging’ [133] and extracting

’dominant points’ from ordered curves [134].

Another limitation of the PDM stems from its linearity (by equation 3.3). The model assumes that

any shape belonging to the same semantic class as the training data is given by a linear combination of

m < M eigenmodes from the PCA. This in turn assumes that the population of shapes form a unimodal

multivariate Gaussian distribution in shape space, and that the training data represent this distribution.

According to Cremerset al. [135], these assumptions break down when data exhibits complex shape

deformations, such as the nonlinear deformations arising from different 2-dimensional cross sections

of a 3-dimensional object. The problem is made worse in some medical applications by the presence

of pathological variations. The limitations of the linear model have prompted methods that remove its

assumptions [136, 137, 138]. An intuitive approach by Cootes and Taylor [137] uses a mixture model to

handle multimodal Gaussian distributions. However, this method requires that the number of modes can

be estimated. A more recent improvement over the linear model is provided by Cremerset al. [135, 138].

Their approach uses kernel PCA, whereby the data are assumedto form a Gaussian distribution in a

higher dimensional space, after a nonlinear mapping.

Another problem associated with PDMs is that choices for thenumber of training shapes and the

number of principle modes are somewhat arbitrary. Meiet al.[139] showed that this can lead to sub-

optimal modelling for segmentation, and the task of optimising for the number of distinct modes is the

subject of ongoing research [139, 140].

An extension of the PDM adapts it to model multiple regions that are disconnected but part of the

same ’constellation’ [141, 142]. Examples occur in medicalapplications where anatomy guarantees a

known constellation, such as vertebra making up the spine ormetatarsal/metacarpal bones making up

joints of the ankle/wrist. The individual regions are modelled by their own mean shape and modes of

variation, while the relative positions of the individual regions are assigned a second statistical model,

coupled to the first. Constellations do not arise for the applications central to this project, which involve

either an individual ROI, or a group (such as multiple sclerosis lesions) that are unpredictable in number

and relative position.
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3.1.1.1 PDM in interactive segmentation: the Active Shape Model

Cooteset al. [9, 118] popularised the use of PDMs for segmentation with the introduction of Active

Shape Models (ASMs). The method exploits the generative nature of the model in an optimisation

scheme. After initialising with the mean shape placed in an image somewhere near the ROI, the Active

Shape modelX = (xi0, yi0, · · · , xiN−1, yiN−1)
T evolves by iteratively varying pose to fit the image

and varying shape parameters to minimise the difference between the generated shape and the closest

shapeYi in the training set. First, the points ofX are subjected to small displacements that reduce

an image energy (C2) to move boundary points toward high gradient magnitude. These displacements

are stored in the vectordX = (dxi0, dyi0, · · · , dxiN−1, dyiN−1)
T . Then a least squares estimation

calculates the changes in pose, (defined by scalings, rotationθ and translation of the model centreXc),

that best describes the adjustmentsdX. The new contour is given by

X = M(s, θ)[Ȳ + Pa] + Xc, (3.4)

whereM(s, θ) is a linear transformation for scaling and rotation. To complete an iteration, an adjustment

to the shape parametersda is calculated by

da = PTdY, (3.5)

wheredY is the ’residue’ in model space [143], calculated by

dY = M(s−1(1 + ds)−1, θ − dθ)[M(s, θ)[Y] + dX − dXc] − X (3.6)

(see [9] and [143] for derivation), whereds, dθ anddXc are the changes in scale, rotation, and transla-

tion.

Despite the correspondence assumption of the Point Distribution Model, the impact of the ASM

on the medical imaging community has been huge. Examples include the segmentation of ventricles

in ultrasound images [144], or bones [145] and the trachea [146] in X-ray CT images to mention but a

few. Some refinements to the classical ASM make it even more suited to medical applications. Benefits

are seen when the optimisation scheme is replaced with a stochastic method [119], or assisted by user

interactions [147, 148, 149].

The interactive algorithm by Huget al. [147] is based on the idea that the most efficient user-

guidance comes from interacting with the most influential points on a parametric contour. The most

influential points, or ’principal landmarks’ are those thatcarry more shape information, identified by

iteratively removing points responsible for the most variation. The remaining points form a coarse

’control polygon’ of points that can be placed in an image forfast initialisation. The ASM algorithm

is then constrained so that all modes of variation produce shapes that share these control points. The

constraint is based on choosing basis vectors that displacethe control points in the x- and y-directions,

and which have the minimal Mahalanobis norm in the space of principal components.

The ’InterActive Shape Models’ (iASM) in [148] also constrain the ASM so that the resulting

shapes pass through boundary points defined by the user. Theirs is an iterative scheme, which seeks

shapes which occupy the intersection in shape space, between the intersection of the subspaceS1,
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spanned by the principal components, and the lower-dimensional subspaceS2 of ’allowed’ shapes that

contain fixed boundary points. Experiments in [148] suggestreasonable improvements in segmentation

accuracy for relatively few interactions, but these experiments use ideal, simulated interactions rather

than real user trials. In [149] the same group combine the iASM with an image model exploiting super-

vised, region-based classification and the hybrid method gives better results in heart segmentation than

either of the constituent algorithms.

3.1.2 Medial Representations

Medial representations or ’M-reps’ are another family of SSM which, like the PDM, use an explicit

parametrisation of object geometry and have advanced the field of segmentation [150, 151, 152, 122].

We give a brief overview of M-reps here to reiterate the assumptions of existing high-level shape models.

A detailed account of the method is given in [153].

The main distinction between M-reps and other methods is their use of a medial axis description

to parametrise shapes. Parametrisation is based on a ’hub’ and ’spoke’ model, where points along the

medial axis represent hubs, and spokes define straight linesfrom a hub to the region boundary. Together,

the hub and spoke structure is known as an ’atom’, whereby thesimplest atom comprises two spokes.

The number and type of atoms along the medial axis define the full shape representation.

To train M-reps, the atomic configuration is fitted to training shapes, then these are aligned by me-

chanical deformations. These deformations are modelled byprincipal geodesic analysis (PGA). Anal-

ogous to the PCA above, PGA represents the training set in a space of reduced dimensions, and it is

assumed that all objects from the same semantic class as the training set occupy the same space. PGA

can be viewed as a generalisation of PCA, where the Euclideanspace is replaced by the Reimannian

space of medial parameters. As such, the method is theoretically better suited to handle complex modes

of variation associated with pathology.

M-reps share two key drawbacks with point distribution models. Analogous to landmark placement

for PDMs, the need to assign medial axes and atoms to trainingdata is impractical. This procedure can

be partially automated by generating Voronoi diagrams [154, 155], but this in turn must be initialised

by boundary points similar to the landmarks of a PDM. Also, aswith the PDM, these SSMs assume

high levels of shape similarity between regions of interest. Notable successes of the M-rep method are

seen for brain structures such as hippocampi and ventricles[156] and the caudate nucleus [152], and for

whole organs such as the kidney [156] and liver [157]. However, to our knowledge, M-reps have not

been shown to model tumours or other variable shapes as defined in section 1.1.3.

3.2 Radial Time Series models

Section 2.1.4 described deformable contour models that parametrise a contour as a 1-dimensionalradial

time seriesr = {r0, . . . , ri, . . . , rN−1}. We noted that the{r, θ} parametrisation limits a contour

model to the case of star-shaped ROIs. However, some classesof shape are known to be typically star-

shaped and the radial time series re-appears throughout thestatistical shape modelling literature as it

is convenient and in the case of object recognition, non star-shaped objects can still be classified with
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high success rates. Also, some of the techniques apply to thegeneralised parametrisation{r, s}, where

s = {s0, . . . , si, . . . , sN−1} are arc-length increments.

3.2.1 Autoregressive models

Kashyap and Chellappa [158] introduced a model using the radial time series representation for the

classification and reconstruction of closed boundaries. The authors represent the radial time series by a

stochastic model belonging to the family of linear autoregressive (AR) models. In their Circular Aurore-

gressive (CAR) model, each pointri is expressed as a weighted sum of the radii at earlier time points

(angles) on the boundary plus a noise term, giving the generalised CAR equation

ri = α+

m−1
∑

j=0

pjri−j + σωi, (3.7)

whereα is proportional to the mean radius,p = {p0, . . . , pj , . . . , pm−1} is a vector of weights and

m ≤ N is the number oflag termsin the model, also referred to as theorder of the model. The

noise termσωi comes from an independent sequence of normally distributedrandom variablesω =

{ω0, . . . ωi . . . ωN−1} and standard deviationσ. The full parameter vector for the CAR model isQ =

{α,p, β} and is estimated for a given shape using least-squares methods.

In addition to the{r, θ} parametrisation, Kashyap and Chellappa suggest, without demonstration,

that the CAR techniques extend to 2-dimensional seriesX = {{x0, y0}, . . . , {xi, yi} . . . {xN−1, yN−1}}.

Thisbi-variaterepresentation extends the CAR model to include non star-shaped boundaries.

Kashyap and Chellappa first suggested thatQ can be used as feature vectors for shape classification.

Several authors have subsequently used and refined the CAR model for shape classification in this way

[159, 160, 161, 162]. Eom and Park [159] devise a maximum likelihood decision rule classifier to

classify outlines of eight aeroplane types and eight machine parts, reporting 100% success rate in six

out of the eight in each case. Daset al. [161] used the 1-dimensional CAR model to classify microbial

shape boundaries in classification experiments. The authors report lower success rates between 71.4%

and 91.4% for models of order 2-4. However, these experiments were small, using ten training and

five testing images from each class, and used simple ’featureweighting’ and ’rotated coordinate system’

classifiers. Miret al. [162] use the 1-dimensional CAR model in binary classification to discriminate

between liver and kidney boundaries derived from CT images,with 99 % confidence. The authors also

used a bi-variate AR model where points are represented in 2 dimensions as complex numbers, but

found no improvement even though some contours were not star-shaped. Although the classification

experiments above generally revealed better performance for higher order models, it is noted in [162]

that this rule does not always hold and the best model order should be identified empirically for a given

application.

Another key extension to the CAR model is given by Dubois and Glanz[163]. The authors change

the contour parametrisation to represent non star-shaped boundary as a 1-dimensional series by ’un-

wrapping’. First, the boundary points in the{r, θ} case are stored, where more than oneri is possible

for a givenθi. The method then steps around the boundary and records the radii ordered by arc-length.

However, the resulting ’time’ increments become somewhat arbitrary. The arc-length intervals are not
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equal and not used. The angles corresponding to the re-ordered points are from an equi-spaced set but

the axis is no longer monotonic and has repetitions. The authors acknowledge this loss of ’phase in-

formation’ and note that a given un-wrapped series does not represent a single unique boundary. The

success of the unwrapping algorithm is challenged by experimental results in [164] and [159]. Daset

al.[164] used two classifiers and two sets of shapes to directly compare the 1-dimensional model with

and without unwrapping. Their experiments revealed that the simple 1-dimensional case out-performed

the un-wrapping case for all of the tested model orders (1 to 4) on a set of shapes that includes non

star-shaped boundaries. Eom and Park’s experiments also show that their maximum likelihood classifier

using the simple 1-dimensioanl model gives higher classification accuracy, even with non star-shaped

boundaries, than the classifier used in [163] after unwrapping. One explanation for the inferior classifi-

cation rates using unwrapped time series is the loss of boundary phase information [164].

As well as classification Kashyap and Chellappa use the CAR model for encoding shapes to reduce

data storage. This relies on the ability to reconstruct a shape from estimates of the parametersQ, which

includes simultaneously retrieving the exact noise sequenceω = {ω0, . . . ωi . . . ωN} associated with the

shape. The authors also note that, by sampling noise sequences from a Gaussian distribution rather than

approximating the original sequence, perturbations on theoriginal shapes can be generated. However,

this is only used for model validation and to demonstrate therelative information stored in the parameters

α,p andβ. The use of CAR as a generative model is not seen in subsequentliterature.

Kartikeyan and Sarkar [165] showed that the linear CAR modelstruggles to classify shapes with

complex boundaries and intra-class variability. The authors adapt equation 3.7 to form a nonlinear variant

of the CAR model. The so called non-causal quadratic Volterra (NCQV) model is given by

ri = α+

m−1
∑

j=0

pjri−j +
∑

(u,v)∈G
gu,v + σωi, (3.8)

wherem ≤ N , g are the ’Volterra kernels’ andG is the set{(u, v) : gu,v 6= 0}. The procedure to find

the volterra kernels and fit the model is complex, eventuallygiving model parametersQ = {α,p,g}.

The authors use these as feature vectors in a Bayesian schemes for both recognition and classification.

Experiments show that the NCQV model improves on the linear case when classifying shapes with more

complicated within-class variability.

The NCQV is the only nonlinear radial time series model adapted for shape representation in the

literature. The method is complicated and has not received as much interest as the CAR model in later

literature. The NCQV is designed for recognition and classification tasks with no obvious extension to

shape generation. The authors even state that

“in the context of closed contour representation, forecasting is not an objective”.

In summary, the simple, 1-dimensional, linear autoregressive model has proved to be a useful tool

for classification and recognition of star-shaped and non star-shaped boundaries that are not too complex.

For the case of non star-shaped objects there is a lack of evidence that classification benefits from the

bivariate representation [162] or the use of unwrapping [159, 164]. There is, however, evidence that
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introducing nonlinearity into the AR model allows more complex boundaries to be characterised [165].

The CAR model breaks down when used to characterise boundaries that are complex [165], noisy [160]

or occluded [166]. There are no examples in the literature, of using CAR models in segmentation, either

by developing generative models or adapting the classifiersfor shape regularisation.

3.2.2 Markov models

Because the AR approach represents a whole contour by a single set of parameters, He and Kundu

[166] claim that it is unable to model ’unpredictable’ shapes with ’radical variations’. To address this

limitation, and the sensitivity of the CAR model to occlusion, distortion and local perturbation of shapes,

the authors combine the autoregressive model with a hidden Markov model (HMM). First, the radial time

series of a whole contour is divided intoM smaller segments and different AR models are fitted to each

segment. The HMM then models the relationship between AR parameter vectors from neighbouring

segments. The authors represent a shape as radii separated by equal intervals of arc length rather than

angles and a single section ofL < N radii r′ = {r1, . . . , rl, . . . , rL}, given the indicesl = {1 . . . L},

has the AR model

rl = α+

m−1
∑

j=0

pjrl−j + σωl, (3.9)

with parametersQ = {p0, . . . , pj , . . . , pm−1,
α
σ
, µr}, whereα

σ
is a scale invariant ratio of the whole

shape’s mean radius to the size of fluctuations about the meanandµr is the mean radius of the boundary

section.

The Hidden Markov Model hasM ’states’, in this case given by the boundary sections. A state

sequenceS of lengthT ≤M is a vector{s0, . . . , st, . . . , sT−1} with s ∈ {1, . . . ,M}. The relationship

between states is modelled by aM ×M transition probability matrixA, with elements

ai,j = Pr(st+1 = j|st = i), i, j = {1 . . .M}

=
No of occurrences of{ot ∈ i}and{ot+1 ∈ j}

No of occurrences of{ot ∈ i} .
(3.10)

The model requires an initial probability vectorΠ of lengthM with elements

πi = Pr(s0 = i)

=
No of occurrences of{o0 ∈ i}

No of training sequences
.

(3.11)

The observation sequenceO has elementsot given by the vectorQ for thetth segment, and an as-

sociated observation density vectorB with elementsbj(ot) being thea posterioridensity of observation

ot givenqt = j, approximated by

bj(ot) ∝ exp[−1

2
(ot − µj)Σ

−1
j (ot − µj)

T ], (3.12)

whereµj andΣj are the mean vector and covariance matrix of thejth state calculated by clustering the

training vectors. Note that this unsupervised clustering procedure determines the number and length of

the state vectors, i.e. the numberM of boundary segments.

The machine learning task is to estimate parameters(A,Π,B), by choosing those that maximise

the state optimised likelihood functionp(R,S∗|A,Π,B) = argmax
S

p(R,S∗|A,Π,B). The authors
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use the segmental K-means algorithm in [167]. Note that thisinvolves training the model on ground

truth shape data to populate the initial probability vectorΠ and transition probability matrixA by equa-

tions 3.11 and 3.11. Classification then assigns the labelp∗, which maximises the likelihood function

p(·|·), i.e. arg max
p

p(O,S∗|Ap,Πp,Bp). The authors use the Viterbi algorithm in [168].

The model is translation and scale invariant by virtue of theradial time series representation. How-

ever the need for all shapes in a class to be divided into smallsections removes the rotational invariance

of the model. To account for this the authors attempt to rotate all shapes to a common orientation. This

alignment is based on global features of ’elongation axis’ and ’minimum radius point’ which in turn

assumes a certain level of within-class similarity, in conflict with the aims set out in the paper and shared

by the present research.

Friedland and Rosenfeld presented another example of usinghigh-level shape information in a 1D-

CMRF [73]. The method uses an energy function in the Gibbs formulation that combines low-level

and high-level processing. The low-level smoothness term described in section 2.1.4 is complemented

with high-level information based on a similarity measure between the contour and the most similar

configurationr in a library. The so-called ’adaptive multi-level energy function’ comprises a weighted

sum of the low- and high-level energies, where the function is ’adaptive’ by varying the relative weights

during the optimisation. Arguably, the use of a library in the high-level process means that this shape

model is notstatistical. A statistical model of the population should give a compactrepresentation of

the information in the training data rather than explicitlystoring that data. The authors demonstrated

acceptable results in segmenting objects such as vehicles from infrared remote sensing images, and

experiments showed the benefits of the high-level energy over segmentations ran with this term set to

zero. However, the library matching process assumes a high level of similarity within the class of shapes,

making this approach unsuitable for the goals of this research.

3.3 Other Shape Models
This section reviews Fourier and other shape descriptors that have a role in medical image analysis.

3.3.1 Fourier descriptors

One type of shape model treats a closed contour as a linear combination of sinusoidal func-

tions [169]. A model of orderK uniquely defines a given shape with the parameter vector

{{a0, c0}, . . . , {ak, ck}, {aM , cM}} used in the equation
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 +

K−1
∑

k=0





ak ak

ck ck









cos(kt)

sin(kt)



 , (3.13)

wherex andy are pixel dimensions andt is an independent parameter related to arc-length.

The Fourier representation has the advantages of controlling the frequency of a shape by the choice

of model order, and naturally modelling a closed contour dueto the model’s periodicity. The model was

first used for object classification [170, 171] but also builtinto a segmentation framework to provide

shape priors by Staib and Duncan in [116]. Their framework allowed for machine learning by decom-

posing training shapes from a given class into the parametrisation above and fitting multivariate Gaussian
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statistics to the parameters. The segmentation itself usesa Bayesian approach to find the parametrised

shapeQ, which maximises the objective function

Pr(D|Q)Pr(Q)

Pr(D)
(3.14)

whereD is the observation model. In this caseD is a 2-dimensional map of a boundary measure (based

on image gradients) so the parametrised contourQ is first made to conform by turning the 1-dimensional

boundary into a 2-dimensional binary image.

Staib and Duncan used the Fourier shape models to segment theLeft Ventricle in echocardiogram

images and the corpus colossum in MR images. Results seem reasonable and the shape model is intuitive

but there were no quantitative conclusions drawn from thesedemonstrations.

A limitation of the model is the assumption of independence between the model parameters

{ak, ck}∀k. Staib and Duncan suggested extending the method by modelling the covariance of the

model parameters . This was later realised by Szekelyet al. [172], who in turn used the shape priors as

regularisers in ACMs to segment the corpus callosum in brainimages.

3.3.2 Low-level shape descriptors

Dating back to Hu’s ’moment invariants’ [173], global geometrical properties such as diameter, aspect

ratio or area have been used as low-level shape descriptors.If ROIs in a training set are normalised

in terms of scale and orientation, these descriptors can be used as features in shape recognition and

classification. Shape descriptors can be region-based or contour-based whereby, as demonstrated in

[174], two shapes can be similar according to one and not the other type.

In a recent medical example, Wanget al. use shape descriptors to model the shape of ventricles in

MRI volumes [10]. Ventricular volume (area) is a well-knownindicator of Alzheimer’s disease (AD).

After choosing the same axial slice from multiple MRI volumes, these are co-registered and the ventricles

segmented to produce a binary image. The authors derive two types of novel shape descriptors from

a ventricular region and its boundary. The first set of novel shape descriptors are region-based, and

designed specifically for ventricle shapes. The ’minimum thickness’ is the shortest distance between a

point on the left hand side of the region and a point on the right. This always occurs near the centre of the

region. Next, the ’axis shape descriptors’ rely on landmarkpoints at the four ’corners’ of the ventricles.

Having identified these points, the authors form descriptors from the two diagonal lengths along with the

four distances from the centroid to each corner. The second set of novel shape descriptors are contour-

based and are not specific to ventricle shapes. These are derived from the shape’s ’signature’, which is

equivalent to a radial time series. The authors use the mean,variance and higher order moments of the

signature as low-level shape descriptors.

The authors also extract standard region-based descriptors of area, circularity, eccentricity, elonga-

tion and rectangularity, and the contour-based perimeter.Experiments compare the discriminatory power

of the novel descriptors with the standard ones, to recognise AD symptoms. Performance is evaluated

by the correlation of a shape descriptor with cognitive testscores (a continuous indicator of AD) as well

as binary classification experiments where AD diagnosis provides the ground truth. In correlation exper-
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iments the minimum thickness gave the best performance whereas the mean signature value proved the

best discriminator in binary classification.

Shape descriptors are generally fast to compute. This makesthem suitable for use in real-time

applications such as database querying, browsing or recognition tasks applied to video frames [174].

However, shape descriptors are compact and lose a lot of information about global and local shape

making them unsuitable for capturing subtle differences between shapes and unable to reconstruct shapes

similar to a training set. Also, shape descriptors are not generative because, while values could in

principle be sampled at random from learned distributions,a sample would not map to a unique shape.

3.4 Notes on Performance Evaluation
The performance of a shape model is evaluated in two main ways. Where a shape model is used to

constrain segmentation, authors can quantify its benefits by comparing the results of segmentation with

and without the shape prior (eg. [53]). Irrespective of its use in a segmentation framework, the discrimi-

natory power of a shape model can be evaluated by techniques from the fields of object recognition and

classification literature. Recognition aims to determine whether a shape belongs to a given class while

binary classification aims to assign a shape to one of two classes. In terms of performance evaluation

these aims are closely related as in the recognition case, rejecting a test shape from the single, positive

class is equivalent to assigning that shape to an arbitrary negative class in binary classification.

The literature contains different approaches to the choiceof a negative class. Where a shape model

is used for detection or retrieval, authors often use a database of many shape classes, wherein all but

the positive class make up a pooled negative class (eg. [174,175]). In Wanget al. [10], a negative

class of shapes is inherent in the chosen application, as thediseased ventricle shapes being modelled

are naturally paired with the negative class of healthy ventricles. The binary classification experiments

of Mir et al. [162] sought to distinguish liver from kidney contours in CTslices. This is not a realistic

task as, while these contours might be of similar shape and size in certain axial slices of a tomographic

image, they are identified by their anatomical location. However, the liver and kidney classes are a useful

complementary pair as the contours possess certain similarities. First, both classes represent deformable

organs with similar surface properties. Second, the same image contrast/noise properties govern the

quality of ground-truth in both cases.

In the object recognition literature, performance is evaluated by measures such as ’precision’ and

’recall’. Adopting the convention that binary classification assigns a ’positive’ or a ’negative’ label,

precision is defined by the true-positive fractionTP = NTP
NTP+NFN

, where the number of ’true-positives’

NTP is the number of test cases correctly assigned to the positive class, and so on. Similarly, ’recall’ is

given by the fraction of true positives relative to the size of the whole test set.

The work of Wanget al. [10] also demonstrates the use of application-specific performance mea-

sures. Cognitive test scores provide a secondary measure ofthe presence or severity of Alzheimer’s

disease, known to correlate with the change in ventricular appearance captured by the shape models.

The test scores are used as a ’ground truth’ on a continuous scale and correlation with the variation of

shape descriptors provides a quantitative performance measure.
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3.5 Discussion and Conclusions

This review suggests that the linearity of the classical PDMmay not handle pathological variations,

which are the essence of variability in the classes of shape such as lesions and tumours. Also, the

assumption of correspondence makes PDMs inappropriate forthese applications. However, by exploiting

its generative nature, the PDM forms the basis of a popular segmentation framework (ASM) and recent

improvements make ASMs more suitable for other medical applications.

Time series models have been used for shape modelling. The key methods can be divided into

autoregressive and Markov random field models. The main difference is that autoregressive models

characterise the whole of a shape boundary by a set of global parameters whereas the Markovian models

model the variation of local shape properties around the boundary. The rest of this discussion highlights

the applicability of the radial time series representationto this project (section 3.5.1) and section points

out where current shape models that use the radial time series are lacking for our purposes (section 3.5.2).

3.5.1 Radial time series representation

The radial time series allows us to represent multiple shapes in the same parameter space without the

need for correspondence between those shapes. The example of polar parametrisation{r, θ} is limited

to star-shaped regions, but medical imaging involves many regions of interest that are star-shaped such

as those listed in section 2.1.4. Also, there is evidence that classification is robust against the presence

of non star-shaped examples in a training or testing set. Thedata sets available to this project, of MS

lesions and liver tumour cross sections, are both around80% star-shaped.

We propose that two of the problems associated with boundaryfollowing segmentation would be

alleviated by the use of radial time series. First, the polarparametrisation can be used to aid loop closing,

as a boundary should be completely tracked over a2π range. Second, because the model contains

an estimate of the region’s centre, divergence from the trueboundary can be avoided by penalising a

monotonic increase in radial distance from the centre. The representation may also help to balance the

requirements of increased user control (Requirement 1) and reduced user involvement (Requirement 2).

The position of a region’s centre, along with an estimate of the mean radius, provide much information

to the model while these can be estimated by observations from an image model and/or user interactions.

3.5.2 Radial time series shape models

Autoregressive models are an example of machine learning for shape. These are used for classification

but there are no attempts in the literature to develop them for shape regularisation for segmentation. The

CAR can be used to generate random perturbations of the single shape it was trained on, but no schemes

have been presented for training the CAR on multiple shapes and/or generating contours representative

of a given class. The Autoregressive method extends to a nonlinear model as seen in [165]. However, this

model is not generative and is only used for shape classification. Kartikeyan’s model is also complicated

to train, relying on inverse Fourier transforms and nonlinear least squares fitting.

Markov Random Fields in 1-dimension are used for segmentation but do not generally use machine

learning. The exceptions are the combined use of a Hidden Markov Model with the AR method [166] and
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the use of ’libraries’ in the potential function for 1D-CMRF[73]. However, these assume a higher level

of similarity within a class of shapes and introduce the sameproblems of correspondence associated with

a PDM. Also, the shape prior based on a library of training series is not strictly a SSM. The Markovian

approach extends to open-contour modelling, seen mainly for left ventricular regions, which do not have

closed boundaries as the region adjoins the aorta.

In conclusion, global, high-level shape priors benefit segmentation frameworks but existing models

are over-constraining for the case of unpredictable, pathologically variable ROIs without spatial cor-

respondence. We are motivated to develop novel shape priors, where the radial time series contour

parametrisation offers a promising starting point. Cooteset al’s use of the PDM in active shape models

also shows that exploiting the generative nature of a SSM in this way can have a huge impact on the field

of segmentation. This project will explore the time series approach to develop SSMs that

• capture global shape information without correspondence points,

• are generative,

• model Markovian dynamics in common with boundary tracking frameworks,

• model periodic dynamics associated with closed boundaries,

• are nonlinear,

• use machine learning for global shape information,

• offer discriminative models for shape regularisation,

• are probabilistic, whereby samples drawn from a distribution of likely shapes may form the basis

of probabilistic segmentation, and

• allow shape generation to be constrained by observations.



Chapter 4

Machine Learning Classification

’Machine learning’ is a general term applied to tasks ranging from parameter estimation to modelling

cognitive processes [176]. In the context of a segmentationframework, machine learning is used to

provide prior knowledge about the expected shape (C3) or observation model (C2). The previous chapter

stated that SSMs are examples of machine learning, as the various models estimate parameters from

training data. This chapter looks at machine learning techniques appropriate for an image model, which

fall into the category of ’supervised classification’. The supervised approach is in line with the intention

to make efficient use of information provided by the user. This information comprises ground truth

image data that are labelled by human observers. For example, previously labelled data can train the

classifier off-line and the results used to provide an improved observation model by pre-processing.

Alternatively, an observation model could be trained or refined interactively, using data located in the

image during initialisation or run-time. In both cases the data is in the form of feature vectorsx, each

with an associated class labely ∈ Y. In the case of binary classification, two labelsY = {1,−1}
correspond to positive and negative classes such as ’region’ and ’background’.

Machine learning classifiers can be divided into generativeand discriminative methods, also known

respectively as ’statistical’ and ’distribution-free’ [177]. In generative methods, feature vectors are re-

lated by an underlying joint probability. If we compute the conditional probabilitiesPr(x|y), y ∈ Y and

the class probabilitiesPr(y), then we can obtain the probability that unseen datax′ belongs to classy′

using Bayes rule

Pr(y′|x′) =
Pr(x|y′) Pr(y′)

Pr(x)
, (4.1)

wherePr(x) =
∑

y∈Y Pr(x|y) Pr(y). It is then straightforward to classify unseen data using the Bayes

classifier. In the binary case we assign labely = 1 if Pr(1|x′) > 0.5 andy = −1 otherwise.

Generative methods are well principled and require relatively little computation, but are only appro-

priate for classification problems where we have some prior knowledge about the underlying probability

modelsPr(x|y), y ∈ Y. Conversely, discriminative methods are favoured when we cannot assume the

form of the probability distributions, but can be computationally expensive. In this project, image models

will be based on regional texture, for which we have no prior knowledge of underlying processes giving

rise to the observed data. Also, we seek classification methods that generalise between applications, and

in the presence of high within-class variability for a givenapplication. For these purposes we choose
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discriminative methods. These methods, also called ’discriminant analysis’, separate data by discrimi-

nant functionsgy(x) in the space of the feature vectors. Section 4.1 summarises discriminant analysis

and introduces the principle behind nonlinear methods. Section 4.2 gives a more in-depth review of

the ’support vector machine’, an example of nonlinear discriminant analysis favoured for its ability to

generalise. For example, SMVs can discriminate between twoclasses that might each give rise to mul-

tiple clusters in feature space. In the context of segmentation this applies to the classes of ’region’ and

’background’ textures whereby each class can possess more than one distinct sub-class due to complex

textures or within-class variability. The review highlights other benefits of SVMs for use in textured

images.

4.1 Discriminant Analysis

Discriminant analysis is a distribution-free approach to classification, which separates data intoN -

classes by defining(N − 1) discriminant functions. In the binary case whereY = {1,−1} we seek

the single functiongy(x) whereby

y′ = arg max
y∈Y

gy(x). (4.2)

Equation 4.2 gives rise to regions in feature spaceR1 = {x : g1(x) > g−1(x)} andR−1 = {x :

g−1(x) > g1(x)} and these regions are separated by adecision boundaryx : g1(x) = g−1(x).

Discriminant analysis can be divided into linear and nonlinear methods. Linear discriminant anal-

ysis (LDA) calculates a discriminant functiong(x) from a weighted sum of the components of the

d-dimensional feature vectorx = {x0...xd−1}T , i.e.

g(x) =
d−1
∑

i=0

wixi. (4.3)

wherew = {w0...wd−1} is a vector of weights. A hyperplane is defined by constantg(x) in the d-

dimensional feature space. The task of classification is to find the hyperplane that optimally separates

two classes. After training, unseen data are classified by which side of this decision boundary they

lie and the perpendicular distance to the boundary gives a measure of the posterior probability of class

affiliation.

Nonlinear discriminant analysis is a family of techniques used when classes are not linearly sep-

arable. The general approach is to perform a nonlinear mapping of the data, so that linear techniques

can be performed in the new feature space. Hastieet al [178] introduced ’flexible discriminant analy-

sis’ (FDA), which uses an explicit mapping to a higher dimensional feature space and then uses linear

regression to fit a discriminant function in the new space. More recent nonlinear discriminant analysis

[179, 180, 181]is based onimplicit mappings achieved by the kernel method. In these casesx is replaced

by a kernel functionK(u,v) whereu andv are any two vectors in the original space. Kernel methods

are further extended by the kernel perceptron [182] and the support vector machines described next.
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4.2 Support Vector Machines

A Support vector machine (SVM) [183, 184] is a universal classifier that can handle input patterns of

high dimensions, and from classes that are not linearly separable. SVMs are characterised by the ’kernel

trick’ introduced above and the assignment of margins to thedecision boundary. A SVM seeks a linear

discriminant function in a feature space defined byK(u,v) =< φ(u), φ(v) >, whereu andv are

any two vectors in the original space andφ is a nonlinear kernel function. The kernel maps the data

into a higher dimensional feature spaceH . Popular choices for the kernel function are polynomial and

radial basis functions (RBF). The second characteristic ofSVMs is the assignment of margins to the

hyperplane. The optimisation maximises the separation of parallel margins that lie either side of the

hyperplane.

Support vector machines are trained by casting the problem as a Lagrangian optimisation. A stan-

dard result is the ’dual form’ of the SVM problem where, for a training set ofN examples, optimisation

is equivalent to maximising

argmax
α





N−1
∑

i=0

αi −
1

2

N−1
∑

i=o

N−1
∑

j=0

αiαjyiyjK(ui, uj)



 , (4.4)

subject to the constraints

N−1
∑

i=0

αiyi = 0 and 0 ≤ αi ≤ c ∀i, (4.5)

whereu are the training vectors,N is the number of training vectors,y ∈ {−1, 1} are the class labels,

αi ≥ 0 are Lagrange multipliers andc is a constant revisited later. Solution of equation 4.4 is costly,

as the size ofK is equal to the square of the number of training examples. Formally, this is a Quadratic

Programming (QP) problem to optimise a convex quadratic objective. There are different algorithms

available for solving this type of problem [185, 186, 187, 188], which all involve breaking them into

smaller QP problems.

After optimisation, any input vectorui for which the corresponding Lagrange multiplierαi is

greater than zero, is a support vector and will be denotedSi. These vectors lie on the maximal mar-

gins, parallel to the hyperplane. The margin maximisation may allow some vectors to liebetweenthe

margins, having a closer distance to the hyperplane than thesupport vectors. These so called ’slack vari-

ables’ are assigned a cost governed by their distance from the hyperplane and weighted by the constant

c. This constant therefore controls a trade-off between separating the margins and keeping all training

data outside them.

A trained SVM is defined by the support vectorsS, a vector of signed Lagrange multipliersαy and

a ’bias’ b which gives the perpendicular distance from the hyperplaneto the origin ofH . This offset

enables hyperplane margins to reside in positive and negative subspaces. A new observation has an

associated feature vectoru, and is classified by evaluating

dsvm =

Ns−1
∑

i=0

αyiK(u,Si) + b, (4.6)
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whereNs is the number of support vectors anddsvm is the distance to the hyperplane, or ’decision

value’. The sign ofdsvm gives the label of the predicted class and magnitude ofdsvm is a relative

measure of the certainty of class membership.

One intuition behind SVMs is that by maximising the hyperplane margins we obtain good gener-

alisation. It may be the case, however, that the dimensionality of the input feature space is high enough

to compromise generality. Yaoet al [189] address this problem by splitting the feature vectorsinto sub

vectors, each the subject of a separate SVM. A ’voting committee’ of SVMs is then defined and can be

optimised for the particular configuration of how the features are split up.

Due to the construction of a single decision plane in featurespace, SVMs are naturally a binary

classifier. However, their generality and computational efficiency has motivated the development of new

SVMs for classifying arbitrary numbers of mutually exclusive classes (see e.g. [190, 191, 192, 193, 194,

195]).

One limitation of SVMs is that the output is an un-calibrated, unbounded valuedSVM ∈ (−∞,∞).

This limits the generality of the distance measure. Ideallywe would like to calibrate decision values to

give estimates of the posterior probability of belonging toeach class. Calibrating SVM outputs is non-

trivial because typical distributions of decision valuesd+ andd− are badly behaved. Platt [196] showed

that bounded probabilities can be approximated by fitting a parametric sigmoid functionPsig between

the limitsdmin anddmax. After obtaining a decision functionf(ui), the probability that a new feature

vectorui has labelyi = 1 is approximated by

Pr(yi = 1|(u)i) ≈ Psig((u)i) ≡
1

1 + exp[Af((u)i) +B]
(4.7)

whereA andB are the parameters sought in fitting. To obtainA andB the training data must be

partitioned and used in an iterative training and testing algorithm, which is computationally demanding.

Another drawback of SVMs is that parameters must often be optimised for the kernel function. Hsu

and Lin [197] point out that in particular, the influence of RBF parametersγ andc are inter-dependent

so we seek an optimalpair of these parameters. The authors use a grid-search where parameters are

varied exponentially and the ’fitness’ observed at discreteintervals. The fitness is related to the accuracy

of the corresponding SVM, which must be estimated. We discuss methods of performance evaluation in

section 4.3.

4.2.1 Featureless classification for texture

This section reviews the use of SVMs for featureless textureclassification. These methods exploit the fact

that a single texture in an image is completely described by the relative intensity and relative positions

of pixels. These two pieces of information are encoded in anyvector of two or more pixel values taken

from known relative locations. The methods described here use such vectors as inputs in a SVM. The

kernel trick then implicitly extracts the features that best discriminate the classes.

The earliest example is found in the work by Kimet al for the classification of text regions in

video frames [198, 199]. The authors use vectors of image intensity taken from a sampling window, to

form patterns associated with the pixel at the centre of the window. The sampling window is a star-like
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configuration of pixel locations. This window shape was introduced by Mao and Jain [200] in their

’simultaneous auto-regressive’ (SAR) texture model, where multi-scale texture features are captured by

associating different model parameters with different neighbourhood sets at increasing radial distances

from the central pixel. The resulting SVM is compared with a Neural Network (NN) classifier in [201].

With the same input patterns, the SVM out-performs the NN method, having a91.2% success rate

compared with86.3%. This suggests that the combination of an autoregressive sampling window and the

SVM’s kernel trick provides a powerful texture classifier without explicit feature classification. However,

the SVM required twice as much processing time as the NN classifier in this experiment.

The featureless SVM texture classifier is virtually invariant to rotation, if the training set is large

enough to involve a given texture at all practical (discrete) orientations. Scale invariance cannot be

expected with a finite window size. However, larger scale textures are captured in part by any given

window, so by the same reasoning as for rotation invariance,a large enough training sample could lead

to virtual scale invariance. Campaniniet al [202] have developed a scale invariant method for SVM

texture classification without features by using multiple sampling windows of different dimensions. In

order to keep the dimensions of the input patterns constant,the larger scale windows are sub-sampled.

Campanini’s method is used to classify the whole of a mammogram image as ’suspect’ or ’not’ based on

the likelihood of lesions at any of the feasible scales.

Our research group have previously used raw pixel values as input dimensions for 2-dimensional

texture classification in medical images [203, 204] and an extension to 3-dimensions was investigated

during the early stages of this project [205].

The technique is further extended to classify 4D functionalMRI data by Mourao-Mirandaet. al

[206]. The authors are concerned with the task of classifying 4D datasets, comprising time sequences

of 3-dimensional brain volumes. Patients perform tasks during image acquisition, so that functional

information can be derived from the correlation between fluctuations in a blood-oxygen level dependent

signal (BOLD response) and the temporal windows in the task’s design. Datasets can then be divided

according to which task is performed or, in the case of Alzheimers studies, whether the participant has the

disease or not. At the time of their study, Mourao-Mirandaet. alnote that machine learning techniques

had only been applied to such tasks by two previous studies in2003. In both cases, fMRI sequences

were characterised using feature selection methods. The novelty in [206] comes from their use of voxel

indices as input dimensions in a hyperspace classifier, in much the same way as described for texture

above. The whole of a 3-dimensional volume defines an input feature space of hundreds of thousands of

dimensions, (in practice the authors reduce this to hundreds of dimensions by PCA).

4.2.2 On-line algorithms and incremental learning

The classical SVM algorithms mentioned above are examples of off-line or ’batch’ algorithms, requir-

ing all of the training data upon initialisation. On-line algorithms on the other hand inspect the training

examples sequentially. Consider the general on-line case of a discriminant algorithm that iteratively up-

dates a decision boundary at timet upon inspection of training dataut ∪ ut−1. This could be at one

iteration during the inspection of a fixed set of training data, or upon revision of a pre-trained classi-
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fier using new training data. The second case refers to hyperplane ’tracking’ or ’incremental learning’

necessary in cases where training data varies over time.

Recently, on-line algorithms have been proposed for training hyperplane classifiers of the SVM

type, having maximal-margins and kernel space mapping. In these cases, support vectors are sequentially

added to the set defining the hyperplane margins. When new support vectors are added it is desirable for

some ’old’ ones to be removed for three main reasons. First, some of the existing support vectors may

have been erroneously included due to the lack of training data previously available. Second, in some

scenarios, the newer data may be expected to better represent the set to be classified, as it is part of the

same local or temporal subset. Finally, the removal of support vectors becomes necessary to avoid an

unbounded increase in memory storage and classification time associated with a trained machine.

Crammeret al [207] introduce a ’fixed budget perceptron’ algorithm that seeks to remove the most

redundant support vectors as more are added. The method simulates the removal of each support vector

to identify that which, when removed, remains correctly classified with the largest margin. Removing

this vector fixes the number of support vectors and leaves thehyperplanewt no more complex than at

time t− 1. The method is shown in [208] to perform well on relatively noiseless problems but degrade

quickly with increasing noise. Westonet al [208] introduce the ’tighter budget perceptron’, which uses

a new method for selecting which vectors to remove. The authors replace Crammer’s simulation with a

direct evaluation of the misclassification rate. The tighter budget perceptron is shown to give significantly

better classification rates than Crammer’s algorithm as thebudget of support vectors increases, until a

limit is reached above which they appear to perform equally.More recent refinements to fixed budget

on-line learning involve removing the least recently included support vectors, as in the ’Forgetron’ of

Dekelet al. [209] and even removing support vectors at random [210].

There is strong motivation for on-line algorithms, as batchtraining will fail in the case where

training data are either non-stationary [211, 212] or large[213, 214]. However, while there are well

accepted implementations ofbatchlearning ([215, 216, 187]), implementations of on-line algorithms are

scarce and hardly used in the machine learning community. This reflects practical difficulties regarding

memory allocation and data types [217].

4.3 Performance evaluation

Methods of performance evaluation are affected by the type of classification task and in some cases the

classifier itself. In an example of the latter, it was originally thought [184] that the number of support

vectorsNs, as a proportion of the number of training data, is an upper bound on the classification accu-

racy that a trained SVM can achieve. However, Barzilay and Brailovsky [218] show that a performance

measure based onNs is not always applicable. Instead, an empirical performance measure can be used

to assess classification accuracy. These use labelled testing data and return a measure based on the

proportion of correct classifications and/or misclassification.
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4.3.1 Receiver Operating Characteristics

A method of classifier evaluation popular in the medical image analysis community is receiver operating

characteristic (ROC) analysis (see eg. [219] and Appendix Cin [220] for an overview). ROC analysis

extends the measure of ’precision’ described in section 3.4, for cases where a classifier gives a continuous

measure of class membership, such as the probability returned by LDA or the decision value returned by

a SVM. After assigning values to all test data, a unique binary classification is defined by thresholding

this value. Each classification (threshold) has associatedtrue positive fractionTP and false positive

fractionFP given by

TP =
NTP

NTP +NFN

and FP =
NFP

NFP +NTN

, (4.8)

whereNTP is the number of true positives etc. as introduced in section3.4. Varying the threshold from

the minimum (negative) decision value to the maximum (positive) yields pairs ofTP andFP . The final

stage is to construct a ROC curve by plotting,FP againstTP .

The area under a ROC curve (AUC) has a value between 0 and 1, where 1 indicates perfect classifi-

cation, 0 would mean that all data are wrongly classified and 0.5 corresponds to discrimination capability

no better than random label assignment. Swets [221] showed that, if the distance value assigned to each

classa andb follows a normal distributions with meansµa, µb and standard deviationsσa, σb respec-

tively, then the AUC is related to the separation of these distributions by the inverse cumulative normal

distribution function.

4.3.2 Cross-validation

Cross-validation is a general term for methods that evaluate classifier performance, which are different

for ’one-class’ and binary classification.

In the case of one-class classification, a trained classifieris tested by assigning scores or labels to

data in the test set. As the test set is known to belong to the class, high scores, or an abundance of positive

labels, indicates a successful classifier. However, a single pair of training and testing data sets can give

biased results. Cross-validation partitions the data intomultiple training and testing sets, and repeats the

train/test procedure, then the mean of the chosen performance measure (eg. AUC) is less prone to bias.

However, the choice of data partition is not always obvious.The size of the test set introduces a trade-off

between bias and the variance in performance measures. One option is to omit each feature vector in

turn from the training set. Thisleave-one-outprocedure must be repeatedN times whereN is the size

of the ground truth set. Another option is to usek-fold cross-validation, which is flexible in terms of the

numberk of training/testing sets and how they are combined in a single classification. Medical imaging

studies may present natural sub-sets, which give meaningful partitions. For example, data can be divided

by patient or time point in a longitudinal study. This applies to both one-class classification and the

binary case, where a classifier trained on positive and negative data from one or more patients is used to

classify data from another.
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4.4 Discussion and Conclusions
SVM classifiers are relevant to the present research for three main reasons. First, SVMs are able to

handle input feature spaces of high dimensions, which mightbe necessary when classes such as textures

can not be discriminated by low-dimensional information. Second, the maximal margin method leads to

good generalisation capacity ([202, 222]), which is important for applications suffering inter-class vari-

ability. Third, the kernel trick allows a simple method of texture classification discussed in section 4.2.1,

which extracts features implicitly from the relative location and intensity of neighbourhood pixels. This

approach is attractive to the present research for its generality.

Support vector machines offer a powerful classification tool which, when tuned for a certain ap-

plication, should generalise well in the presence of within-class variability. There is evidence that the

kernel trick, along with a well chosen sampling window, enables image texture to be classified well

without explicit feature classification. This kind of universal texture classifier is attractive to a medical

image analysis package because (i) texture is a key visual cue in low contrast monochromatic data, (ii)

regions of interest such as those associated with disease often vary in appearance for different patients,

time points or image acquisitions, and (iii) the same methodshould generalise well across different ap-

plications in a common package, since the kernel trick implicitly extracts texture features from raw data

without application-specific pre-processing.

A common criticism of SVMs is that they are limited to binary classification. This is not considered

a limitation for the present research, where a single (positive) class represents the region of interest.

There is motivation for the implementation of incremental learning algorithms, both to overcome

large demands on processing and memory storage, and to enable classifiers to evolve according to chang-

ing or growing sets of training data. The idea of improving orlocalising a classifier in the light of new

ground truth is attractive to a supervised image analysis package where many regions belonging to a cer-

tain class might be segmented in turn. In the case of medical image segmentation, this extends to cases

where (i) ROIs (or their cross section) are segmented on successive slices in a 3-dimensional dataset,

and (ii) many examples of ground truth from numerous imagingcentres may become available, given

the increasing acceptance of medical image databases and standardisation of image archiving.

In conclusion, this project will draw from the machine learning classification literature in order to

• create image models based on supervised binary classification of regional texture,

• use featureless texture classification, in order to generalise for applications with large within-class

variation and for different applications,

• use these image models to disambiguate region boundaries for interactive deformable contour

models, with the aim of reducing demand on the user, and

• design the classifiers so that they can exploit new training information provided interactively, with

the aim of making efficient use of interactions.



Chapter 5

Nonlinear Time Series Models

In chapter 2 we saw deformable contour models that use a 1-dimensionalradial time seriesas a contour

parametrisation (C1). Section 3.2 further described the ways in which time series methods have been

used along with the 1-dimensional paramerisation to createstatistical shape models for use in object

recognition and classification, and where these are in turn used as shape regularisers for segmentation

(C3). This motivates us to look further into the field of nonlinear dynamics, in order to extend the idea

of time series modelling for shape. Dynamical models can describe any data that is represented as an

ordered series. Examples include physiological time series [223], spatial data including surface models

in microscopy [224] and texture features derived from ultrasound time series [225]. We review time

series analysis in the proposed context of shape modelling for segmentation frameworks.

Section 5.1 describes Langevin models, which are used to model Markovian dynamics. We view

Langevin models as an extension to the 1D-CMRF model and later develop them for shape modelling and

segmentation in chapters 7 and 8. Section 5.2 describes Gaussian processes, of which the 1-dimensional

case is an example of non-Markovian time series modelling. We view Gaussian processes as an extension

to the CAR model and also develop them in chapters 7 and 8. Chapter 7 will introduce key elements of

new shape models and devise methods of training a model and ’scoring’ unseen shapes, while chapter 8

builds the models into segmentation frameworks, includingnovel use of generative models. Throughout

this chapter we are looking for where Langevin and Gaussian process models might enable us to

• learn from a set of contours, prior shape information at a higher ’level’ than local energies,

• work without the assumption of spatial correspondence between shapes in a class,

• derive a ’score’ for use in shape regularisation, which estimates the probability that an unseen

shape belongs to the same class of shapes as the training set,

• exploit generative models in a probabilistic segmentationframework, and

• adapt generative models to incorporate observations, frominformation available in the image

and/or from user interactions.
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5.1 Langevin Models
A Langevin model describes the dynamics of a time dependent state vectorχ(t) as a stochastic process.

Langevin models are characterised by a deterministic terma(χ(t)) and a stochastic termb(χ(t)) in the

generalised Langevin equation
dχ

dt
= a(χ(t)) + b(χ(t))ω(t), (5.1)

whereω(t) is uncorrelated, time dependent noise with zero expectation value.

Langevin models assume a Markov property defined by

χ(t) = f(χ(t− ∆t)) (5.2)

wheref denotes any function and∆t is a constant delay parameter for which the Markov property holds.

The transition densityPr(χ(t)|χ(t − ∆t)) evolves according to the Kolmogorov forward equation (an

example of a Fokker-Planck equation) of the form

∂

∂t
Pr(χ(t)|χ(t−∆t)) =

[

−
∑

i

∂

∂χi
(D

(1)
i (χ(t), t))+

1

2

∑

i,j

∂2

∂χi∂χj
D

(2)
i,j (χ(t), t)

]

Pr(χ(t)|χ(t−∆t)),

(5.3)

where thedrift functionD(1) corresponds to the deterministic term and thediffusion matrixD(2) cor-

responds to the stochastic term. These are equivalent to thetime-stationary conditional moments at

positionχ in state space given by

D(k)(χ) = lim
∆t→0

1

∆t

〈

[χ(t+ ∆t) − χ(t)]k|χ(t) = χ
〉

. (5.4)

Let us treat a seriesx = {x0, . . . , xi, . . . , xN−1} as the time evolution of a 1-dimensional state

variablex(t). Let us also define corresponding time intervalst = {t0, . . . , ti, . . . , tN−1} and assume

that the delay parameter can be quantized as∆t = n×dt, wheren is a positive integer and dt is constant.

In the following derivationsx(t) corresponds toxi andx(t ± ∆t) correspond toxi±n andxi±1 is the

special case where∆t is chosen so that the Markov property holds between successive time points int.

Langevin models approximate the evolution ofx(t) as a difference equation by adopting Itô’s in-

terpretation [226, 227] of a stochastic differential equation (SDE). The time evolution, derived from the

Kolmogorov forward equation 5.3, has the form

dx(t) = a(x(t))dt+ b(x(t))ω(t). (5.5)

Assuming stationary dynamics, the deterministic and stochastic terms are not explicitly time dependent,

and are given by functions of the state variablea(x) andb(x). These are related to the drift function

D(1)(x) and diffusion functionD(2)(x) in the underlying Fokker-Planck equation by [228]

a(x(t)) =
D(1)(x)

∆t

b(x(t)) =
D(2)(x)√

∆t
.

(5.6)

In the context of radial time series modelling for shape, we wish to ’score’ unseen shapes according

to their agreement with a model. We also stated that probabilistic scores are preferable, for use in



5.1. Langevin Models 68

probabilistic optimisation schemes. In section 7.2.3 we will see that shape scoring can take advantage

of the conditional probabilities (transition densities) central to Langevin models. For this we notice that

the joint probability of a series ofN points under a Langevin model is given by

Pr(x) = Pr(x0)

N−1
∏

i=0

Pr(x(t+ ∆t)|xi−1 = x(t)) (5.7)

and use equation 5.7 in an objective function (C4).

5.1.1 Parameter estimation

Given a (1-dimensional) time series, fitting a Langevin model involves estimating the form and param-

eters of the functionsa(x) andb(x). This means learningD(1)(x) andD(2)(x) in equation 5.4, for a

chosen delay parameter∆t, from observed data.

Friedrich and Peinke [229] introduced the ’direct estimation’ method to extract drift and diffu-

sion functions from observed series. The method assumes Gaussian statistics for the transition density

Pr(x(t + ∆t)|x(t)). The authors approximatePr(x(t + ∆t)|x(t)) as a function of the state variable in

the following steps.

Step 1. Divide the state space into bins of equal width∆x, centred on discrete valuesxn.

Step 2. For a given bin, note all observationsx(t) that fall in the rangex(t) ∈ xn ± ∆x
2 .

Step 3. Starting from these observations, follow the time series along a trajectory of length∆t

and form a histogram of the future position of the state variable.

Step 4. Use this histogram to approximate the transition density as Prn(x(t + ∆t)|x(t) ∈
xn ± ∆x

2 )

Step 5. Estimate the Gaussian meanµn and standard deviationσn from the distributionPr(x(t+

∆t)|x(t) ∈ xn ± ∆x
2 ) = N (µn, σn).

Finally, the drift function and diffusion function atxn, for a given delay parameter∆t, are related to the

first and second order statistics of the transition density by

D(1)
n (xn,∆t) = (µn − xn)∆t and

D(2)
n (xn,∆t) = σn

√
∆t xn ∈ {xmin, . . . , xn, . . . , xmax}. (5.8)

Repeating for allxn within the state space occupied by the series, and evaluating 5.6, yields discrete

approximations ofa(x(t)) andb(x(t)) in equation 5.5. The remaining task is to fit functions to these ap-

proximations. It is common to assume a simple parametric function and use a standard fitting procedure

to estimate the parameters. Function types are chosen by inspection and might call upon some intuition

regarding the physical process underlying the series data.

The choice of∆t depends on the nature of the continuous time process and how the data are dis-

cretised. The Markov property is implicit in the two-step conditional probabilityPr(x(t + ∆t)|x(t)),
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but for this property to hold, the delay parameter∆t must correspond to that in equation 5.2. This is the

characteristic time scale of the Markov process, which doesnot necessarily correspond to a single time

interval separating observations and must be estimated. Over-Sampled data may necessitate a trajectory

length∆t of multiple data points to satisfy the model. Conversely, too sparse data might never capture

the Markovian property of the underlying stochastic process. It is common to find a delay parameter em-

pirically at the same time as extractinga(x) andb(x) [230, 231, 232, 223]. Other methods for choosing

the best delay parameter are given in [233, 224]. Friedrichet al. [233] define the optimal∆t as that for

which the multiple conditional probability densityPr(x(t + ∆t)|x(t), x(t − ∆t), x(t − 2∆t) . . .) and

the one-step densityPr(x(t+∆t)|x(t)) agrees for allx(t+∆t) . However, the authors do not elaborate

on how these should be evaluated or their agreement defined.

The direct estimation method is a generalised and intuitiveway of training Langevin models from

series data. Moreover, the method can be extended to learn from multiple time series comprising different

realisations of the same underlying dynamical system. In the case of radial time series we show in

section 7.2.2 that this is equivalent to training a statistical shape model on multiple shapes of the same

class.

Alternative methods of training Langevin models from series data combine maximum likelihood

estimation with simulation techniques [234, 235, 236]. Thegeneral idea uses the joint log likelihood

derived from equation 5.7, given by

L({x0, . . . , xi, . . . xN−1}|a) ∼
N−1
∏

i=0

Pr(x(t + ∆t)|xi = x(t),a)

∼
N−1
∑

i=0

log Pr(x(t + ∆t)|xi = x(t),a),

(5.9)

wherea is the vector of parameters of the Langevin equation. The estimation uses an iterative opti-

misation strategy to find the parametersa that maximizeL({x0, . . . , xi, . . . xN−1}|a). The conditional

probabilitiesPr(xi+1|xi,a) in equation 5.7 must be estimated for each interval[i, i+ 1]. All examples

in [234, 235, 236] extract these estimates from simulated data, generated using the current estimate ofa

and simulation techniques described in the next section. A histogramming procedure similar to steps 2-5

above then yields estimates of the conditional probabilitydensity. However, these estimates are likely to

be biased and as such the benefits of these maximum likelihoodmethods is not clear [235, 237]. One

variant uses an auxiliary model to approximate the true likelihood [238]. However, the algorithm is

complex and a suitable auxiliary model may not be available in all cases.

5.1.2 Simulation

Simulation plays several roles in time series modelling. For example, section 5.1.1 noted that a simulated

series can be re-analysed to evaluatePr(xi+1|xi,a) during maximum likelihood parameter estimation.

Also, all the examples of using Langevin models given later in section 5.1.4 simulated the dynamics

learned from data for validation purposes. Similarly, in our case, simulation allows us to overcome

problems associated with the dynamic degradation of radialtime series sampled on a pixel grid (sec-

tion 8.4.1.2). Moreover in section 8.4, we realise novel segmentation frameworks by simulating radial
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time series. This follows the intuition that simulation is equivalent to generating hypotheses in shape

space, which forms the basis of a stochastic optimisation scheme (C6).

Following Itô’s interpretation [226], a Langevin series considers a stochastic differential to be the

limit of a discrete time process. It follows that an instanceof a Langevin time series can be gener-

ated by the solution of the SDE in equation 5.5. Examples throughout the literature perform numerical

integration using the Euler-Maruyama representation

x(t+ dt) = x(t) + dt× a(x(t)) +
√

dt× b(x(t))ω(t), (5.10)

where dt is an integration time step.

There are three points to note from equation 5.10. First, thediffusion term scales as the square

root of dt. This is necessary to obtain the limit of the diffusion process in the underlying Fokker-Planck

equation [239]. Second, for any choice of integration time step dt, the Markovian property 5.2 holds,

where dt is equivalent to the delay parameter∆t. Third, the integration time step dt has arbitrary units.

When simulated data represents a real time series the intervals can be re-scaled to the characteristic time

scale. In practice, large values of dt used in equation 5.10 cause the simulated series to diverge.In

general dt should be just small enough that the conditional density estimates do not change for smaller

values [234]. However, there is no single optimal choice that applies to all drift and diffusion functions.

5.1.3 Incorporating observations

We wish to constrain the simulation scheme so that an instance (time series) agrees with both the dynam-

ics encoded in the SDE and observations in state space. For the purpose of this project, ’observation’

refers to information from an image model and/or information provided by the user of an interactive

segmentation algorithm. In particular, in chapter 8, we will see how Langevin simulations can be con-

strained so that shapes generated as radial time series agree with both the global dynamical model and

evidence of region boundaries in an image.

The goal of constraining generative Langevin models in thisway is the subject of ongoing research,

particularly in the meteorological literature, where it isknown asdata assimilation[240, 241]. The state

of the art generally employs the SDE as a sampling mechanism combined with another inference scheme

such as Bayesian MCMC [240, 241] or Gaussian process [242]. We propose that, in the context of radial

time series modelling for shape, techniques based on data assimilation can constrain the SDE simulation

method above by observations in the form of an image model (C2) or interactions (C7).

5.1.4 Applications

Langevin models are particularly suited to systems with an underlying physical model, as these relate to

the deterministic function. Examples are coupled oscillators, analogue electrical circuits and potential

wells. Langevin models are also suited to describing a stochastic process on a macroscopic scale, where

this results from many microscopic subsystems that are self-organising [243, 244, 236]. Langevin models

have gained recent popularity for their ability to describedata in a wide range of applications. Examples

include meteorological systems [231], physiological systems [232, 223], financial markets [245], traffic

flow [230] and measurement of rough surfaces [224].
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In one example of physiological data analysis, Kuuselaet al. [232] found that the Langevin model

describes heart rate fluctuations over characteristic timescales of tens of minutes. Since this discovery

the Langevin model for heart rate fluctuations has been used for data classification and proved successful

at distinguishing between healthy and diseased patients [223]. In an example of spatial data analysis,

Jafariet al. [224] demonstrated that the undulations on metallic surfaces within microscopic data are

well described by a Langevin process. The authors demonstrated the simulation of realistic surfaces

using the Euler-Mayarama scheme with a trained model.

5.2 Gaussian Process Models
Gaussian processes (GPs) are a general method for modellingthe prior distribution and estimating the

posterior distribution over discrete functions. Gaussianprocesses are naturally suited to tasks involving

observations in state space. As a result the models are oftenseen as a regression tool [246]. Gaussian

processes are also gaining popularity in the field of time series analysis. In chapter 7 we extend this idea

for the case of radial time series, to create a global shape model (C3). In the context of a segmentation

framework the ’regression’ view also extends to incorporating observations from the image model (C2)

and interactions (C7) in chapter 8.

The model treats a time series as a random vector of outputsx = {x0, . . . , xi, . . . , xN−1} cor-

responding to inputs at discrete time pointst = {t0, . . . , ti, . . . , tN−1}. The output at eachti has an

associated probabilityPr(xi|ti), which we assume to follow a normal distribution. As a resultthe vector

of outputs has a multivariate normal distribution

x ∼ NN(µ,Σ(x,x)) (5.11)

whereµ is the discretised mean function given by the vector of expectation valuesE(xi) andΣ(x,x) is

theN ×N matrix of covariances between pairs of outputs{xi, xj}∀i, j ∈ {0, . . . , N − 1}, written as

Σ(x,x) =

















ε0,0(x0, x0) ε0,1(x0, x1) . . . ε0,N−1(x0, xN−1)

ε1,0(x1, x0) ε1,1(x1, x1) . . . ε1,N−1(x1, xN−1)
...

...
. . .

...

εN−1,0(xN−1, x0) εN−1,1(xN−1, x1) . . . εN−1,N−1(xN−1, xN−1)

















. (5.12)

The covariance between each pair of outputs is taken as a function of the corresponding inputs

ε(xi, xj) = f(ti, tj) wheref is also known as a kernel function. The mean functionµ and the co-

variance functionε(xi, xj) completely define the prior model of a GP.

As in the Langevin case, we wish to ’score’ unseen radial timeseries according to the probability

that they belong to a shape model. In section 7.3.3 we will seethat a probabilistic shape score can take

advantage of the fact that GPs are based on multivariate normal distributions.

5.2.1 Parameter estimation

Williams and Rasmussen [247] view GP regression as a machinelearning tool where the task is to

fit a discrete functionµ and a parametric kernel functionε(xi, xj ,a) to training data, wherea =
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{a0 . . . ap, . . . aP−1} is a vector ofp parameters. In the context of shape modelling, estimating model

parameters from multiple radial time series amounts to learning their common dynamical properties.

A full analysis requires that the functions and parameters are estimated simultaneously, with an

optimisation scheme such as by Bayesian model selection [246]. For our purposes we assume knowledge

of the functional forms ofµ andε(xi, xj ,a), and consider the task of estimating parametersa used in the

covariance matrixΣ(x,a) that best describes an observed series. This is the approachtaken by several

authors [247, 248, 249]. Recall thatε(xi, xj ,a) is actually evaluated in terms of input sitesti andtj ,

which are known. This means that the only unknowns, when building the covariance matrix, are the

parametersa, so we writeΣ(a) for convenience.

The most common method of parameter estimation follows the approach usually accredited to Mar-

dia and Marshall [250], but presented earlier by Kitanidis [251]. The approach is to express the likelihood

of observed data in terms of the parametric covariance function, and find the parameters that maximise

this likelihood. The probability of an observed seriesx = {x0, . . . , xi, . . . , xN−1} follows the multi-

variate normal distribution

Pr(x|a) =
1

2π
N
2 |Σ(a)|N

2

exp[−1

2
(x − µ)TΣ−1(a)(x − µ)] (5.13)

where vectorµ is the known discrete mean function andΣ(a) is the covariance matrix as in equation 5.2.

Taking the negative log of equation 5.13 yields the cost function

L = − log(Pr(x|a))

=
N

2
log(2π) +

1

2
log(|Σ(a)|) +

1

2

(

(x − µ)TΣ−1(a)(x − µ)
)

(5.14)

which is to be minimised to find the most likely parametersa. The authors in [250] and [251] use

iterative gradient descent methods of the general form

ak+1 = ak − δRk

∂L

∂ak
, (5.15)

wherek is the iteration number,δ is a step length which, in the case of the Levenberg-Marquardt algo-

rithm, is made adaptive (δk) to ensure a decrease in the cost function at each iteration,and the matrices

Rk and ∂L
∂ak

are discussed next.

The matrixRk governs the type of gradient descent algorithm. IfRk is the unit matrix, then 5.15

is the method of ’steepest descent’. IfRk is (an approximation of) the inverse of the second derivative

∂2L
∂a2

k

, then 5.15 is the (quasi-)Newton method. More commonly, authors use the Gauss-Newton method

wherebyRk is the inverse of theP ×P Fisher information matrixF evaluated for the current parameters

a = ak, having elements

Fm,n =
1

2
Tr

(

Σ−1(a)
∂Σ(a)

∂am
Σ−1(a)

∂Σ

∂an

)

, (5.16)

where ∂Σ(a)
∂am

is the matrix of element-wise partial derivatives of the covariance matrix with respect to

themth parameter.
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The matrix ∂L
∂ak

is theP ×1 vector of partial derivatives of the likelihood with respect to the current

parametersa = ak. It follows from the product rule and properties of the traceof a matrix, that
(

∂L

∂a

)

m

=

(

∂L

∂am

)

=
∂L

∂Σ(a)

∂Σ(a)

∂am

=
1

2
Tr

(

Σ−1(a)
∂Σ(a)

∂am

)

− 1

2

(

xTΣ−1(a)
∂Σ(a)

∂am
Σ−1(a)x

)

(5.17)

Mardia and Marshall’s gradient descent method is prone to converging on local minima [252].

Also, the calculation ofRk and the matrices of partial derivatives limits the suitability of the gradient

descent method in the context of learning from radial time series for shape modelling. This is because

equation 5.17 assumes that all training data belongs to a single series. While data from multiple training

shapes could be concatenated, this would lead to impractically large matrices.

Markov Chain Monte Carlo (MCMC) methods offer an alternative approach as used in [247].

MCMC is a general machine learning technique, already discussed in chapter 2 for optimising de-

formable contours. In the context of parameter estimation the algorithm uses Monte Carlo sampling

to draw parameters from the stable distribution that maximises the log likelihoodlog(Pr(x|a)), i.e. the

negative of equation 5.14. Neal [248] states that MCMC methods are the only feasible approach to

parameter estimation, especially for larger numbers of parameters.

The MCMC method is particularly suited to our purposes, of learning common dynamical proper-

ties from multiple shapes (radial time series) in a class. This type of machine learning is referred to as

’multitasking’ [253, 246]. In section 7.3.2 we exploit the joint probabilityPr(xm=0,...,M |a) of observ-

ing the set ofM series denotedxm=0,...,M−1. The joint log probabilityL′, i.e. the thing to maximize,

becomes a summation

Pr(xm=0,...,M−1|a) =

M−1
∏

m=0

Pr(xm|a)

=

M−1
∏

m=0

1

2π
N
2 |Σ(a)|N

2

exp[−1

2
(xm − µ)TΣ−1(a)(xm − µ)]

L′ = log Pr(xm=0,...,M−1|a)

= −MN

2
log(2π) − M

2
log(|Σ(a)|) − 1

2

M−1
∑

m=0

(

(xm − µ)TΣ−1(a)(xm − µ)
)

,

(5.18)

and an MCMC algorithm is set up to draw samples from the stabledistributionπ(a) having expectation

value equal to the maximuma-posterioriprobability (MAP) estimate ofa.

5.2.2 Generative model

This section defines standard procedures for generating GPs[246]. Generating a series from the model

is equivalent to drawing a random vector of outputsx = {x0, . . . , xi, . . . , xN−1} from the prior distri-

bution. After developing GPs for shape modelling the generative models form the basis of probabilistic
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segmentation frameworks in section 8.5.

If z is aN -dimensional vector of independent variables, each drawn from N (0, 1) then we can

write

z ∼ NN(0, I) (5.19)

where0 is a vector of zeros andI is theN × N identity matrix. If the covariance matrixΣ(x,x) is

positive semidefinite, it follows that

x = µ + Az ∼ µ + NN(µ,AAT), (5.20)

whereA is the Cholesky decomposition ofΣ(x,x). Calculatingx from equation 5.20 requires the

following steps:

Step 1. Form a vector ofN discrete inputst = {t0, . . . , ti, . . . , tN−1}.

Step 2. Construct the covariance matrixΣ(x,x) by evaluating elements in equation 5.2 using the

kernel functionε(xi, xj) = f(ti, tj).

Step 3. Take the Cholesky decomposition ofΣ to giveA.

Step 4. Constructz by generatingN random variableszi from the normal distributionN (0, 1).

Step 5. Calculatex = µ + Az.

This procedure generates a whole series simultaneously, according to the prior dynamical model defined

by the mean function and covariance kernel. The next sectiondescribes extensions to draw samples from

the posterior model in the light of observed data.

5.2.3 Incorporating observations

As proposed above, in the context of radial time series modelling in segmentation, the image model (C2)

and interactions (C7) can play the role of observations. It is desirable for a generated series to combine

these observations with the dynamics defined by the mean and covariance functions. In the GP model

this type of constraint amounts to conditioning the prior over function space. Generating series in turn

amounts to drawing samples from the posterior. Here we describe the procedures for conditioning the

prior in the light of observations with and without associated noise. The noisy and noise free observations

are represented by image models in section 8.5.1 and interactions in section 8.5.2.1.

5.2.3.1 Noise free observations

GP regression is based on conditioning the prior model on observationsxi at corresponding inputsti.

We re-write the vector of inputs above ast∗ = {t∗0, . . . , t∗i , . . . , t∗N∗−1}, where∗ denotes that the cor-

responding outputs are unknown. These outputs are denotedx∗ = {x∗0, . . . , x∗i , . . . , x∗N∗−1} and could

be predicted by the GP using the generative model above. ForN observations we have the vector of

known outputsx = {x0, . . . , xi, . . . , xN−1} at inputst = {t0, . . . , ti, . . . , tN−1}. Consider a new vec-

tor v = {t, t∗}T , which is constructed by concatenating input vectors for theN observations andN∗
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unknown outputs. This vector has lengthN ′ = N +N∗ and covariance matrix

Σ(v,v) =











ε0,0(x0, x0) . . . ε0,N(x0, x
∗
N ′−1)

...
. . .

...

εN,0(x
∗
N ′−1, x0) . . . εN,N(x∗N ′−1, x

∗
N ′−1)











=





Σx,x Σx,x∗

Σx∗,x Σx∗,x∗



 ,

(5.21)

whereΣx,x denotes aN ×N sub matrix,Σx,x∗ is aN ×N∗ sub matrix and so on. These sub-matrices

are used to draw samples from the posterior as follows.

The posterior has a multivariate normal distribution of dimensionN∗, written as

Pr(x∗|t∗, t,x) = NN∗(µpost,Σpost), (5.22)

whereµpost is theN∗ × 1 posterior mean function andΣpost is theN∗ × N∗ posterior covariance

matrix.

Calculation of the posterior mean functionµpostinvolves accounting for known observationsx by

µpost= µ + Σx∗,xΣ
−1
x,x(x − µx). (5.23)

whereµx is the prior mean function evaluated at the same input sites as the observationsx.

Calculation of the posterior covariance matrixΣpost involves all pairs of inputs with both known

and unknown outputs, by

Σpost= Σx∗,x∗ − Σx∗,xΣ
−1
x,xΣ(x,x∗). (5.24)

Finally, equation 5.20 is replaced by

x∗ = µpost+ Apostz ∼ µpost+ NN∗(µpost,ApostA
T
post), (5.25)

wherez ∼ N (0, I∗) with I∗ being a(N∗ ×N∗) identity matrix, andApostis the Cholesky decompo-

sition ofΣpost. Samples drawn from the posterior in equation 5.25 are conditioned to pass through the

observed points. When working with radial time series models for segmentation in chapter 8, we will

adapt the constraint of noise-free observations in order tocondition shape models in response to user

interactions (C7).

5.2.3.2 Noisy observations

In many practical cases, an observation at a given timeti is represented by a mean̂xi and variance

σ2
i . GP models have also been developed to condition the prior onthese ’noisy’ observations. The

method stores observation means and variances in a vectorx̂ and a matrixσ2I respectively, whereI

is aN × N identity matrix andσ2 = {σ0, . . . , σN−1} are the independent variances of each ofN

noisy observations. Because of the independence assumption we can add the variance matrixσ2I to the

covariance matrix of the joint distribution given in equation 5.21 to give

Σ(v,v) =





Σx,x + σ2I Σx,x∗

Σx∗,x Σx∗,x∗ ,



 , (5.26)
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where, as in section 5.2.3.1, the covariance matrixΣ(v,v) divided into four sub-matrices used in the

predictive equation

Pr(x∗|t∗, t, x̂, σ2) = NN∗(µpost,Σpost), (5.27)

where

µpost= µ + Σx∗,x[Σx,x + σ2I]−1(x̂ − µ). (5.28)

and

Σpost= Σx∗,x∗ − Σx∗,x[Σx,x + σ2I]−1Σx,x∗ . (5.29)

Samples drawn from the posterior in equation 5.27 are attracted the the observation means, more so for

those having smaller variance. In the context of radial timeseries models in segmentation, chapter 8

adapts these ideas to derive noisy observations from boundary-based image models (C2).

5.2.4 Applications

GP models are mainly used for regression and classification tasks. The role of GPs as a regression

tool, fitting functions to sparse and noisy data, makes this modelling technique suited to the contouring

problem where the observation series (boundary measure) isnoisy and may contain gaps. The role of

GPs as a classification tool extends to the use of a GP prior in segmentation by regularisation.

The use of GP models for time series modelling is well established. Recent examples in computer

vision use the dynamical priors to improve object tracking [254, 255]. In these cases the approach is

viewed as a nonlinear extension to methods using linear autoregressive models, such as that in [256].

Wang et al. [254] introduced a GP framework to model higher dimensionaltime series for tracking

human motion over video sequences. Urtasunet al. [255] later showed that this framework can learn

complex dynamics with modest amounts of training data, whilst handling occlusion in the observation

series and low image quality.

5.3 Discussion and Conclusions

This chapter reviewed two time series models, chosen as extensions to those used for shape modelling

and segmentation in the vision literature. Langevin modelsshare the Markov property with the 1D-

CMRF used in shape classification and segmentation. We view a1-dimensional GP as a nonlinear

extension of the autoregressive time series model [254, 255].

The wider field of time series analysis involves other types of dynamical model, including chaotic

and purely statistical models, which are also used biomedical data analysis. Our choice of model is

governed by two main questions. The first is what we can assumeabout the data. For example, we

make noa priori assumptions as to whether boundary fluctuations for tumorous regions of interest are

Markovian. As such we have chosen two models, Langevin and GP, which respectively do and do not

assume this property. We make noa priori assumptions as to whether radial time series exhibit chaotic

behaviour. We learn from the example of heart rate fluctuations, that the same physiological time series

can be described by both chaotic [257, 258] and stochastic [232] models. The second question is what

we want the model to do. As we have already justified, we desirea model that provides hypotheses, in
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other words generate shapes with model dynamics for use in segmentation algorithms. Purely statistical

models such as those based on fractal analysis [259] or symbolic complexity [260] or other entropy

measures [261, 262, 263] do not readily offer this functionality.

In discussing the relevance of Langevin and GP models for shape modelling we note the key sim-

ilarities and differences between the two approaches. The models are similar in that they both offer

discriminative and generative methods that, if combined with the radial time series boundary represen-

tation, lend themselves to statistical shape modelling. Both models represent a series by a deterministic

function and an independent stochastic sequence, and so could be used in frameworks with a stochastic

deformation mechanism and optimisation scheme. In the caseof Langevin models, the delay parameter

∆t is the characteristic timescale at which fluctuations can beconsidered Markovian. This is analo-

gous to the width parameter of a GP kernel. These parameters in turn play the role of the numberm

of ’lag terms’ in an autoregressive (AR) model. Finally, Langevin and GP models are both nonlinear

and as such, following the conclusions made in [165], expected to model complex shapes having high

within-class variability. We discuss differences betweenthe models in the next subsection.

5.3.1 Differences between Langevin and GP models

The Langevin approach models Markovian dynamics, based on astationary function of the local clique

{xi, xi−n}. As a result, the machine learning methods in a Langevin model can make use of incomplete

training contours, or the method adapted for open contour models. Conversely, GPs are based on a

continuous correlation function over allx and must be trained on complete series.

As a result of their Markovian nature, Langevin models do notreadily represent cyclic series. GP

models on the other hand can model cyclic series by the choiceof a periodic kernel function. This is

relevant to radial time series that exists over a periodic range of2π radians.

In the case of Langevin models, observations are not easily included by current methods, as so-

called ’data assimilation’ is the subject of ongoing research. Conversely, GP models naturally use obser-

vations to condition the prior model, as this constitutes the regression task for which GPs were primarily

developed.

Another difference lies in the generative methods for simulating a series from each case. The SDE

method of Langevin models generates a series in successive steps. In the context of deformable contours,

this is analogous to the deformation mechanisms specific to boundary tracking. The GP generative model

on the other hand draws the whole of a series from the prior model in one-shot.

Finally, unlike Gaussian processes, Langevin-type seriesassume an underlying physical model. Ex-

amples in the literature suggest that these assumptions hold in many real world applications, including

physiological processes and one example of a series of points in the spatial domain. Kleinhanset al.

highlights the suitability of Langevin methods for modelling complex systems of physics, chemistry and

biology [236], where macroscopic series are the result of complex interactions between microscopic sub-

systems. This applies to the complex physiological mechanisms that give rise to regions such as tumours

and lesions in medical images, as backed up by simulations based on physical models of constrained

diffusion in biomechanical literature (eg. [264]).



5.3. Discussion and Conclusions 78

This is also in line with other ways in which physical models have been used to constrain segmen-

tation and the related field of image registration. In the case of segmentation, biomechanical knowledge

allows tailored definitions of internal energy. In [265] forexample, the authors segment cellular re-

gions in single plane illumination microscopy (SPIM) images using a smoothness constraint based on

analytical expressions for the ’lipid bilayer bending energy’ in cell membranes. In the case of registra-

tion, biomechanical models have been used to constrain the deformation field that aligns two images,

by incorporating knowledge of the physical processes underlying regional differences in the two images

[75, 266].

In conclusion, the field of time series analysis outside the segmentation literature is vast and has

seen rapid development since the use of CAR and 1D-CMRF for shape classification. We have chosen to

review GP and Langevin models, both of which are nonlinear, flexible and capable of modelling natural

phenomena in an intuitive way. Both models also introduce robust schemes for machine learning, series

simulation/generation and, in the GP case, the incorporation of an observation model. We are there-

fore motivated to develop these approaches for statisticalshape modelling and supervised segmentation.

With a radial time series representation, the Langevin and GP approaches can be seen as extensions

to the linear CAR and 1D-CMRF models respectively. The extensions also introduce nonlinearity and

higher-level information known to benefit a segmentation framework and reduce the amount of on-line

information needed (Requirement 2). We identify the following requirements to enable novel shape

priors based on Langevin and GP models:

• Developing ’shape scoring’ methods for use in (classification and) an objective function.

• Adapting GP data assimilation procedures to incorporate observations from an image model and

interactions.

• Devising Langevin data assimilation procedures to incorporate observations from an image model

and interactions.

• Choosing deterministic functions and machine learning procedures appropriate for the training

data available.

• Devising methods of generating periodic series in the Langevin case.

• Building generalised DCM frameworks driven by generative SSMs, capable of incorporating these

or other models.



Chapter 6

Tracking Ambiguous Boundaries

This chapter seeks to improve supervised segmentation, by introducing prior knowledge driven by effi-

cient run-time interactions (C7) and novel image models (C2). Chapter 2 concluded that the most efficient

modes of interaction work closely with other components of the segmentation framework, and proposed

that boundary tracking approaches offer the optimal balance between a user’s control and involvement.

Chapter 4 concluded that the SVM ’kernel trick’ leads to image classification methods that generalise

across applications and maximise the information gained from monospectral data. This chapter devel-

ops these two key ideas by combining interactive boundary trackers and texture classification in novel

segmentation frameworks.

Section 6.1 develops algorithms for boundary tracking and introduces an interactive framework.

Experiments in section 6.1.5 evaluate the useability of theinteractive framework in user trials. Sec-

tion 6.2 investigates the use of SVMs for texture classification and boundary extraction in low contrast

images. Experiments in section 6.2.5 test the efficacy of theSVMs for the boundary ambiguity prob-

lem in synthetic and medical images. Section 6.3 shows how the boundary trackers can be driven by

the output of SVM classifiers to reduce problems associated with boundary ambiguity. Experiments in

section 6.3.2 and 6.3.3 evaluate the benefits of the SVM in supervised segmentation of synthetic and MS

lesion images respectively.

6.1 Interactive Boundary Tracking

This section develops an interactive boundary tracking tool based on the jetstream algorithm of Perezet

al [43], with novel modes of interaction (C7) designed to increase the amount of user control (Require-

ment 1). Sections 6.1.1 and 6.1.2 present adaptions made to the original jetstream algorithm and other

interactive methods built into the framework. Section 6.1.3 introduces two new algorithms, constrained

to terminate the open contour at a fixed point provided interactively. These algorithms are intended as

methods for completing a closed contour during segmentation and we choose from the two on the basis

of qualitative evaluations. Sections 6.1.4 and 6.1.5 describe how we evaluate the interactive software and

present experiments that test the novel interactions and loop closing.



6.1. Interactive Boundary Tracking 80

(a) (b) (c)

(d) (e) (f)

Figure 6.1: Schematic diagram of boundary tracking by particle filtering. Grey-levels represent any

image modelI, such as gradient magnitude, or SVM decision value, rescaled to the range{0, . . . , 1}.

(a) The current ’step’ comprising boundary points (blue) interpolated with a straight line (green). (b)

Thepredictionstage, makingM = 6 proposals for the pointxi+1 by drawing from the prior distribution

of anglesϕ. (c) Theweightingstage, forming a discrete estimation of the posterior by weightsw. (d)

The importance samplingstage causes some predictions to be duplicated and some to bediscarded. In

this example two predictions have survived and are each duplicated three times. (e) Several steps create

several tracking paths that share many points. Arrows show where particles have differentxi. (f) The

path with highest overall weight gives the desired estimateof the contour section.

6.1.1 A particle filtering algorithm

Recall from section 2.2.1, the ’jetstream’ algorithm workswith a set ofM contours(xm0,...,i)m=0,...,M−1

wherexi = {x, y} is a position vector in the image frame. The algorithm tracksa boundary section

x0,...,i by making iterative estimates of the posterior densities

pi+1(x0,...,i+1|D) ∝ pi(x0,...,i|D) × q(xi+1|xi−1,...,i) × l(D(xi+1)), (6.1)

whereD denotes information in the image andq and l are the smoothness prior and data likelihood

respectively, given as functions of the angle made by a given’step’ fromxi to xi+1 and the local image

properties. Section 2.2.1 gave a full description of these functions and the particle filtering algorithm,

comprising stages ofprediction, weightingandimportance sampling. Figure 6.1 illustrates these stages.

We make three technical adaptations to the jetstream algorithm based on intuition. First, we re-

place the normal prior angular distribution,q = N (ϕ, 0, σϕ), with the Von-Mises distribution[267]
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q = V(ϕ, 0, κϕ) ∝ exp(κϕcos(ϕ − 0)), which is periodic with period2π and spread controlled byκϕ.

This distribution is better suited to model the prior over a periodic variable likeϕ. Second, we constrain

boundary tracking to avoid self-intersection. This is doneby keeping a map of the contour sections ac-

cepted from previous runs. For any proposal step that lands on or traverses the pixels in this map, we

repeat the prediction stage of drawing samples fromV(ϕ, 0, κϕ), with increasing varianceσϕ, until M

proposals do not intersect the contour. The algorithm then proceeds by weighting these proposals and

resampling from them as usual. Third, we define a jetstream asthe particle set that, after importance

sampling, has the maximum total weight, i.e. the highest value of
∑N−1
i=0 w. The authors in [43] ar-

gue that the mean path, rather than the path of maximum weight, is a ’more stable’ solution. However,

the averaging process can smooth out desired boundary detail and could create false paths where the

posterior is multi-modal such as at forks in the true boundary. The arrows in figure 6.1 (e) show parts

of a boundary where taking the mean over particles would cause unnecessary deviation from the true

boundary, caused by nearby clutter giving high weights.

6.1.2 An interactive framework

We extend the initialisation and run-time interactions suggested in [43] to make more efficient use of

the information provided. Figure 6.2 demonstrates the framework, used for the application of MS lesion

contouring. Rather than a single anchor, we initialise witha small straight-line (2 or more pixels). This

provides bothx0 and the initial directionϕ0 in figure 6.2 (b) without placing much additional demand

on the user. This mode of initialisation can also increase speed and user-control if the jetstream can

be initialised at a long, straight section of a boundary. Upon initialisation, the software displays the

contour section resulting from a single runx0,...,N−1, with pointsxi interpolated using Bresenham’s line

algorithm [268]. Contouring continues by making efficient use of anchors placed around the boundary.

In [43], as with live wires in [90], the anchor simply fixes thecontour model at the last accepted point

on the boundary. The methods described next, (section 6.1.2.1) provide a fullyuser steeredframework

with increased control. This type of steering is shown to work in a real-world segmentation in figure 6.2,

and replaces extra measures used in [43] for handling sharp corners in a boundary. The final run of the

jetstream is constrained to terminate at the starting pointas in figure 6.2(d). Loop closing methods are

revisited in section 6.1.3.

6.1.2.1 User guided contours

Figure 6.3 illustrates the modes of interaction that a user can use to guide a jetstream contour along a

boundary. At any time the contour is made up of accepted sections from successive runs. Between runs,

the user selects an anchor point, from where the next run begins. An anchor placed at thetip of the

jetstream causes the tracking to continue as normal (figure 6.3, top row). If an anchor is placedbeyond

the tip, the Bresenham algorithm interpolates a straight line from the tip to the anchor and the next run

begins from the anchor, with initial direction given by the interpolation (figure 6.3, second row).

If the user wishes to discard some of a jetstream, i.e. to correct for a divergence from the true

boundary, an anchor is placed at the last accepted pixelalong the contour (figure 6.3, third row). This

anchor becomes part of the contour model and all points from there on-wards are removed. A new run
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(a) (b)

(c) (d)

Figure 6.2: Annotated screenshots from a jetstream during segmentation. (a) A white matter lesion in a

mid-axial MR image of the brain. (b) The first jetstream run comprising a straight user-defined section

from x0 to x1 andN subsequent steps. Pixels selected by the user are shown in red, pointsx that make

up the parametric contour in blue and their interpolation ingreen. (c) Second user interaction to steer

the contour followed byN steps. (d) Final interaction that both steers the contour and enforces loop

closure. Each arrow in (c) and (d) points to a pair of anchor points. Contour sections discarded by each

interaction are shown as black lines in (c) and (d).

begins from the anchor, with initial direction given by the preceding step of the contour.

If an anchor is placed anywhere along, but slightlyto one sideof the current contour (figure 6.3,

bottom row), subsequent points are removed as before but thelast accepted point on the contour is not

immediately obvious. To identify the last accepted pointxlast we step through the pointsx and find the

point that is closest to, but not beyond the anchor. We then interpolate from here to the anchor, which

becomes the pointxlast+1 and the next run continues from there. The subsequent run hasan initial

direction governed by the interpolation fromxlast to the anchor. This in turn is ultimately governed by

the user upon placing the anchor. When a user is familiar withthe tool, and aided by the visualisation

of pointsx in their own colour (blue), this method of steering a contourbetween runs provides the main

form of run-time supervision.
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(a) (b) (c)

Figure 6.3: Schematic diagram illustrating four differentroles of interactive ’anchoring’ in a user-steered

framework. Contour pointsxi are shown in blue and their straight-line interpolation in light green.

Dashed, dark green lines show where an interpolation joins separate runs rather than steps within a

run. Columns show (a) the ’current’ jetstream, (b) an anchor(red square) placed by the user and (c)

subsequent steps of the jetstream in response to the anchor placement.Top row: the anchor is placed at

the tip of the current jetstream.Second row: the anchor is placed beyond the tip.Third row: the anchor

is placed at the last accepted point, along the contour that deviates from the desired path.Bottom row:

the anchor is placed to one side of the contour, around the point of divergence.

6.1.2.2 Extra interactions

The software includes a panel of ’slidebars’ for changing parameters of the contour model during run-

time. The user can adjust the smoothness (κθ), detail (step length) and length (N ) of subsequent runs

using slide-bars. We also provide two extra methods of online supervision. The first is based on the

’damming’ method in the original jetstream paper [43]. The authors allow false paths, such as at a fork

in the boundary, to be blocked by drawing a small line on the image. We allow the user to draw a whole

area, that the jetstream will subsequently avoid. We call these areas ’no-go’ areas. By choosing an area

rather than a line, nearby clutter (erroneous edges or falsepositive classifications) can be eliminated in

the same interaction with little extra effort. A map of current nogo-areas is recorded in the same binary

map as that used to avoid self-intersection. Figure 6.4 shows an example of the no-go area in use, during



6.1. Interactive Boundary Tracking 84

a delineation of the cerebellum in a sagittal MRI slice of thebrain. The user-defined area is dimmed in

the image so that the user remembers where it is (and can reject it if need be). The false path taken by

the jetstream in (a), without the no-go area, is avoided whenthe interaction is repeated with the no-go

area (b).

(a) (b)

Figure 6.4: Segmenting the cerebellum in a sagittal MR imageof the author’s brain. (a) A jetstream

run is first performed without a ’no-go’ area. (b) Repeating with a ’no-go’ area, indicated by darkened

pixels, excludes nearby clutter and avoids a false path.

We also introduce a novel interactive procedure that exploits the probabilistic nature of the under-

lying algorithm. At any one time the jetstream algorithm retains a set ofM particlesxm=1,...,M−1
i=0,...,N−1 , of

which only one gives the contour. The chosen path is that withthe highest cumulative weighting along

theN steps, but one of theunseenpaths might better represent the desired boundary. This is likely when

a boundary is close to false edges, causing the posterior distribution of proposal steps to be bimodal. We

allow the user to manually select particles after each jetstream run, from the setxm=1,...,M−1
i=0,...,N−1 . To do this

we must display some of the unseen particles. In practise theparticles are very similar for most of the

run, but might differ for the last few steps. The method, invoked by the user, displays a small number

of particles chosen for their distinction from the current contour. The particles are shown in different

colours and the user simply selects one with the mouse. Figure 6.5 shows two examples of this procedure

in use. In (a) the jetstream reaches a fork in the boundary of alarge region (brain hemisphere) and the

displayed particles follow left- and right-hand paths. In (b), some particles are attracted to a strong, false

edge (skull). The red particle, however, successfully tracks the brain boundary.

6.1.3 Loop closing

Section 2.2 revealed that one of the problems facing boundary tracking algorithms is the lack of con-

straint to terminate at a fixed point. Such a constraint wouldallow easy closing of an open contour in

the framework above, where the termination point is given bythe first contour pointx0. This method

presents two methods and chooses one based on empirical investigations.
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(a) (b)

Figure 6.5: Segmenting the brain making use of manual particle selection to correct for ambiguity in (a)

path direction at a fork in the boundary, and (b) the true edgewhen a nearby erroneous edge is strong.

6.1.3.1 A method from tractography

Tractography aims to track white matter fibers in diffusion tensor imaging (DTI). Each voxel in DTI data

gives information regarding the likelihood that a voxel is part of a fiber and the local direction of the fiber

at that point. Knowledge of brain anatomy and function mean that we know approximately where a tract

should originate and terminate. This knowledge can be builtinto a tractography algorithm to constrain

fiber tracking. We propose that similar methods can constrain boundary tracking algorithms to terminate

at a pre-defined point, hence close a contour.

Friman and Westin [269] use a tractography algorithm similar to particle filtering. The originA of a

fiber can be marked manually or automated using anatomical knowledge. During the process of growing

a fiber tract, the dynamics of the model are not affected by theposition of the targetB. However, if there

is a true path fromA to B then tracts are likely to reach the target. The algorithm relies on this fact

and repeats the tracking, from the same origin, until many tracts have terminated atB by chance. Those

particles that do not reach the target within a sensible length are discarded. Finally a single path (or

a population with associated probability) is extracted by importance sampling from the remaining set.

This Monte Carlo approach is intuitive but computationallydemanding, depending on the consistency of

the path fromA toB. Recently, Jbabdiet al. [270] take a similar approach wherein the likelihood of a

growing tract terminating at a given point is driven by a map of effective connectivity between all points,

measured separately by functional MRI. The constraints in both [269] and [270] can be referred to as

’soft’ constraints, as the start and end points can be anywhere within small regions rather than asserting

unique voxelsA andB. This is where the tractography analogy to open contour segmentation breaks

down.

We introduce an adaptation to the jetstream algorithm that causes the final run to terminate at the

start of the contour to close the loop. The software assumes that the user anticipates when a run can close

the loop and invokes the loop closing algorithm by pressing akey on the keyboard (similar to [42]). The

method borrows from the tractography literature above. Theunderlying assumption is that a run is likely

to reach the target point by chance. The loop closing run no longer has a fixed number of steps, but

proceeds until enough particles are within one step-lengthof the first pointx0. When this is true, it is

likely that nearly all of the proposal stepsx0,...,i+1 arrive near the target pixel at the same time, as all
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particlesx0,...,i share similar historiesx0,...,i−1. The algorithm then uses importance sampling to select

from these particles only.

With no fixed number of stepsN , it is possible that particles diverge from the desired boundary,

visiting clutter in the image before hitting the target point by chance. To avoid this we direct the particles

towardx0 by the addition of an extra prior term in the weighting stage.The new weightswatt incorporate

anattractionforce by the definition

watt =
q × l

(i+ 1)
+ (i+ 1) exp

(

−D
2

)

i ∈ {0, 1, . . . , ihit}, (6.2)

whereD is the straight line distance fromxi to x0. The attraction force is given a relative weighting

that increases with the step indexi to help ’pull’ a diverging contour model towardx0. Finally, note that

after this run the selected particle is that with the highestweighting according to the image and shape

priors only, ie. calculated without the attraction force.

In practise, even with the attraction force, the loop closing run may give undesired results if invoked

too early, or if the contour was initialised near to a corner in the true boundary. We test the algorithm

on extreme cases using a synthetic image (figure 6.6). The image, referred to as the ’heart’ image, is an

8-bit grey scale image created by placing a symmetrical heart shape of grey level 128 on a background of

grey level 192. The image is then given Gaussian noise with standard deviation 10 and finally smoothed

using a3 × 3 pixel averaging window.

(a) (b) (c)

Figure 6.6: A loop closing algorithm used on a synthetic image to demonstrate two failing scenarios. (a)

The loop is successfully closed by tracking fromA to B = x0. (b) The algorithm is invoked too early

and the loop closing run diverges (inset) before re-joiningthe true boundary. (c)A is close to a sharp

corner (inset), which is overshot by the loop closing run.

In figure 6.6 (a) the loop closing algorithm successfully tracks a large boundary section fromA

to B. In (b) the contour diverges from the true boundary shortly after the start of the loop closing run

(inset). The contour eventually heads toward the target dueto the attractive force and re-joins the true

boundary. In (c) there is a relatively short boundary section between pointsA andB. However, the

section to be tracked is not straight, involving a sharp corner and the contour overshoots the boundary

due to the smoothness constraint.
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In summary, the loop closing algorithm must be invoked when the subsequent run can realistically

hit the targetx0, by tracking a relatively short and straight section of the true boundary. This assumes

some common sense on the part of the user, as well as the ability to initialise the contour in a sensible

place. In our experience a user gains these intuitions aftera modest amount of practice.

6.1.3.2 A method from molecular dynamics

The loop closing algorithm above demonstrates one approachto fixing the end point of a boundary

tracker. We now introduce an alternative method inspired bymolecular dynamics simulations.

Molecules can be modelled as a chain of atoms (nodes), with rigid bonds (links) of known but

variable length. To simulate the dynamics of polymers in a continuum it is often required to generate a

large set of random perturbations of a molecular chain. Escobedo and Pablo [271] perturb a molecular

chain by removing and ’re-growing’ a section of the chain between 2 sites that are the origin and target

of a random walk. The random walk is constrained so that the final step is bound to reach the target.

The number, order, and separation of points between fixed sites are conserved but a new configuration

achieved by sequential positioning of nodes after random orientation of the adjoining link (see figures

2-4 in [271]). Angles are selected from a prior distributionthat is adapted after each step. Limits are

placed on the possible angles to ensure that the distance from the proposed position to the target site

does not exceed that of the extreme case given by aligning theremaining nodes in a straight line. The

algorithm continues with new limits placed on the prior angular distribution each time. It results that the

final step can only take one angle (in fact any angle from a circle on the sphere of 3D angles) so that

a step in that direction places the penultimate node exactlyone step length away from the target site.

The constrained random walk achieves a new configuration inside a homogeneous continuum, i.e. no

external energy to influence the final shape. For the purpose of boundary tracking we need to introduce

this external energy from image priors.

We have realised boundary tracking with targets, based on the molecular dynamics simulation in

[271]. The method is made possible by an inherent flexibilityof particle filtering, being that the predic-

tion and weighting stages are independent, so treat internal dynamics and boundary alignment separately.

We have designed an adaptive prior angular distribution that constrain 2D random walks, originating at

a pointA, to reach a known pointB. The adaptive prior angular distribution replacesq in the prediction

stage of the classical jetstream algorithm. This creates a tracker that is bound to traverse user-defined

start and end points whilst still capable of adhering to a region boundary.

At any step of a growing contour, the adaptive angular distribution is constrained to have limits

θmin andθmax whereθ is the ’global’ angle made with respect to the positivex axis. Figure 6.7 shows

a schematic diagram of the algorithm at an intermediate point denoted{x1, y1} between pointsA and

B, to help define variablesα, β, D, d andn. The algorithm selects angleϕ, equivalent to thechangein

global angle∆θ, which must be between the limitsθmin andθmaxgiven by.

θmin = 2π − (β − α) and θmax= θmin + 2β (6.3)
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Figure 6.7: Schematic diagram introducing the variables ofthe tracking algorithm inspired by molecular

dynamics. Solid blue dots show previous steps while hollow blue dots represent the steps yet to be taken.

There are a fixed numbern of steps available after the current step. The dashed line shows the straight

line between the current point and the target

where

α = tan−1
(x2 − x1

y2 − y1

)

(6.4)

by Pythagoras and

β = cos−1
(D2 + d2 − (min(D + d, nd))2

2Dd

)

(6.5)

by the cosine rule, where

D =
√

(x2 − x1)2 + (y2 − y1)2 (6.6)

is the straight line distance from A to B. In this formulation, the prior angular distributions are centred

on the direction to the target, not the previous step direction. This means thatκθ no longer constrains the

smoothness of the contour. However, the angle∆θ is known for any given proposal step, so we retrieve

smoothness by weighting the proposal steps byq × l in the familiar way, but have separate angular

distributions for predictionqp(θ) = V(0, κθ) and weightingqw(∆θ) = V(0, κ∆θ), whereκθ andκ∆θ

are separate parameters relating to prediction and weighting.

One problem with this model is that we need to know the future number of stepsn between the

current proposal step and the target. To overcome this, we allow for anexcessof available steps, giving

rise to the term min(D + d, nd) in equation 6.5, which returns the smaller of two lengths, eithern× d,

orD + d.

To initialise the algorithm we set the maximum length of the run to bes×D, wheres is aslackness

term, controlling how much longer the contour can be, than the straight line fromA toB. To demonstrate

the dependence ons we test the algorithm on extreme cases using a synthetic image (figure 6.8). The

image, is an 8-bit grey scale image where the greylevels of the trianglular region are graded to remove

any discernible edge along the bottom. The image is then given Gaussian noise with standard deviation

10 and finally smoothed using a3 × 3 pixel averaging window. The path over the top two sides (dashed

green line in 6.8 (a)) has length
√

5
2 ×D whereD is the shortest distance fromA toB.

Whens = 1 so that the only possible contour covers the straight line distance to the target, the

algorithm produces a straight line fromA to B, even though there is no evidence of an edge there in
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(a) (b)

(c) (d)

Figure 6.8: (a) Graded greyscale triangle image with lengths shown (units of 100 pixels). The remaining

panels show in red the results of three jetstreams tracking from pixelA toB, with (b) s = 1, (c) s =
√

5
2

and (d)s = 3.

the image (figure 6.8 (b)). Whens =
√

5
2 , being the ratio of the true boundary length to the straight

line distance fromA to B, the whole of the top edge can be extracted in theory. However, afetr the

slightest deviation from the true boundary there are not enough remaining steps to return to the true

boundary (figure 6.8 (c)). Ifs is greater than the ratio between the true boundary length and the straight

line distance fromA toB, the algorithm assumes more steps than are necessary to accurately track the

boundary (figure 6.8 (c)). This regime successfully tracks the boundary, and surplus steps are simply

discarded when the tracket reachesB.

The balance betweenκθ andκ∆θ leads to a directional asymmetry of the tracker, for a given pair of

parametersκθ andκ∆θ. Figure 6.9 shows the results of two runs of the algorithm from labelled pixelA to

B on the heart image. In both cases the parameters weres = 5, κθ = 1.0 andκ∆θ = 5.0. In case (a), the

angle between the boundary direction and the straight line from the boundary toB is nearly constant and

always acute (inset). In case (b) however, these angles are too large for early steps of the tracker (inset).

Despite the asymmetry problem, the algorithm can extract large boundary sections between fixed points,

as demonstrated in figures 6.8 (d) and 6.9 (a). It is not clear whether the previous algorithm, designed

for loop closing, would track such large sections as in the heart example, or handle the corner as in the

triangle example.

In summary, the second constrained boundary tracking algorithm, inspired by molecular dynamics

simulations, works well in some situations. However, the algorithm uses extra parameters (slacknesss

and two smoothness parametersκθ andκ∆θ), which must be optimised. The tracker also has an inherent

asymmetry which leads to the artefact demonstrated in figure6.9. For subsequent experiments we choose

the first loop closing method, and allow a user to repeat the loop closing run if necessary.
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(a) (b)

Figure 6.9: The ’heart’ image showing two jetstream runs from pixelA toB, oriented (a) from bottom

to top and (b) from top to bottom.Inset: diagrams showing how the angle, between boundary direction

and a straight line to the target, changes as a tracker progresses from A to B.

6.1.4 Data and performance evaluation

We test the interactive framework to evaluate the main adaptations made to the original jetstream algo-

rithm, ie. the novel interactions of section 6.1.2 and the chosen loop closing algorithm of section 6.1.3.1.

We evaluate these adaptations by recording user behaviour during multiple use of the tool to delineate

different regions in medical images. This section does not evaluate segmentation quality, which we

revisit to compare jetstreams driven by different image models in section 6.1.5.

We test the interactive framework for the chosen application of multiple sclerosis lesion contouring.

We choose 3 slices from MR images of different MS patients, and choose 2 lesions in each of these slices.

Figure 6.10 shows the 6 regions of interest along with their ’true’ boundaries delineated manually by an

expert.

6.1.5 Experiments

We asked four experts in MS radiography at London’s Institute of Neurology (IoN) to use our interactive

jetstream framework for MS lesion segmentation. Each expert rater followed a randomised sequence of

6 lesions, repeated three times for each PD image in figure 6.10, and again for T2 images of the same

lesions. In this way, raters completed a total of 36 contours, and repeated this sequence on two separate

occasions, making a total of 72 contours.

First, we hypothesise that:

H6.1.5.1: The loop closing algorithm is

(a) successful, and

(b) favoured over a simple, more manual method of completinga contour.

To test this hypothesis we record the acceptance rates and method of completion of all jetstream contours,
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Figure 6.10:Top row: PD images of the three chosen axial slices.Bottom row: expert delineation of two

chosen lesions in each slice.

created by the four raters. We incorporate an ’accept/reject’ option such that a user can repeat the final

run of the contour if results are undesirable. This reveals whether a loop closing run is considered

successful by the expert user. In addition, the user can override the jetstream algorithm and simply close

the loop with a straight line. A user might prefer this methodof closing the contour, but must already

have an almost complete contour so that a short, straight section will lie on the true boundary.

Table 6.1 shows the percentages of loop closing methods/acceptance over all jetstream contours.

Percentage. . . User 1 User 2 User 3 User 4

. . . finished using loop closer 9.7 95.8 41.7 18.1

. . . of these that only took one attempt 100.0 82.6 46.7 61.5

. . . closed after one attempt using loop closer 9.7 79.2 19.5 11.1

Table 6.1: Level of preference for the loop closing algorithm over a manual method.

When users chose to use the loop closing algorithm, one attempt was usually sufficient (between

46.7% and 100% of the time). As a result we accept hypothesisH6.1.5.1 (a). However, table 6.1

reveals large variability in user behaviour. Rater 2 seems to prefer the loop closing algorithm and uses it

with a high success rate, while rater 1 usually closed the contours with straight interpolation. We accept

hypothesisH6.1.5.1 (b) for rater 2 only. The idiosyncrasy of user behaviour highlights the importance of

maximaising user control, not only in terms of steering but in choosing alternative modes of interaction.

Next, we hypothesise that:

H6.1.5.2: The extra interactions of no-go areas, manual particle selection and parameter

adjustment are useful in MS lesion contouring.
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To test this hypothesis we record the use of extra interactions during segmentation of the 72 lesions. All

users had been shown the use of these extra interactions, andhad used them at least once before during

a practise session.

Apart from a single contour, (drawn on one occasion by a one user), all lesions were segmented

without use of the no-go area or manually choosing from alternative paths. In the exceptional case, rater

2 made use of the no-go areaand three uses of the manual particle selection on the same lesion. We

rejectH6.1.5.2 in the case of no-go areas and manual particle selection. The rejection ofH6.1.5.2 could

be due to relative unfamiliarity with the extra image-basedinteractions. Also, given that any contouring

error can be corrected by the anchoring method (figure 6.2) a rater could consider the extra modes of

interaction not ’worth’ the extra requirement of invoking them.

Parameter adjustment proved to be more useful. Raters generally found a desirable combination of

smoothness, detail and length of a jetstream run, by trial and error at the start of a contouring session.

Having settled on these parameters, users made adjustmentsoccasionally, such as when they encountered

particularly sharp corners. We acceptH6.1.5.2 in the case of parameter adjustment.

Next, we hypothesise that:

H6.1.5.3: Operator time for jetstreams

(a) is less than freehand drawing, and

(b) reduces with user experience.

To test these hypotheses we record the number of runs and the absolute time taken to complete a contour.

Note that a single run of the jetstream algorithm is completed and displayed in real-time, but segmen-

tation involves successive runs, so the absolute time takento complete a contour is governed by the

number of runs and the length of any pauses between runs. In fact, absolute times are generally longer

for jetstreams, so we can not acceptH6.1.5.3(a). There are three likely causes of this limitation. First,

the raters are still relatively unfamiliar with the tool, asfreehand delineation is in common use. Second,

raters can, and are known to pause contouring between runs ofa jetstream, whereas the freehand tool

demands a continuous interaction from start to finish. Third, the application of MS lesion segmentation

involves ROIs that are small and jagged, so long boundary sections are unlikely to be tracked by a single

run. We suspect that another application, where ROIs are larger and with longer smooth sections of the

boundary, would benefit more from the boundary tracker in terms of operator time.

For hypothesisH6.1.5.3(b) we compare operator times on two occasions, contouring the same

lesions. We consider that a rater’s level of experience is greater during the second contouring session,

and perform paired-samples t-tests on the duration of two segmentations of each region, on the first and

second occasion. We measure the duration in terms of both absolute time, and the number of jetstream

runsNruns, equivalent to the number of anchors placed around a single lesion. Table 6.2 shows the mean

durations and p-values indicating significant reductions in user time. We accept hypothesisH6.1.5.3(b)

due to the high levels of significance of the reduction in operator time andNruns.



6.2. SVM Texture Classification 93

Occasion Mean time (sec) MeanNruns

User 1
first 27.60 18.17

second 19.07 (p<0.001) 14.89 (p=0.01)

User 2
first 40.17 41.28

second 28.91 (p=0.025) 34.53 (p=0.1)

User 3
first 44.54 36.75

second 23.14 (p=0.01) 23.34 (p=0.025)

User 4
first 30.76 31.67

second 30.76 (p=0.05) 22.39 (p=0.05)

Table 6.2: Mean time and number of runs necessary to completea given contour on two occasions.

P-values indicate the significance of the reduction in user demand.

6.1.6 Conclusions

We have realised an interactive framework for supervised contouring based on jetstreams. User experi-

ments lead to the following conclusions:

• The chosen loop closing algorithm, inspired by probabilistic tractography, is a successful solution

to the problem of producing closed contours in a boundary tracking framework.

• Modes of interaction are a matter of user preference, so thatin ’giving as complete control as

possible to the user’ (Requirement 1), one form of ’control’ is the ability to choose between manual

and automated methods.

• Slidebars controlling certain algorithm parameters are generally popular, and allow an algorithm to

generalise across user-styles as well as applications, regions within an application and boundary-

sections for a given region.

• The methods of on-line supervision between successive jetstream runs leads to a slower tool than

simple freehand drawing, but more user experience may make jetstreams faster than the freehand

tool.

• The extra interactions and the time-saving potential of thecurrent framework may benefit another

application than MS lesions. In particular larger ROIs may better exploit the tracking algorithm.

6.2 SVM Texture Classification
The previous section was concerned with improving boundarytracking by efficient modes of interaction.

As well as interactivity we seek an appropriate model of the image data (C2) to alleviate problems as-

sociated with boundary ambiguity. This section develops featureless texture classifiers for the problem

of boundary ambiguity and investigates their properties and limitations in synthetic and medical images.

We introduce two different classifiers for boundary extraction. Theregion-trainedapproach seeks to dis-

tinguish between textures inside and outside a ROI, which locates the boundary after gradient filtering a
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classified image. Theboundary-trainedapproach distinguishes boundaries from all other data directly,

by treating boundary data as a class of its own.

Section 6.2.1 introduces the data sets used and section 6.2.3 describes how SVMs are evaluated

in terms of classification success. Section 6.2.4 uses thesedata and performance evaluation methods

to validate the SVMs and optimise certain model parameters.Experiments in section 6.2.5 address

hypotheses regarding the success and generality of the classifiers.

6.2.1 Data and texture sampling

We noted in chapter 2, that the validation and evaluation of new methodologies benefits from the use of

synthetic data. Synthetic textures and composite texture images have the advantage over medical data,

that the ground truth is known exactly and image properties can be controlled.

6.2.1.1 Synthetic texture images

We use data sets derived from images in the Vision Texture database [44]. These512× 512 images each

contain a single ’texture’, meaning a continuous scene taken from one semantic class. We choose the

textures of ’stone’ (figure 6.11 (a)) and ’fabric’ (figure 6.11 (d)) as these have finer scale pixel variation

compared to the others in the database and in each case, the database provides two different instances

allowing us to use different data for training and testing a given classifier. We pre-process the VisTex

images in order to emulate properties of medical images and control image contrast using ’histogram

specification’. This general technique computes a transform function or ’look-up table’ that transforms

the image histogram to a specified distribution. We set pixelintensitiesi to have Gaussian distributions

defined byexp( (i−µ)2

σ2 ) and control the first- (µ) and second-order (σ) statistics. We specify the means

{µfg, µbg} and standard deviations{σfg, σbg}, where subscripts ’fg’ and ’bg’ denote foreground and

background respectively. We choose these statistics to match those of MS lesions and the white matter

immediately adjacent to them, for all ground truth in a reference MRI dataset. The reference data is a

single MRI volume, and is that having the most representative contrast between region and background.

We define this most representative volume as that having the median ’Z-score’, which is a standard

measure of histogram overlap, given byZ = (µfg − µbg)/
√

(σ2
fg/N) + (σ2

bg/N), whereN is the

number of ground truth pixels common to both classes. Figure6.11 (b)/(c) and (e)/(f) shows example

histogram transformations and resulting images.

6.2.1.2 Synthetic texture boundaries

We create synthetic data for the boundary-trained SVM by forming composite images from two synthetic

textures. We choose two texture images to represent ’foreground’ and ’background’, and copy their

contents inside and outside a synthetic shape. We generate aset of shapes in polar coordinates(r, θ)

with origin at the centre of an image, by varying the radius sinusoidally over the range of orientations

{0 . . . , 2π}, along with a random perturbation. We also choose the orientation (θ = 0) and the number

of sinusoidal periods at random in the equation

r = 120 + 15sin(M(θ + ∆θ)) + ∆r, θ ∈ {0, 2π
70
,
4π

70
, . . . 2π}, (6.7)
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Figure 6.11: Synthetic images derived from the Vision Texture database. (a) Greyscale version of the

’stone’ texture. (b) Cumulative histograms of the originalintensity distribution and that specified to

match MS lesion statistics, shown along with the transform function. (c) Transformed image of ’stone’

texture. (d)-(f) the same for ’fabric’ texture specified to match background white matter statistics. The

overlapping stone and fabric histograms are shown before (g) and after (h) the transformation.

where∆θ is the orientation of the shape selected at random from a uniform distribution in the range

{0 . . . , 2π}, ∆r is the radial perturbation selected from a normal distributionN (0, 2.5) andM is double

the number of sinusoidal periods, selected from a uniform distribution over the range{2, . . . , 6}. The

shapes have one boundary point per2π
70 radians. The 70 points that define each shape are then interpolated

by the Bresenham line algorithm.

Figure 6.12 shows composite texture images created using five example shapes. In total we generate

40 shapes, which have a mean of 757 boundary pixels.

6.2.1.3 Medical regions and boundaries

We have MR images of 40 brains containing MS lesions. The datasets are previously labelled by an

unknown expert using the tool in [22] along with manual post editing. For each brain there are two 3D



6.2. SVM Texture Classification 96

(a) (b) (c) (d) (e) (f)

Figure 6.12: Composite texture images made from synthetic shapes having (a) 1, (b) 2, (c) 3, (d) 4, (e) 5

and (f) 6 sinusoidal periods

data sets, imaging Proton Density (PD) and spin-spin relaxation time (T2) respectively. It is likely that

ground truth labelling was performed mainly on the PD slices, with corresponding T2 slices viewed as a

reference [19]. MR slices and lesions in figure 6.10 are examples from this dataset.

6.2.2 Sampling for feature vectors

We use the two types of ground truth described above to obtainfeature vectors for boundary-trained and

region-trained SVMs. In each case, we sample pixels from a neighbourhood centred on each ground

truth pixel, and turn the intensities directly into ’feature’ vectors.

First, following the region-based classifiers in [203], we use square pixel windows of widthw, to

sample vectors of dimensionalityw2. Second, for use in the boundary-trained SVM, we use a star-

shaped sampling window that spans a width of 7 pixels but gives 25-dimensional feature vectors (inset

in figure 6.14). The star-shape creates a25 dimensional feature vector that spans an area of7× 7 pixels.

This sampling window is expected to capture both the smallerscale textures at either side of a boundary

and the larger scale texture that a boundary itself comprises [200]. Upon sampling, we re-scale the raw

intensity to the range{0 . . . 1} by subtracting the minimum and dividing by the range of all values in the

corresponding volume. Such rescaling to a small range improves the performance of SVMs [197].

6.2.2.1 Positive and negative ground truth

SVMs require labelled training data from both positive and negative classes. The two classes are defined

differently for the boundary- and region-trained SVMs and for MRI and synthetic images. Figure 6.13

shows labelling schemes for both classifiers in MS lesion data. Positive labels are defined (a) on and (b)

inside the ground truth boundaries. For the negative class we labeloff-boundaryandnon-lesionpixels

respectively. We select these pixels at random, with probability weighted byp ∝ e−
r
2 , wherer is the

distance to the closest positive class pixel, but reject locations immediately adjacent to positive ground

truth to allow for imperfections in the original labelling.Note that in the boundary-trained case, the

negative examples include locations inside the lesions.

We define the negative classes in this way so that the SVM discriminates between boundaries and

the nearby tissue that a supervised contour model is most likely to encounter. The idea of assigning an

exclusive class to data immediately adjacent to a boundary is similar in principle to one of the schemes
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(a) (b)

Figure 6.13: Example ground truth pixels (white) for the negative classes of (a) ’off-boundary’ and (b)

’non-lesion’. Corresponding positive class pixels are shown in black.

used by de Bruijneet al. [119] in their active appearance models. However, our labelling is automatic

and the spatial constraint encodes the probabilistic nature of the contour models that we intend to use

with the SVMs. The random negative-class pixel labelling terminates when, in a given slice, the same

number of negative labels have been assigned as there are positive. This avoids problems that can arise

from unbalanced training sets [272].

6.2.3 Performance evaluation

Each SVM assigns distance valuesdSVM to the feature vectors in a test set. We seek to evaluate classifier

performance based on these outputs. Performance evaluation has two roles in this section. First, param-

eter optimisation in section 6.2.4 is based on maximising classification success. Second, we compare

the success of different classifiers in the experiments of section 6.2.5. For both purposes we use the area

under an ROC curve (AUC) as a success measure.

The general method of producing ROC curves was described in 4.3 and is explained here more

specifically for the SVMs above. We calculate true positive fractionsTP and false positive fractions

FP by comparing the true labels of test data with the labels assigned by thresholding decision val-

uesdSVM. At any threshold, all measurements above the threshold areclassified as positives and those

below it negatives. Counts of true positivesNTP, true negativesNTN, false positivesNFP and false neg-

ativesNFN give the true-positive fractionTP and false-positive fractionFP by equation 4.8. For all

train/test scenarios we keep the number of positive and negative class data the same, and the number of

training/testing data the same. In all cases we vary the threshold in 500 increments from the minimum

(negative) decision value to the maximum (positive) decision value, and form the ROC curve by plotting

FP againstTP .

As described in section 4.3, cross-validation such as a ’leave-one-out’ scheme removes bias in ROC

analysis. ForN individual datasets containing ground truth, we train a SVMon data from(N − 1)

datasets and test it on that data ’left out’ of training. By repeatingN times with a different set omitted

from training each time, we getN values of AUC use the mean AUC as a single performance measure.

For this leave-one-out scheme we must first partition the data into distinct sets. In the case of MR images

we have 40 separate scan volumes which serves as a meaningfulpartition. In the case of synthetic images

we take random subsets of the available data.
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6.2.4 SVM design

We use binary SVM classifiers of the software library ’libsvm’ [216], with a radial basis function (RBF)

kernel chosen for its ability to generalise across different texture types. In the absence of explicit texture

features, the design of a SVM involves choosing texture windows, and investigating the sensitivity to

sample sizes and SVM parameters. This section uses ROC analysis to see how SVM performance is

affected by changing texture windows, sample sizes and model parameters. We perform these prelimi-

nary investigations on both MS lesion data and synthetic textures, which lead to the same conclusions.

Only the results for MS lesion data sets are presented here. Unlike later experiments, these preliminary

investigations only use a subset of the available MRI volumes in order to satisfy time constraints. We

select five volumes at random for use as test data.

6.2.4.1 Texture neighbourhoods

The size of the sampling window used to extract feature vectors should match the scale of discriminating

textures present in the ground truth. To observe the value ofdifferent sampling windows in MS lesion

classification we repeat ROC analyses for SVMs using square sampling windows of 3×3, 5×5 and

7×7 pixels. These result in 9, 25 and 49-dimensional feature vectors respectively. We also construct

25-dimensional feature vectors using the star shaped sampling window described above.

We repeat ROC analysis on the five test data sets and present the mean AUC, with error bars at± one

standard deviation, for the various classifiers. Figure 6.14 shows the results for the various window types

and the inset diagrams show the windows. Figure 6.14 suggests that classifier performance increases with
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Figure 6.14: Plots of classifier performance for different sampling windows. Results for PD and T2

lesions are shown for (a) the boundary-trained SVM and (b) the region-trained SVM.Inset: diagrams of

the sampling windows.

the dimensionality of input feature vectors. This is intuitive, as larger texture patches capture texture at

larger scalesin addition to the smaller scale textures closer to the centre of the patch. Although the

49-dimensional (7 × 7 window) SVM may perform slightly better, we choose to use 25-dimensional

feature vectors for the following experiments to satisfy time constraints. The5 × 5 square window and

the star-shaped sampling window both form 25-dimensional feature spaces for the respective SVMs,
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but the star-shape window spans a larger area in the image. Although there is no significant difference

in performance between these two classifiers, we choose the star-shaped window for boundary-trained

SVMs by intuition, as these SVMs need to capture texture at either side of a boundary and would be

more affected by the inaccuracy of ground truth.

6.2.4.2 Training sample size

The size of a training set affects the ability of a SVM to capture discriminating textures and generalise

well across all unseen examples. To observe the affect of training set size we first choose an image that

will be used in testing, which is removed from the training set. Next, we group together all available

ground truth in the remaining 39 images and a subset of the pooled ground truth selected at random.

The subsets are defined as 0.1%, 0.5%, 1%, 5%, 10%, 50% and 100% of the pooled ground truth. We

repeat ROC analysis for a pre-selected set of five test imagesand calculate the mean AUC, for each of the

training sizes. Results suggests that there is little to be gained from using more than50% of the available

ground truth as training examples, for both image types and both SVM types. We use this subset (50%)

in the following two experiments to allow the desired amountof training and testing in a reasonable time.

6.2.4.3 SVM parameters

We investigate the effect of varying RBF kernel widthγ and the cost of ’slack variables’c using a

grid search to determine which(γ, c) pair gives optimal SVM performance. Preliminary investigations

suggest that our SVMs are not very sensitive toc while γ values should be set around unity. Based on

the scheme given in [197] and used in [195], we vary each parameter exponentially. Figure 6.15 shows

the topology of AUC vsγ andc for the various classifiers. Based on these preliminary results we choose

to useγ = 1.0 andc = 10 in the following experiments. A more exhaustive parameter search is desirable,

but was impossible prior to the following experiments due totime constraints.

6.2.5 Experiments

This section evaluates the performance of various texture SVMs using ROC analysis.

6.2.5.1 Comparing texture and intensity

First, we hypothesise that:

H6.2.5.1: Texture SVMs are an improvement over intensity thresholding for discrimi-

nating regions and boundaries.

To test this hypothesis, we repeat ROC analysis by thresholding both the output of SVM classifiers

dSVM and image intensities. We repeat for synthetic and MS lesiontextures.

In the case of MS lesions we use all available ground truth data. This means that the leave-one-out

scheme is repeated for 40 testing brains, and in each case allof the ground truth from the 39 remaining

brains are used in training. This leads to a mean and standarddeviation calculated over 40 AUC values.

We repeat for region- and boundary-trained SVMs and for T2 and PD images. In the case of

synthetic textures, we use 7500 training/testing vectors,chosen at random from each image. We use

one pair of stone and fabric images for training and a second pair for testing. We finally partition the
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(a) (b)

(c) (d)

Figure 6.15: Surface plots of classifier performance for varying γ andc. The top row shows results for

the boundary-trained SVM classifying (a) PD and (b) T2 images. The bottom row shows results for the

region-trained SVM classifying (c) PD and (d) T2 images.

training and testing sets into 10 subsets, by sampling random locations from the images, to perform

cross-validation.

For intensity thresholding in MRI data sets we perform two different ROC analyses, with different

interpretations. In one case, we construct ROC curvesper brain. This means that we threshold the

ground truth in each brain to produce 40 separate curves, then take the mean and standard deviation of

the AUC values. Theper brainanalysis tells us how well the ROIs in a given image contrast against the

surrounding tissue. In another case, we group all the groundtruth together from the 40 brains and vary

the intensity threshold to produce a singleglobalROC curve.

For all intensity ROC analyses, the negative class ground truth is represented by the same, localised

random selections as used for SVM training. Table 6.3 shows the mean AUC (± one standard deviation)

for the two SVMs, along with results for intensity thresholding. In the case of synthetic images we do

not perform intensity thresholding on ’boundary’ ground truth, because the boundary is defined between

adjacent pixels, so all single pixels are either inside or outside a region. These results suggest that SVM

texture is an improvement over PD or T2 intensity for discriminating MS lesion ROIs and boundaries. We

perform independent t-tests for the MS lesion results to quantify the significance of this improvement. In

the case ofper brainintensity analysis, tests reveal that, for T2 data, the improvement of both region- and

boundary-trained SVMs is significant with a confidence of> 99.95%. For PD data, boundary-trained

SVMs classify significantly better with a confidence between90% and95%, whereas the improvement

of the region-trained SVMs is not significant (confidence< 90%). Comparing withglobal intensity
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Region ground truth Boundary ground truth

Image SVM Intensity Intensity SVM Intensity Intensity

type texture (per brain) (global) texture (per brain) (global)

PD 0.928±0.055 0.924±0.020 0.836 0.875±0.043 0.705±0.062 0.610

T2 0.927±0.021 0.881±0.032 0.854 0.858±0.039 0.687±0.071 0.624

Synth. 1.00± <0.001 N/A 0.93±0.003 0.95±0.003 N/A N/A

Table 6.3: Comparison of mean AUC (± one standard deviation) for SVM texture classification and

intensity thresholding at regions and boundaries.

analysis, SVMs are a significant improvement in all cases.

We accept hypothesisH6.2.5.1, but note that the improvement of the region-trained SVM over the

per-brain intensity thresholding is not significant, and may be negligible for a given MR image.

6.2.5.2 Locally trained SVMs

In the case of MS lesion textures we also investigate the use of Locally trainedSVMs. These classi-

fiers are trained using ground truth from one slice only, and used to classify data in an adjacent slice.

Such a classification scheme has two possible uses in a segmentation framework, which draw from the

incremental learning literature reviewed in chapter 4. First, training data could be accumulated during

run-time, as the user identifies more ground truth interactively. Second, 3-dimensional segmentation

tasks involving contouring of successive slices could use the segmentation accepted in one slice to train

a classifier for the next.

A locally trained SVM is confounded by having a small training set, but at the same time benefits

from the coherence of training and testing data. We hypothesise that:

H6.2.5.2: Locally-trained SVMs perform at least as well as globally trained SVMs.

To test this hypothesis, we train aone-slice-SVMon ground truth from all lesions in one slice, and

test it on all lesions in an adjacent slice. We repeat by swapping the training/testing sources, and for slice

pairs from three different brains shown in figure 6.16. We then take the mean and standard deviation

of AUC values over the six training/testing cases for region- and boundary-trained SVMs and for both

image types. This allows independent t-tests to look for significant differences between the performance

of locally-trained SVMs and those using all available ground truth as in table 6.3. For each slice pair the

two AUC values and their mean are given in table 6.4, where ’trained on A’ implies tested on B and vice

versa, and the image names ’p#s2’ correspond to the axial slices shown in figure 6.16. Table6.4 suggests

that, compared with the global case in table 6.3, locally-trained SVMs perform at least as well on region

data but less well on boundaries. An independent t-test reveals that the boundary-trained classifiers in

table 6.3 perform significantly better than the locally-trained counterpart.

We accept hypothesisH6.2.5.2 for region-trained SVMs but reject it for boundary-trained SVMs.

The rejection ofH6.2.5.2 for local boundary-trained SVMs could be due to the fact that there are gen-

erally less ground truth pixels making up a boundary than arecontained inside the region. At the same
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Figure 6.16: PD images of the three chosen pairs of adjacent axial slices. The images in each pair are

labelled A and B, and their slice numbers given.

Boundary-trained SVMs Region-trained SVMs

Image/type trained on A trained on B mean trained on A trained on B mean

p1s2 PD 0.815 0.789 0.802 0.963 0.951 0.957

p10s2 PD 0.713 0.744 0.723 0.912 0.894 0.903

p17s2 PD 0.785 0.797 0.791 0.950 0.953 0.952

PD Overall mean 0.774±0.038 Overall mean 0.937±0.028

p1s2 T2 0.834 0.807 0.821 0.958 0.909 0.934

p10s2 T2 0.812 0.740 0.776 0.951 0.911 0.931

p17s2 T2 0.788 0.719 0.754 0.972 0.920 0.946

T2 Overall mean 0.783±0.045 Overall mean 0.937±0.027

Table 6.4: Classifier performance of small, locally trainedSVMs. Image names correspond to the axial

slices shown in figure 6.16.

time, it is likely that boundaries require more ground truththan regions, to achieve the virtual rotational

invariance described in section 4.2.1 and to overcome the inaccuracy of ground truth.

The acceptance ofH6.2.5.2 for local region-trained SVMs motivates the use of region-data in slice-

by-slice incremental learning. For an idea of whether such classifiers could be exploited in real time,

we observe training and testing times for the locally-trained SVMs. Mean training times were0.24s

and0.22s for boundary- and region-trained SVMs respectively. The respective mean testing times were

0.059s and0.075s. Such short timescales suggest that some form of training and testing could be used
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during run-time without causing noticeable delay to the segmentation process. However, only the ground

truth pixels are classified in the testing stages above, whereas in practice all of the (masked) brain tissue

in a slice would be classified.

6.2.6 Conclusions

This section has developed SVM classifiers for discriminating regions and boundaries in textured images.

After optimising the classifier design we arrive at the following conclusions:

• For synthetic textures and MS lesions, the featureless SVMsgive good classifier performance.

• The approach is capable of locating both regions and boundaries.

• ROC analysis supports the use of both region- and boundary-trained SVMs in segmentation algo-

rithms.

• The method extends to other applications, as it does not relyon multispectral data or application-

specific pre-processing.

• Locally-trained SVMs classifyregionsat least as well as those trained across multiple datasets.

• Locally trained SVMs lend themselves to incremental learning schemes, that can benefit a seg-

mentation tool either by responding to interactions or propagating learned image priors through

image slices.

6.3 SVM Jetstreams
Experiments above motivate the use of region- and boundary-trained SVMs as image models (C2) to

alleviate the problem of boundary ambiguity in supervised segmentation. The exception, revealed by

the test of hypothesisH6.2.5.1, is that the benefits of region-trained SVM over intensity thresholding in

a single image is not significant. However, we did see some improvement and this may still benefit a

segmentation tool, given that the results of the classifier are first high-pass filtered and it is the gradient

magnitude of the decision value that drives the contour model. As such, we are motivated to test the

benefit of both SVMs in segmentation.

This section introduces a framework for supervised ROI contouring that combines the boundary

tracking algorithm in section 6.1 with image models based onthe SVMs in section 6.2. We use both

boundary- and region-trained SVMs to drive the adapted jetstreams. In the first case, the distance to the

hyperplane output by the boundary-trained SVM gives a measure ofboundariness. This decision value,

denoteddb, replaces the intensity gradient magnitude. We separatelyinfer local boundary direction by

convolving the image ofdb with two orthogonal ’ridge’ templates to give the components of a direction

vectorRx andRy, and approximate the local boundary direction by tan−1(
Ry

Rx
).

In the second case, classification by the region-trained SVMyields the distance valuedr. We use di-

rectional Sobel filters to calculate the gradient vectorgdr
of the classified image, which has components

gdrx andgdrx in thex andy directions. The magnitude of this vector gives a measure of boundariness

and we calculate local boundary direction by tan−1(
gdry

gdrx
).



6.3. SVM Jetstreams 104

We classify the whole of a slice in an off-line step. Figures 6.17 and 6.18 show synthetic and MS

lesion images along with the magnitudes of (a) intensity gradient, (b) gradient of the images classified

by the region-trained SVMs and (c) the output from boundary-trained SVMs.

stone/fabric image (a)

(b) (c)

Figure 6.17: (Top left): synthetic image of stone (foreground) and fabric (background) textures. (a)

Magnitude of intensity gradient. (b) Magnitude of the gradient ofdr, (c) Rawdb values.

6.3.1 Performance evaluation

To evaluate a segmentation framework, we must make choices regarding both a performance measure

and a comparison method. These two choices should be made to suit the application and the specific

component of the segmentation framework that is under investigation (the variable). In this case the

application is supervised region contouring and the variable is the image model (C2).

We evaluate the performance of a tool by measuring accuracy and inter/intra-operator variability.

Accuracy refers to the agreement of any contour with the ’true’ region boundary. For synthetic images we

know the ground truth exactly, whereas in medical images, a true segmentation is not available. To assess

any semiautomatic segmentation we choose to use the freehand delineation of the corresponding ROI, as

drawn by the corresponding operator, as the ground truth. Given that a user has ultimate control over both

jetstreams and manual delineation, we assume that the two results would be the same if jetstreams were

perfectly ’accurate’. However, by the same assumption, twomanual segmentations of the same region,

drawn by the same user, would be identical, which is never thecase. As such we assess jetstreams in



6.3. SVM Jetstreams 105

PD T2 (a)

(b) (c)

Figure 6.18:(Top left): axial MRI slice showing PD (left hemisphere) and T2 (right hemisphere) inten-

sity. White contours show the ground-truth segmentation oflesions. (a) Magnitude of intensity gradient.

(b) Magnitude of the gradient ofdr, (c) Rawdb values.

terms of therelativeaccuracy compared with the agreement of two manual contours.

Inter-operator variability, or ’repeatability’, refers to the agreement between contours produced

by different users for the same ROI. Any disagreement might reflect an intrinsic difference in opinion

between two raters. However, where two users perceive a region in the same way, this variability is

minimised by a good segmentation tool. Intra-operator variability, or ’precision’, refers to the agreement

between contours produced for one ROI by the same user at different times. This can reflect inevitable

human error, but again can be reduced by good software.

We measure the ’agreement’ between any two contours using one boundary-based and one region-

based similarity measure. A boundary-based measure is arguably more relevant to a boundary-based

segmentation tool such as boundary tracking. On the other hand, a region-based measure is relevant

to the practical purpose of a segmentation tool, as in the case of MS lesion contouring where a key

derivative of segmented images is the ’lesion load’, calculated from the area inside lesions.

To measure boundary-based similarity we find the distance from each point on one contour to the

closest point on the other and take the average of these distances. This gives the mean minimum distance

(MMD), equivalent to the modified Hausdorff distance of [107], where a lower value indicates higher

similarity. To measure region-based similarity we use the Dice Similarity Coefficient [104] (DSC), with

values ranging from 0 (no overlap) to 1 (perfect overlap) given by DSC= 2N(A∩B)
N(A)+N(B) , whereN(A)

denotes the number of pixels in regionA and so on.
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Next, we choose which segmentation methods to compare. Thischoice should isolate the relevant

components of the segmentation framework for evaluation. We are concerned with the benefits of the

texture classifiers and the effectiveness of the modes of interaction in guiding a contour round a ROI

boundary. First we compare SVM jetstreams with the same tooldriven by the intensity gradient. We also

compare the variability of jetstreams with that of the freehand tool, as freehand drawing and jetstreams

are used in a similar way, i.e. guiding an open contour aroundthe whole of a closed boundary.

We test for significance of the differences in performance between two contouring methods using

paired t-tests, where a pair refers to the two contouring methods. In the case of accuracy and intra-

operator variability and there are six pairs arising from the six lesions involved, and we perform separate

t-test for each user. In the case of inter-operator variability, for P users there are
∑P−1

i=1 i uniquepairs

of users and we perform separate t-test for each region.

6.3.2 Experiments with synthetic texture regions

We ask 5 volunteers to segment the 6 synthetic ROIs in figure 6.12. In all cases a user segments each ROI

on 2 separate occasions, and on each occasion using 4 methods. The methods are jetstreams driven by

region-/boundary-trained SVMs and intensity gradient, and a free-hand tool. We evaluate the segmen-

tation accuracy and intra-/inter-operator variability ofall methods using boundary- and region-based

similarity measures.

6.3.2.1 Accuracy

First, we hypothesise that:

H6.3.2.1: SVM jetstreams used to segment synthetic texture regions are

(a) more accurate than the intensity-driven jetstreams, and

(b) more accurate than freehand delineation

To test hypothesisH6.3.2.1 we measure the accuracy of each method, by the similarity between

jetstream contours and the exact ground truth, and take the mean over all ROIs. Figure 6.19 shows

the results separately for each user. T-tests reveal that there is no significant difference between the

accuracy of the three jetstreams. However, all three jetstreams are significantly more accurate than

freehand segmentation for three out of five users (user 2, 4 and 5). One user (3) uses the freehand tool

with significantly higher accuracy than the jetstream driven by the region-trained SVM in terms of DSC

alone. We reject hypothesisH6.3.2.1 (a) and acceptH6.3.2.1 (b) for the majority of users.

6.3.2.2 Intra-operator variability

Next, we hypothesise that:

H6.3.2.2: in terms of intra-operator variability, SVM jetstreams used to segment syn-

thetic texture regions are

(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation
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Figure 6.19: Accuracy of jetstreams used in synthetic images, measured by (a) mean minimum distance

and (b) Dice similarity coefficient. Error bars are given at± 1 standard deviation.

To test hypothesisH6.3.2.2 we measure the intra-operator variability of each method, by the sim-

ilarity between contours created to segment the same regionon two occasions, and take the mean over

all ROIs. Figure 6.20 shows the results separately for each user. Independent t-tests reveal that the only
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Figure 6.20: Intra-operator variability of jetstreams used for synthetic images, measured by (a) mean

minimum distance and (b) Dice similarity coefficient.

significant difference between the three jetstream types isbetween the two SVM jetstreams, whereby the

variability in terms of DSC was significantly lower for the region-trained SVM than for the boundary-

trained SVM in the case of user 1. As such we reject hypothesisH6.3.2.2 (a).

The trends in figure 6.20 suggest that the SVM jetstreams givegenerally better and less varied

results than freehand segmentation. For 3 out of 5 users, at least one jetstream gave significantly lower

variability than the freehand tool in terms of one or both of DSC and MMD. This is true for all jetstreams

in the case of users 2 and 5, and the tool driven by region-trained SVM in the case of user 1. However, all

jetstreams showed no significant benefits over freehand segmentation for user 4 and significantlyhigher

variability for user 3. As such we can not accept hypothesisH6.3.2.2 (b), but suggest evidence for it
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based on figure 6.20, and assume that the improvement would become more apparent after more practice

on the part of the user.

6.3.2.3 Inter-operator variability

Next, we hypothesise that:

H6.3.2.3: in terms of inter-operator variability, SVM jetstreams used to segment syn-

thetic texture regions are

(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation

To test hypothesisH6.3.2.3 we measure the inter-operator variability of each method, by the simi-

larity between contours created to segment the same region by four users, and take the mean over all 10

unique pairs of users. Figure 6.21 shows the results separately for each region.
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Figure 6.21: Inter-operator variability of jetstreams used for synthetic images, measured by (a) mean

minimum distance and (b) Dice similarity coefficient.

T-tests reveal no significant difference between SVM jetstreams and the intensity-driven tool, so we

can not accept hypothesisH6.3.2.3 (a). However, the trend in figure 6.21 suggests lowervariability for

at least the region-trained SVM. Indeed, the region-trained SVM shows some significant improvement

over the boundary-trained SVM. This is true for region (iii)in terms of MMD and (iv) in terms of both

measures. In terms of DSC, the region-trained SVM significantly out-performs freehand segmentation

in all cases, with the boundary-trained SVM also showing significant improvement for regions (i) and

(ii). The region-trained SVM also gives significant improvement in terms of MMD for regions (i) and

(iii). We accept hypothesisH6.3.2.3 (b).

6.3.2.4 Useability

The final hypothesis concerns the usability of SVM jetstreams. We hypothesise that:

H6.3.2.4: SVM jetstreams used to segment synthetic texture regions place less demand

on the user than jetstreams driven by intensity gradient.



6.3. SVM Jetstreams 109

To test hypothesisH6.3.2.4 we count the number of anchors used to complete a closed contour

using jetstreams driven by each of the three image models. Wetake the mean over 6 regions and look

for significant differences between the SVM driven by intensity gradient and each of the SVM types.

Table 6.5 shows the results for each user. Bold numbers with superscripts ’+’ and ’-’ respectively, denote

tools that were significantly more and less user friendly, interms of demand, than the jetstream driven

by intensity gradient. In all cases, use of the region-trained SVM leads to less user demand than using

Image model User 1 User 2 User 3 User 4 User 5

intensity grad. 55.67±10.13 64.33±10.46 71.17±6.43 54.50±9.59 37.83±7.60

region SVM 31.67±3.33+ 55.33±6.98 65.00±9.84 29.67±4.84+ 18.17±4.22+

boundary SVM 54.83±15.89 82.67±25.85 83.83±9.77− 70.17±13.06− 38.67±6.95

Table 6.5: Mean number of anchors required to segment synthetic texture regions. Bold numbers denote

a significant difference between jetstreams driven by SVM and intensity gradient (p ≤ 0.05).

intensity gradient and this improvement is significant for the majority of users. However, use of the

boundary-trained SVM leads to a reduction in useability forthe majority of users, which is significant

in two cases. We accept hypothesisH6.3.2.4 for the region-trained SVM but reject it for the boundary-

trained SVM.

6.3.3 Experiments in MS lesion contouring

The following experiments test the efficacy of the SVM jetstreams for the application of MS lesion

contouring. In order to test the tool in a realistic setting we ask expert raters to perform segmentations.

These are 4 trained raters with experience of MS lesion contouring who, at the time of the experiments,

work at the Institute of Neurology (IoN), London. The experts segment MS lesions using three jetstreams

as above, and the freehand drawing in the experimental protocol described in section 6.1.5, where three

repeated segmentations of the same lesion refer to the use ofjetstreams driven by the three different

image models. All raters also segmented each of the 6 lesionsusing a freehand tool. In summary, on a

single occasion, each rater followed a randomised sequenceof 24 tasks from 6 lesions and 4 methods. We

use the results to compare the texture-driven jetstreams with intensity-driven jetstream and the freehand

tool.

6.3.3.1 Accuracy

First, we hypothesise that:

H6.3.3.1: SVM jetstreams used to segment MS lesions are

(a) more accurate than the intensity-driven jetstreams and

(b) at least as accurate as freehand delineation

To test hypothesisH6.3.3.1 we must measure the accuracy of contours with respect to some defi-

nition of ’ground truth’. Unlike the synthetic images above, true boundaries are not defined for the MS

lesions. To measure the accuracy of each jetstream, we take the similarity between contours created by
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a rater using that jetstream and the same rater’s freehand contour. To quantify freehand accuracy we

measure the similarity between a freehand contour and a second one created by the same rater, for the

same ROI, days earlier. Figure 6.22 compares the mean similarity over all 6 lesions, of each method used

on PD and T2 images. T-tests reveal no significant differencebetween the three SVMs for either PD or
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Figure 6.22: Accuracy of jetstreams used for MS lesion images. Top row: for PD images by (a) mean

minimum distance and (b) Dice similarity coefficient.Bottom row:for T2 images by (c) mean minimum

distance and (d) Dice similarity coefficient.

T2 images. The only significant difference between jetstreams and freehand tool is for the case of user

1, who achieved higher accuracy with the freehand tool in PD images. We can not accept hypothesis

H6.3.3.1.

6.3.3.2 Intra-operator variability

Next, we hypothesise that:

H6.3.3.2: in terms of intra-operator variability, SVM jetstreams used to segment MS

lesions are

(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation
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To test hypothesisH6.3.3.2 we measure the intra-operator variability of each method, by the similarity

between contours created to segment the same region on two occasions, and take the mean over all ROIs.

Figure 6.23 shows the results separately for each user. For PD regions, T-tests reveal no significant
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Figure 6.23: Intra-operator variability of jetstreams used for MS lesion images.Top row: for PD images

by (a) mean minimum distance and (b) Dice similarity coefficient. Bottom row: for T2 images by (c)

mean minimum distance and (d) Dice similarity coefficient.

differences between jetstreams or with respect to freehandsegmentation, in terms of either similarity

measure. Similarly for T2 regions there was no significant difference in terms of DSC, while in terms of

MMD, SVM jetstreams performed significantly worse in some cases. This is seen for the region-trained

SVM (users 1 and 2) and boundary-trained SVM (user 3). We can not accept hypothesisH6.3.3.2 based

on the current data, but expect that the level of intra-operator variabilityw ould be reduced if the expert

raters had more practice with the tools.

6.3.3.3 Inter-operator variability

The next experiment concerns inter-rater variability. First, we discuss an issue raised by the contouring

results, regarding the difference between users, in theirperceptionof lesion boundaries (figure 6.24).

The freehand contours overlaid in figure 6.24 reveal that, while some lesions such as (i) and (ii) are

unambiguous, others such as (iii) and (iv) are perceived differently by at least one rater, who groups

nearby lesions inside the same contour. This ambiguity is distinct from the inter-rater variability used
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Figure 6.24: Ambiguity of MS lesion boundaries as perceivedby different experts.

to assess contouring methods. We are interested in the case where lesions are perceived the same by

two raters, but limitations of the method leads to discrepancies in their segmentation. We choose two

unambiguous lesions (i) and (ii) to compare the inter-ratervariability of each method and hypothesise

that:

H6.3.3.3: in terms of inter-operator variability, SVM jetstreams used to segmentunam-

biguousMS lesions are

(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation

To test hypothesisH6.3.3.3 we measure the dissimilarity between segmentations by two users, and

take the mean dissimilarity over all 6 unique pairs. Figure 6.25 compares the similarity measures for

the 4 methods, shown separately for regions (i) and (ii). T-tests reveal that the region-trained SVM

gives significant improvement in terms of both MMD and DSC, for ROI (i) in T2 images only. There is

no significant improvement over freehand segmentation. On the whole we must not accept hypothesis

H6.3.3.3.

6.3.4 Conclusions

We have presented a generalised contouring tool that combines boundary tracking with image models

based on SVM texture classification and on-line supervision. User experiments with synthetic texture

images and MS lesions reveal that

• for synthetic regions with known ground-truth, jetstreamsdriven by texture models or intensity

gradient are generally more accurate than freehand drawing,

• for MS lesions, jetstreams do not seem as accurate as freehand drawing, but the definition of

accuracy is flawed in the absence of ground-truth,

• in terms of accuracy, the benefits of texture-based over intensity-based image models, as revealed

by classification experiments, are largely lost when using SVMs to drive jetstreams,
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Figure 6.25: Inter-operator variability of jetstreams used for MS lesions (i) and (ii).Top row: for PD

images by (a) mean minimum distance and (b) Dice similarity coefficient. Bottom row: for T2 images

by (c) mean minimum distance and (d) Dice similarity coefficient.

• in terms of user demand, the benefits of texture-based over intensity-based image models, are

revealed by experiments on synthetic images,

• in terms of inter- and intra-rater variability, SVM jetstreams show some improvement over free-

hand segmentation in synthetic images, but statistical tests reveal no significance and the same

apparent improvement is not seen for MS lesion contouring,

• the lack of improvements in segmentation variability couldreflect the level of user control enabled

by the jetstream framework, and the general lack of practicethat users had, and

• in terms of user demand, we see significant benefits of the region-trained SVM over gradient

intensity in driving boundary trackers.
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6.4 Discussion and Future work
This chapter arrives at the following key conclusions:

• The strength of the SVM texture models is more apparent in classification experiments than when

the models are used in supervised contouring.

• The strengths of the interactive jetstream framework are more apparent in synthetic images, where

regions are larger and ground truth is known.

• The combination of texture models and jetstream interactions benefits segmentation in terms of

accuracy and user demand more than variability, due to the level of user control.

The boundary tracking framework developed here enables maximal control over segmentation results,

and in turn the steering mechanisms allow for idiosyncratic’styles’ of contouring. We learn from this,

that while we may simultaneously maximise user control without compromising accuracy (requirement

1), variability may never be eradicated in a fully user-steered framework. However, this and other limi-

tations of the tool are likely to be alleviated if users have more practice with the tool.

The methods we have developed contribute to the wider field ofsemiautomatic segmentation. The

loop closing algorithm extends to the task of interactive post editing, where tracking between fixed points

would offer a fast, accurate and repeatable method of replacing erroneous sections of a contour resulting

from artefacts such as ’bleeding’ in region-growing or level set frameworks.

The methods of ’no-go areas’ and the ability to choose from unseen particles were deemed redun-

dant for MS lesion segmentation, but both could be exploiteddifferently to improve supervised segmen-

tation. In the case of no-go areas, the method could be used toautomatically exclude nearby regions

that have already been segmented, in applications like MS lesion contouring, where several ROIs may

exist in a given image but only one is delineated at a given time. The ability to interactively choose from

multiple hypotheses in the jetstream framework may be better exploited if the choices were visible at all

times rather than requiring a user to invoke their display.

The use of SVM classifiers as an image model works in the case ofjetstreams, but the benefits

over intensity gradient are limited due to the high levels ofon-line supervision. We are motivated to

extend the SVMs for use in other segmentation frameworks. The use of the region-trained SVM is

particularly appealing for two reasons. First, there is evidence that this SVM improves on intensity

gradient in terms of useability. Second, this SVM works wellin classifying local data based on small

training sets. This last observation makes the SVM suited toconstraining 3-dimensional segmentation

by contour propagation or making efficient use of interactions in the form of training data labelled upon

initialisation.



Chapter 7

Time Series Shape Models

This chapter introduces new statistical shape models (SSMs) for variable shapes without correspondence

points, which draw from the nonlinear dynamics literature and work with radial time series representa-

tions. We base the SSMs on two time series models, namely Langevin and Gaussian processes (GP)

discussed in chapter 5. Both are stochastic models with deterministic components that can be exploited

to characterise global dynamics. The deterministic components are thedrift function in a Langevin

model and akernel function in a Gaussian process. Chapter 5 also showed that Langevin models are

Markovian whereas Gaussian processes dynamics are based oncontinuous correlation functions over all

length scales. For this reason, the Langevin models could bethought of as an extension of the Cyclic

MRF in section 3.2.2 and the GP models an extension of the CAR model in section 3.2.1.

The remainder of this chapter is organised as follows. Section 7.1 describes the shape representa-

tions, introducing definitions and notations used throughout the rest of the thesis. Section 7.2 presents

Langevin models for region shapes in both generalised and star-shaped cases. Section 7.3 presents gener-

alised and star-shaped GP models. For each model, we developmachine learning procedures for training

on multiple instances of a 2-dimensional shape. We also present methods ofshape scoring, which eval-

uates the agreement of test shapes with a trained model. Shape scoring methods lie primarily in the

field of classification and recognition, but are intended here for use in shape regularisation for segmenta-

tion. Section 7.5 tests the affinity of the models for describing MS and liver tumour ROIs and evaluates

the discriminative models by using the machine learning andshape scoring procedures in classification

experiments.

7.1 Shape Models and Time Series
Before introducing new shape models we must define what we mean by ’shape’, as a universal definition

is not available. In general, two objects have the same shapeif they share certain spatial properties. In

one popular definition, Kendall [273] defines these properties as

“all the geometrical information that remains when location, scale and rotational effects

are removed from an object“.

According to Kendall’s definition, two regions of interest in the same semantic class may not have the

same ’shape’. Regions such as MS lesions or tumours can be very different because of the pathological
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processes that form them. This is in contrast with anatomical regions such as vertebrae or hearts which,

mutations notwithstanding, bare global similarities by genetic design. For this project we require a more

general definition if we maintain that two MS lesions, for example, have the same ’shape’. We hereby

define shape as

“all the information about a region’s form that is shared by all regions belonging to the

same semantic class“,

where the ’information about a region’s form’ is independent of that region’s location. Note that this

definition leads to a non-Euclidean description of shape, where the different ’sizes’ of shapes in a class

form part of the model for that class. This is applicable for pathological applications where regions of

different scale are expected due to their growth. For the statistical shape models developed here, the

’information’ is embedded in the choice of deterministic function and its parameters. The remainder

of this section defines various components of the parametriccontours and shape models central to the

remainder of the thesis.

7.1.1 Radial time series

A family of parametric contours uses the radius ofN successive points around a region boundary

r = {r0, . . . , rN−1}, measured from a fixed locationxc = {xc, yc} inside the region [163, 73, 78].

Section 3.5.1 concluded that this representation benefits from knowledge of the ROI centre, and also

removes the assumption of correspondence. We refer tor generally as aradial time series, where spe-

cific types differ by what ’time’ represents. Two examples are boundary arc-lengths (eg. [166]) and the

angleθ between radial vectors (eg. [158]). Formally, we define a shape in each case by a parameter set

Q comprising

Qgen = {r, s,xc} = {{r0, . . . , rN−1}, {s0, . . . , sN−1}, {xc, yc}} (a)

Qstar= {r, θ,xc} = {{r0, . . . , rN−1}, {θ0, . . . , θN−1}, {xc, yc}} (b),
(7.1)

where the generalised caseQgen in 7.1(a) can represent any two-dimensional shape, while the polar

representation 7.1(b) is limited to the ’star-shaped’ set where all boundary points of a shape, denoted

Qstar, are visible fromxc. The polar representation has the benefit of naturally representing closed

contours without self-intersection.

In general terms, a time series models the discrete time evolution of astate variable. In our case the

state variable is radiusr. For the dynamical models introduced later, it is convenient to work in the state

space of azero-mean fieldas in [75, 73, 77, 225]. In a zero-mean field, the mean of a series of length

N approaches zero asN → ∞, although the mean of any finite series is arbitrary. We denote asχ(t),

an arbitrary state variable of a zero-mean field. Figure 7.1 illustrates the relationship between zero-mean

field, radial time series and shape for both star shaped and generalised parametrisations.

7.1.2 Training data

The discriminative shape models in this section can use either the generalised or star-shaped parametri-

sations in equation (7.1). In either case, training data is originally in the form of closed boundaries
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Figure 7.1: Time series shape model definitions, showing howa shape (a) relates to the star-shaped

representation of (b) radial time series and (c) time seriesin a zero-mean field, and the generalised

parametrisation of (d) radial time series and (e) time series in a zero-mean field. Dashed lines in (a), (b)

and (d) show the centre of the radial state space.

expressed in{x, y} coordinates. We pre-process this data to create radial timeseries with three required

properties. First, training series should be of zero-mean field as described above. Second, the indepen-

dent variableθ or s needs to be discretised at regular intervals. Third, in the case of GP models, the

length of each seriesN is the same.

We first choose an internal pointxc to represent a regions centre. This is the only additional in-

formation we need to assign to our training contours, in contrast to the landmarks required in the point

distribution model (section 3.1.1) or the skeleton in the M-reps method (section 3.1.2). Manual estimates

are simple to obtain but time consuming, so we introduce automatic methods for both generalised and

star-shaped training data. In the generalised case, we takethe internal point having maximum closest

distance to any of the boundary pixels. In the star-shaped case, we first identify the internal points from

where all boundary points are visible, known as the ’kernel’of the shape. If no such points exist we omit

the contour from the star-shaped set, otherwise we computexc from the centroid of these points. We

refer a centre point defined by the automatic methods above asthetruecentre, as it is used when training

a model.

After identifying xc we record the series of radial distancesri at each pixel around a training

contour, along with the corresponding increments of the independent variableθ or s. In the star-shaped

case, the anglesθi are monotonically increasing but arbitrarily spaced, so weresample the series at

regular∆θ. For the GP models we also resample all generalised series{r, s} to have commonN . Next,

we estimatēr. This radius represents the centre of the state space occupied by the radial time series,
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corresponding to zero in a zero-mean field. To estimater̄ we take the midpoint between the minimum

and maximum radius in a series. Recall that the mean of a given(finite) series does not relate to the

centre of state space. Finally, we subtractr̄ from the series, which splits the model into a zero-mean field

time series and a separate scale parameterr̄. This scale parameter̄r is analogous to the parameterα in

the CAR model (section 3.2.1). Note that the models could be made scale invariant at this stage, either

by dividing all radii by the scale parameter or by normalising radial time series to a fixed range such as

{−1, . . . ,+1}, for applications where scale invariance is preferred.

7.2 Langevin Models

Section 5.1 reviewed the use of Langevin models to characterise and simulate dynamical systems in-

cluding physiological processes [232] and series in the spatial domain [224]. This section formulates

Langevin-type models for radial time series, with the goal of modelling fluctuating boundaries of ROIs

such as tumours and lesions. The models learn higher-level information about the global statistics of

shapes, which generalises despite high within-class variability.

Langevin shape models treat a radial time series as the discrete time evolution of a 1-dimensional

state variabler(s) or r(θ), which replace the vectorχ(t) in section 5.1. For convenience we use the

notationr(t) to refer to both parametrisations. A Langevin model is characterised by the deterministic

(drift) term and a stochastic (diffusion) term in the Langevin equation. We use the drift and diffusion

functions of a Langevin equation to encode higher-level information about the global statistics of shapes

with a small number of model parameters.

We start by writing equation 5.1 in terms of radial time series

dr
dt

= A(r(t)) +B(r(t))ωt, (7.2)

where the continuous variabler occupies a zero-mean field after subtracting an estimate ofr̄ andωt is

time dependent Gaussian noise with zero mean and unit variance. The drift and diffusion terms model

the ’stability’ of a boundary as a function of its distance from the region centre, where the drift relates to

whether the boundary shifts toward or away from the centre, and the diffusion relates to the strength of

this tendency.

7.2.1 Drift and diffusion functions

The drift termA(r(t)) in equation 7.2 allows the local dynamical behaviour of a boundary to vary

throughout the state space of ’radius’. This gives a rotation-invariant model of the global characteristics

of boundary fluctuations. For the purpose of ROI shape priors, we seek drift functions that are simple,

controlled by few parameters, and allow intuitive interpretation with respect to the shape itself. Where

Langevin models are used for different applications in the literature, drift functions are suggested ac-

cording to a combination of empirical evidence and any knowledge of an underlying physical model

[234, 232, 224, 274, 236, 242]. For a stable series to remain in a zero-mean field, we require that the

drift function has a global trend ofA(r) → A−∞ ≥ 0 asr → −∞ andA(r) → A+∞ ≤ 0 asr → +∞.

We refer to this as thenegative trend requirement.



7.2. Langevin Models 119

We present three simple candidates for drift and diffusion functions, chosen after empirical investi-

gations to model tumour and lesion regions. The candidate drift (A1...3) and diffusion functions (B1...3)

are given by

A1(r(t),a) = −a0r exp[−r2/a2
1] − a2r B1(r(t),b) = b0

A2(r(t),a) = a0r + a1r
3 − a2r

5 B2(r(t),b) = b0 + b1(r − b2)
2

A3(r(t),a) = a0 − a1 exp[a2r] B3(r(t),b) = b0 + b1(r − b2)
3.

(7.3)

We ensure the drift functionsA1...3 fulfil the negative trend requirement by assertinga2 is positive in

functionsA1 andA2, anda1 is positive inA3.

7.2.2 Parameter estimation

Starting with a set of training shapes, the machine learningtask is to estimate the scale parameterr̄ in

Qgenor Qstarand the form and parameters of the drift and diffusion functions.

For the scale parameter we assume a normal distributionPr(r̄) = N (ˆ̄r, σ2
r̄ ) and calculate the mean

ˆ̄r and standard deviationσr̄ by estimatinḡr from the radial time series of each training shape.

To estimate the form and parameters of the drift and diffusion function we devise machine learning

procedures adapted from the direct estimation method of Friedrich and Peinke [229]. The adaptations

enable us to learn from multiple instances of periodic series derived from a training set of shapes.

First we transform a set ofM training shapes into zero-mean series{r0, . . . , rm, . . . , rM−1} as de-

scribed in section 7.1.2. Next we form a discrete estimationof the drift and diffusion functions common

to the population of training shapes in the following steps:

Step 1. Divide the state space{rmin, . . . , rmax} of the whole training set, into bins of equal width

∆r, centred on discrete valuesrn.

Step 2. For thenth bin, inspect themth series and note all observationsrm(ti) that fall in the

rangerm(ti) ∈ rn ± ∆r
2 .

Step 3. Starting from these observations, follow the seriesrmi along a trajectory of length∆t.

Where this trajectory overshoots the end of a series, re-start from r0 as the series is periodic.

Step 4. Repeat steps 2-3 for allM series in the training set to form a common histogram from

future positions of the state variable.

Step 5. Use this histogram to approximate the transition density as Pr(r(t + ∆t)|r(t) ∈
rn ± ∆r

2 ) = N (µn, σn) specific to thenth bin in state space.

Step 6. Estimate the meanµn and standard deviationσn from the normal distributionN (µn, σn).

These steps arrive at discrete approximations of the drift and diffusion functions

A(rn(t)) = µn − rn and

B(rn(t)) = σn rn ∈ {rmin, . . . , rn, . . . , rmax},
(7.4)
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specific to the chosen delay parameter∆t. Next we simultaneously seek functionsA(r(t),a) and

B(r(t),b) along with their parametersa andb, which best fit the observed drift and diffusion functions.

We use a Levenberg Marquardt fitting routine and start by fitting each of equationsA1...3 to the extracted

drift functions and each ofB1...3 to the extracted diffusion functions. Then we take the combination of

functionsA andB whose fits give the lowestχ2 error. For bothA andB we omit the observations at the

extremes of state space from the fitting procedure, as these regions are under-represented in the training

data.

The procedure above involves secondary parameters that must be chosen, namely the delay parame-

ter∆t and the width of the state-space bins∆r. We optimise for these parameters for a given application

by using theχ2 error of the fitting procedure as a measure of model affinity. We also benefit from the

ability to generate synthetic data (explained in the next chapter) to gain insight into the sensitivity of

parameter estimation to these values.

7.2.3 Shape scoring

Shape scoring assigns a value to a test shape, according to its agreement with a model. The same principle

underlies shape classification and object recognition tasks. We suggest an intuitive, fast approach to

shape scoring, for the purpose of shape regularisation in region segmentation.

Where time series models have been used for classification inthe literature, the general approach

is to repeat parameter estimation for both training and testing data, and score the test set based on

the similarity of the two estimates. Examples for shape classification by the circular autoregressive

model [159, 160] use estimated parameters as feature vectors in generic classification schemes. An

example for electrocardiograph (ECG) series classification by the Langevin model [223], groups ECG

series into healthy and unhealthy classes by qualitative comparison of the estimated drift functions.

These approaches assume that a single test shape/series contains sufficient information for parameter

estimation. In the case of the circular autoregressive model, parameters are reliably estimated from a

single shape. In the example of ECG, a typical series contains tens of thousands of points, representing

heart rate fluctuations over periods up to 24 hours.

These approaches to shape scoring are not appropriate for our purposes for three reasons. First, for

the purpose of shape regularisation, we need to score the agreement of a single time series with a model.

The parameter estimation procedure above can not reliably estimate parameters from a single radial

time series, which does not contain sufficient data. Second,for shape regularisation in an interactive

segmentation framework the scoring method must be fast, whereas the approaches above are likely to

be slow. Third, we prefer a score that is probabilistic, in order to allow integration into a probabilistic

segmentation framework as motivated in section 2.5.

We introduce a probabilistic shape scoring method based on the transition densities derived from

the Fokker-Planck equation. Formally, for a contour definedby parametersQ = {r,xc, r̄}, we seek the

prior probabilityPr(Q|a). This chapter is not concerned with the position of a contourmodel relative to

an image, so we omit the dependence onxc and score the shape according toPr(Q|a) = Pr({r, r̄}|a).

For Langevin shape priors we recall the expression for the joint likelihood which, or the case of the shape
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models, becomes

Pr(Q|a,b) = Pr(r0)

[N−1
∏

i=0

Pr(r(ti + ∆t)|r(ti),a,b)

]

Pr(r̄). (7.5)

We finally define the score for a single shape, by dividing the joint likelihood by the number of points

around the contour and taking the logarithm

SLAN =
1

N
× log Pr(Q|a,b)

=
1

N
×

(

log Pr(r0) +

[N−1
∑

i=0

log Pr(r(ti + ∆t)|r(ti),a,b)

]

+ log Pr(r̄)

)

,
(7.6)

wherePr(r̄) = N (ˆ̄r, σ2
r̄ ) is the distribution over scale parameters and we setPr(r0) = Pr(r̄) without

loss of generality because the first point in a radial time series can be chosen at any point on the boundary.

The conditional probabilitiesPr(ri|ri−1) are normally distributed with means and variances given by

Pr(r(ti)|r(ti−1)) = N (r(ti−1)) −A(r(ti−1),a), B(r(ti−1),b)), (7.7)

whereA andB are evaluated using the learned model parametersa andb.

7.3 Gaussian Process Models
A Gaussian process (GP) is characterised by a discrete mean function and a kernel function that defines

a covariance matrix. Section 5.2 reviewed GP methods, noting that the 1-dimensional case is an example

of nonlinear time series analysis. This section formulatesGP models for radial time series, with the goal

of learning higher-level information about the global statistics of boundary dynamics. In this section we

introduce GP SSMs with an example kernel function and constant mean function, and discuss extensions

to other kernels and non-constant mean function as the basisof future work.

Gaussian process shape models treat a radial time series as arandom vector of radiir at discrete

inputss or θ. As above we use the general notationr(t), which replacesχ(t) in section 5.2. We propose

that, by modelling a radial time series as a Gaussian process, the kernel function encodes higher-level

shape information with a small number of model parameters.

We start by rewriting equation 5.11 to represent a radial time series as aN -dimensional random

vector of outputsr = {r0, r1, . . . , rN−1} corresponding to inputst = {t0, t1, . . . , tN−1}. A given

seriesr has an associated probabilityPr(r|µ,Σ(r, r)), which follows theN -dimensional multivariate

normal distribution

Pr(r|Σ(r, r)) = NN (µ,Σ(r, r))

=
1

2π
N
2 |Σ(r, r)|N

2

exp[−1

2
(r − µ)TΣ−1(r, r)(r − µ)]

(7.8)

whereµ is a discrete mean function given by the vector of expectation valuesE(ri) andΣ(r, r) is the

N × N covariance matrix. Elements ofΣ model the covariance between pairs of outputs{ri, rj} as

a function of the corresponding inputs{ti, tj}. The covariance matrix is computed using the kernel

function

Σ(ri, rj) = ε(ti, tj,a), i, j ∈ {0, . . . , N − 1}, (7.9)
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wherea is a vector of parameters of the kernel function. The covariance matrix becomes

Σ(r, r) =

















ε0,0(t0, t0,a) ε0,1(t0, t1,a) . . . ε0,N−1(t0, tN−1,a)

ε1,0(t1, t0,a) ε1,1(t1, t1,a) . . . ε1,N−1(t1, tN−1,a)
...

...
. . .

...

εN−1,0(tN−1, t0,a) εN−1,1(tN−1, t1,a) . . . εN−1,N−1(tN−1, tN−1,a)

















. (7.10)

7.3.1 Kernel and mean functions

The kernel function (equation 7.9) provides the deterministic part of the GP model, which describes how

the correlation between two boundary points varies with their separation. We choose a stationary kernel

ε(ti, tj) = ε(ti−tj ,a). In this way the kernel functions are both rotation invariant and easily interpreted,

modelling correlation as a function oflength-scaleti − tj . For the case of radial time series we seek a

kernel function that is simple, and periodic to ensure correlation between the points at the beginning and

end of a series. We use a function based on the periodic kernelin [275], given by

ε(ti − tj ,a) = exp

[

−a sin2
( tj − ti

2

)

]

, (7.11)

which has a single free parametera = {a} governing the length-scale of correlation.

For convenience, and to retain rotation invariance, we use aconstant mean function. In the zero-

mean field this corresponds to the vector of zerosµ = 0. Depending on the application, novel mean

functions could be derived from training data or run-time interactions in a segmentation framework.

7.3.2 Parameter estimation

Starting with a set of training series, the machine learningtask is to estimate the discrete mean function

and the form and parameters of the kernel function. In this section we assume constant expectation

valuesE(ri) = 0∀i such that the mean functionµ is a vector of zeros. We also assume that the kernel

function in equation 7.11 is general enough to describe any given training set. The remaining task is to

estimate the mean and variance ofN (ˆ̄r, σ2
r̄ ), and the parametersa of the kernel function. As before we

estimatēr for a single contour as above and take the meanˆ̄r and standard deviationσr̄ over the training

set. To estimate the kernel parameters we use Markov Chain Monte Carlo (MCMC) methods following

the work of [248].

We choose the MCMC method for its ability to avoid local minima and, moreover, to handlemul-

titask learningwhereby, as in our case, the training data naturally come as multiple independent series.

Starting withM training shapesrm, wherem = 0, . . . ,M − 1, the algorithm seeks the parametersa

that maximise the joint probability density functionPr(r0,...,M−1|a) given by

Pr(r0,...,M−1|a) =

M−1
∏

m=0

Pr(rm|a)

=
M−1
∏

m=0

1

2π
N
2 |Σ(a)|N

2

exp[−1

2
(rm − µ)TΣ−1(a)(rm − µ)],

(7.12)

whereΣ(a) denotes that the free parametersa are the only unknowns in the covariance matrix. For

convenience and to avoid numerical issues arising from nearsingular covariance matrices [166], we
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maximise the log of the joint PDF given by

L = log Pr(r0,...,M−1|a)

= −MN

2
log(2π) − M

2
log(|Σ(a)|) − 1

2

M−1
∑

m=0

(

(rm − µ)TΣ−1(a)(rm − µ)
)

.
(7.13)

The MCMC algorithm seeks the posterior distribution over parametersπ(a). We use Gibbs sampling

to repeatedly draw samples from a proposal distribution. For the case of equation 7.11 we use the 1-

dimensional distribution centred on the current estimateai, i.e.N (ai, σa), where varianceσa is chosen

empirically. At thei+ 1th iteration, the parameterai+1 drawn from the proposal distribution replaces

the ’current’ parameter estimateai with probability given by the likelihood ratioL(ai+1)
L(ai)

until, after a

’burn-in’ period, the Markov Chain iteratively samples from the stable distributionπ(a). If we assume

π(a) to be Gaussian then the maximuma-posterioriprobability (MAP) solution is given by the mean

1

k

B+k
∑

i=B
ai, (7.14)

over a large numberk of samples, whereB is the number of iterations in the burn-in period.

7.3.3 Shape scoring

Proceeding as for the Langevin model, we seek to score a test shape according to its agreement with the

model. As before, we evaluatePr(Q) = Pr({r, r̄}), i.e. independent of the centre pointxc. We start

with the log probability density function for a single series, given the learned parametersa,

log(Pr(r|a)) =
N

2
log(2π) − 1

2
log(|Σ(a)|) − 1

2

(

(r − µ)TΣ−1(a)(r − µ)
)

. (7.15)

The full equation for shape scoring under the GP model includes the scale parameterPr(r̄) = N (ˆ̄r, σ2
r̄ ),

giving

SGP = log Pr(Q|a)

= log(Pr(r|a)) + log Pr(r̄)

=
N

2
log(2π) − 1

2
log(|Σ(a)|) − 1

2

(

(r − µ)TΣ−1(a)(r − µ)
)

+ log Pr(r̄).

(7.16)

7.4 Data and Performance Evaluation
We have 276 liver tumour contours from [29], of which 241 are star-shaped. We also have 3086 MS

lesion contours from the datasets in the previous chapter. To reduce this large training set we discard

the smallest MS lesions, made up of 15 pixels or less. The remaining ground truth are 1608 MS lesion

contours, of which 1307 are star-shaped. Figure 7.2 (a) and (b) show examples of liver tumour and MS

lesion contours respectively.

7.4.1 Figures of merit

The performance of a discriminative model is related to its specificity and sensitivity. Specificity tells us

how consistently a model describes a specific region type. Inthe case of Langevin models, the specificity

of candidate functions in equation (7.3) predicts their relative discriminator power. For this purpose we

infer Langevin model specificity using theχ2 error returned by Levenberg-Marquardt fitting.
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(a) (b)

(c) (d)

Figure 7.2: Top row: examples of positive class ground truth shapes from (a) liver tumour and (b)

MS lesion sets.Bottom row: examples of negative class sets defined in section 7.4.2 andused in the

experiment of section 7.5.2, comprising (c) noisy sinusoids with radial range matching the liver tumour

sets and (d) noisy circles with radial range matching the MS lesion set

For both Langevin and GP models, the specificity and sensitivity tell us how well a model can

distinguish shapes that belong to the model from those that do not. The shape models should score

test shapes with higher valuesSLAN or SGP, if they belong to the same semantic class as the training

data. We evaluate a model’s ability to distinguish between shapes by thresholding the scores assigned

to positive and negative test shapes, and creating ROC curves. As we saw in section 3.4, the choice of

negative class is somewhat arbitrary when evaluating shapemodels. We use synthetic shapes created

to satisfy two requirements. First, a negative class must have similar radial statistics to the positive

class, so that remaining differences between positive and negative class are subtle. Second, a shape

must be of the type encountered during the evolution of a stochastic active contour. This last criterion

allows performance evaluation to infer the value of the discriminative models as shape regularisers in a

stochastic segmentation framework.

7.4.2 Negative classes

We create two synthetic negative classes that satisfy the requirements above. We refer to the first as

noisy circles, which we generate by drawing random valuesri from a normal distribution. Each series

has the same lengthN and first/second order statistics as one in the positive testdata. Examples of

noisy circles are shown in figure 7.2 (c). The second synthetic class arenoisy sinusoidsdefined by

ri = ω × γ sin(p 2π i/N), with noiseω is drawn fromN (0, 1) and the number of periodsp is drawn

from a uniform distribution between1 and10. The amplitudeγ and lengthN of each series match

the radial range and lengthN of one in the positive class. Examples of noisy sinusoids areshown in

figure 7.2 (d).

7.4.3 Comparison methods

Finally, we choose comparison methods to investigate the discrimination characteristics of the SSMs.

As the models are new, we are view their evaluation as a ’proofof concept’, more so than a direct

comparison of the state of the art. Moreover, the state of theart is not obvious, when considering the

balance between maximising the shape information sought and minimising the level of shape similarity
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assumed. We seek comparison methods that

• gain information about a shape without assuming correspondence, where

• the information is interpretable and

• can be adapted to give a probabilistic score based on a training population

We choose two shape descriptors that satisfy these requirements. The first descriptor is based on the sum

of a local smoothness measureζ = 1/N ×∑N−1
i=0 cos(ϕ) whereϕ is the angle between successive steps

from one boundary point to the next. We calculate the meanζ̂ and standard deviationσζ of all training

contours assuming a normal distributionSζ = N (ζ̂ , σζ). A test contour with smoothnessζ′ is scored

using the normalised log probability given by

Sζ =
1

N

[1

2
log(2π) − 1

2
log(σζ) − (

ζ′ − ζ̂

σζ
)2

]

+ log Pr(r̄). (7.17)

The second descriptor is based on the 1-dimensional Fourierdecomposition of a radial time se-

ries. We estimate the firstK coefficientsβs of sine andβc of cosine terms in the approximation

r ≈ ∑K−1
k=0 βck cos(kt) + βsk sin(kt). For each training contour we form the2K-dimensional vector

β = {βs0, . . . , βsK−1, β
c
0, . . . , β

c
K−1} and calculate the mean vectorβ̂ and covariance matrixΣ(β,β)

assuming a multivariate normal distributionN2K(β̂,Σ(β,β)). A test contour with Fourier coefficientsβ′

is scored using the normalised log probability given by

SF =
1

N

[1

2
log(2π) − 1

2
log(|Σ(β,β)|) − 1

2

(

(β′ − β̂)TΣ−1(β,β)(β′ − β̂)
)]

+ log Pr(r̄). (7.18)

7.5 Experiments
This section tests the discriminative power of the dynamical SSMs. We address two hypotheses concern-

ing the efficacy of the Langevin models for the chosen region types (7.5.1) and the sensitivity of both

Langevin and GP models (7.5.2).

7.5.1 Langevin model selection for medical contours

In the case of Langevin models we have suggested more than onefunction to describe the observed

dynamics of a training set. The next experiments investigate different drift and diffusion functions for

a given region type, in order to test that a Langevin model adequately describes the region type, and

choose the best functions.

We hypothesise that:

H7.5.1: Langevin models capture global shape information specific to a population of

region boundaries.

We address hypothesisH7.5.1 in two ways. First, we assess the models qualitativelyby looking

for structure in the discrete drift and diffusion functionsextracted from training data. We use the steps

in section 7.2.2 to estimate drift and diffusion functions by equation (7.4). Figure 7.3 shows the results.

By visual inspection, drift and diffusion functions have some structure for both region types modelled
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Figure 7.3: Extracted drift (top row) and diffusion (bottomrow) functions for Langevin models trained

on (a)/(b) liver tumours and (c)/(d) MS lesions using the generalised/star-shaped parametrisations re-

spectively.

with both generalised and star-shaped parametrisations. In all cases, however, the structure is degraded

towards the extremes of state space where training data is sparse.

Second, we look for evidence that different region types arebest described by different (combina-

tions of) drift and diffusion functions. Table 7.1 shows theχ2 error when each candidate function is used

for each region-type and both generalised (’gen.’) and star-shaperd parametrisations.

Region Drift χ2 error Diffn. χ2 error

type gen. star gen. star

liver tumour

A1 2.55 × 107 1.20 × 108 B1 6.25× 107 3.49 × 108

A2 2.21× 107 1.19× 108 B2 5.82 × 107 2.54× 108

A3 2.81 × 107 1.21 × 108 B3 6.00 × 107 2.71 × 108

MS lesion

A1 3.63× 108 4.91 × 108 B1 4.25× 108 2.89 × 109

A2 3.92 × 108 4.70 × 108 B2 3.68 × 108 1.39 × 109

A3 4.12 × 108 2.29× 108 B3 3.69 × 108 1.33× 109

Table 7.1:χ2 errors when fitting functions to discrete estimates of Langevin drift and diffusion.

Solid lines in figure 7.3 show the results of fitting chosen functions (bold in table 7.1) from the

candidate set 7.3. The chosen functions are those having thelowestχ2 error, in all cases except for the

diffusion functions in the generalised models (bottom row,(a) and (c)). In these cases the constant and

quadratic functionsB1 andB2 give similarχ2 error and we favourB1 for its simplicity.

We accept hypothesisH7.5.1 because, for both generalised and star-shaped models, we see structure

in the estimated functions, and these are different for the two region types, suggesting that the training

contours have distinct global properties that the Langevinmodels can capture.
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7.5.2 Discrimination capability for medical contours

This section uses the discriminative SSMs in classificationexperiments. First, we hypothesise that:

H7.5.2: Langevin and GP models are sensitive enough to discern tumour and lesion

shapes from synthetic shapes of equivalent radial scale andvariance,

We test hypothesisH7.5.2 using ROC analysis. We divide the data into training and testing sets

of approximately the same size, where contours in each set originate from a subset of the MRI or CT

volumes. Next we train Langevin and GP models and use equations (7.6) and (7.16) to score the testing

set along with the same number of negative-class contours, taken from the synthetic sets of noisy circles

and sinusoids. We threshold the scores at 500 increments andcalculate the true- and false-positive

fractions that form a ROC curve. The area under the curve (AUC) provides a measure of classification

accuracy between 0 and 1. The central columns of table 7.2 show the results for Langevin and GP

models, used to classify liver tumour and MS lesion shapes with both generalised (r(s)) and star-shaped

(r(θ)) contour parametrisations.

Positive Negative Langevin (SLAN ) Gauss. Proc. (SGP) Smooth Fourier (SF )

class class r(s) r(θ) r(s) r(θ) (Sζ) K = 3 K = 10

Liver circular 0.989 0.999 0.861 0.978 0.961 0.644 0.796

tumour sinusoid 0.919 0.930 0.813 0.943 0.621 0.598 0.685

MS circular 0.030 0.532 0.837 0.804 0.810 0.698 0.678

lesion sinusoid 0.799 0.916 0.581 0.813 0.723 0.753 0.692

Table 7.2: Classification results for the SSMs and simple shape descriptors, used to distinguish liver

tumour and MS lesion shapes from synthetic negative classes.

In general, the models of liver tumour shapes perform well, with AUC above 0.9 in all cases ex-

cept the GP model with the generalised contour parametrisation. The star-shaped Langevin model also

discriminates between lesions and noisy sinusoids with AUC> 0.9, while all other SSMs struggle to dis-

tinguish MS lesion shapes from either negative class. A striking example is discriminating MS lesions

from noisy circles, which causes the Langevin model to fail and, in the generalised model, consistently

misclassify (AUC<0.5). We revisit this observation in section 7.6. On the whole we accept hypothe-

sisH7.5.2 for the star-shaped models, observing that both Langevin and GP models discriminate liver

tumours better than MS lesions.

Next, we hypothesise that:

H7.5.3: Langevin and GP models capture more information than

(a) a linear combination of local smoothness, or

(b) global information regarding frequency statistics

We repeat ROC analysis using the smoothness and Fourier descriptors described above, creating

ROC curves by thresholdingSζ andSF . In the case of Fourier descriptors we repeat forK = 3 and
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K = 10 in equation 7.18, to truncate the Fourier descriptors at lower and higher frequencies. Results are

given in the right hand side of table 7.2.

In most cases the dynamical SSMs have higher classification accuracy than the smoothness and

Fourier descriptors. Langevin models discriminate liver tumours from noisy circles better than from

noisy sinusoids, whereas this ranking is reversed for the case of MS lesions. This confirms that the two

medical region types differ in terms of the dynamics captured by Langevin models. We accept hypothesis

H7.5.3.

Finally, we investigate the relative efficacy of Langevin and GP models for describing ore regions

of interest, recalling that the former assumes Markovian dynamics and the latter does not. For this we

make the null hypothesis

H7.5.4: Langevin and GP models have the same discriminatory power.

Comparing the Langevin and GP columns in table 7.2 leads to the following observations:

(i) Langevin models out perform GP models in discriminatingliver tumours from noisy circles

and MS lesions from noisy sinusoids.

(ii) GP models out perform Langevin models in discriminating MS lesions from noisy circles.

Taken together, observations (i) and (ii) indicate that tumour and lesion boundaries both fluctuate with

Markovian dynamics, but this behaviour alone does not discern MS lesions from noisy circles. However,

we can not make a general conclusion about the efficacy of a Markovian model because the Langevin

models use deterministic functions chosen for the respective lesion types from the set in equation 7.3,

whereas we only try a single kernel function in the GP model.

7.6 Conclusions and Future Work

This chapter presented statistical shape models that combine nonlinear time series analysis with radial

time series contour parametrisations. Model selection andclassification experiments reveal that

• Langevin models capture global information that differs between region types, and

• Langevin and GP models distinguish tumours and lesions fromsynthetic shapes with similar radial

statistics and range.

These findings show that the SSMs capture global informationabout region boundaries, without assum-

ing correspondence points or other high-level shape similarity between training examples.

Comparisons with two simple shape descriptors reveal that

• Langevin and GP models capture global information that is separate from the smoothness or fre-

quency of boundary fluctuations

• Langevin and GP models generally perform better than simplesmoothness and Fourier descriptors,

and
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• star-shaped models generally out-perform those using generalised contour parametrisation.

These findings show that the SSMs capture more higher-level,global shape information than integrating

local smoothness around a contour or analysing the frequency spectrum of boundary fluctuations, and

that their success is helped by, but not limited to, data belonging to the star-shaped set.

The choice of negative class for use in binary classificationis somewhat arbitrary and this could

explain a negative result (AUC<0.5) when classifying MS lesions using the Langevin model with gen-

eralised contour parametrisation.

For a noisy circle, the transition densityPr(ri+1|ri) is equivalent to the driving noise used in cre-

ating the synthetic data, i.e. a stationary distribution with zero mean and standard deviation chosen to

match the lesion training set. This corresponds to a linear drift with single stable point (negative zero

crossing) at the centre of the zero-mean field. The central region of figure 7.3 (c) shows similar behaviour,

and it is in this region that training data is most closely aligned with the functionA1. Misclassification

is caused by the synthetic negative class predominantly occupying this region of state space. In other

words, real MS lesion data with boundary dynamics that are indistinguishable from noisy circles, make

up a large part of the training data and the positive testing data, butall of the synthetic data.

The discriminative models are expected to benefit segmentation frameworks by shape regularisa-

tion, and the investigations above were designed with this in mind. Shape classification also benefits

medical applications outside the field of segmentation. A recent example is given in [10] where shape

models discriminate healthy from Alzheimers patients based on the shape of brain ventricles. This use

of binary classification motivates future work with the new SSMs, starting with a specific role in MS

lesion imaging. It has been suggested [276, 15] that multiple sclerosis gives rise to four different ’types’

of lesion. So called ’Lassmann patterns’ are thought to correlate with differences in disease prognosis,

with implications for the treatment of the disease. Investigations currently rely on histological studies

but, if training data became available, we are motivated to develop machine learning approaches to non-

invasive classification of lesion types. We propose to use the shape models introduced here, perhaps in

combination with the texture models in the previous chapter.

In the case of GP models, future work could incorporate different mean functions. We chose a

constant mean function above for rotation invariance, as this corresponds to a circular ’mean shape’.

The GP model readily extends to a non-circular mean shape by novel mean functionsµ. In an interactive

segmentation framework the mean shape could be given by a ’rough outline’ drawn manually on an

image by the user. This is a similar idea to the use of the ’template’ with the 1D-CMRF in [77].

Finally we reiterate the value of the discriminative modelsoutside classification or segmentation

applications, as methods of tomographic reconstruction and image registration can also make use of

shape regularisation. In the example of registration, the presence of tumours in target and source images

poses a particular problem as they are likely to have changedbetween the times of acquiring two images.

The new SSMs are expected to benefit this task, requiring onlythat (i) the centre point of a tumour can

be estimated in the source and target image and (ii) the training data represent the variations in tumour

shape due to changes over time.



Chapter 8

Segmentation Frameworks and Generative

Models

This chapter exploits the time series models in the previouschapter for segmentation. First we use the

discriminative models as shape regularisers in the optimisation scheme of a simple active contour model.

Then we develop generative models to form the basis of novel probabilistic segmentation algorithms. We

constrain the generative models to incorporate observations from image and interactions. We present the

segmentation frameworks for star-shaped regions using thepolar parametrisation in equation 7.1 (b) and

discuss extensions for non star-shaped models.

The rest of this chapter is organised as follows. First, section 8.1 introduces appropriate observation

models derived from images. Section 8.2 describes a deformable contour model exploiting the SSMs

as shape regularisers. Section 8.3 presents a generalised framework for interactive segmentation using

generative shape models, which combines generative SSMs with probabilistic observations and efficient

interactions. We then present the specific methods of using generative Langevin and GP models in

such a framework, in sections 8.4 and 8.5 respectively. Section 8.6 describes choices regarding data

and performance metrics, used to evaluate the strength of the shape priors in a segmentation framework.

Experiments in section 8.7 test the value of shape priors in the various segmentation frameworks. Section

8.8 discusses the findings and draws conclusions.

8.1 Image Models and Time Series

The last chapter dealt with the prior models of shape alone, independent of position in the image, al-

lowing us to removexc from the shape modelQstar = {r, r̄}. For segmentation, we re-introduce the

centre pointxc and introduce information from the image dataD local to the region centre, giving the

expression for the posterior

Pr(Q|D) = Pr({r, r̄,xc}|D). (8.1)

This section describes ways to model the image dataD that are consistent with the polar parametrisation

(8.1.1). We also model the uncertainty of centre-point location in section 8.1.2, and introduce the full

Bayesian framework in section 8.1.3.
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8.1.1 Data likelihood

For star-shaped regions we define an image observation modelin polar coordinates. A similar method

in [75] models the intensity changes at the region boundary along each radial vector as an ideal step

function with Gaussian noise. For use with the GP and Langevin segmentation algorithms, we require

an observation model that

• estimates the probability that the boundary intersects a radial vector at radiusr,

• is independent of the choice of boundary measure, extendingto texture classification if necessary

• provides observations in a form which the time series modelsreadily incorporate, and

• is readily complemented by information from user interactions.

We introduce aradial profile modelwhere the boundary measure is a function of radius. In this chapter

we base the boundary measure on the gradient, denotedg, but this could be replaced by the results of

tissue classification such as the boundary measuregdr
or db used in chapter 6.

The model is based on both the magnitude|g| and directionψ of the image gradient as shown in

figure 8.1. We define an estimatex′
c of the region centre by a pixel selected manually by the user of
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Figure 8.1: Observation model from an example synthetic image. (a) Synthetic region with boundary

given by a liver tumour contour, showing an estimate of the centrex′
c, local boundary directionψ and

radial vector at arbitrary angleθi. (b) Greyscale representations of the magnitude|g| (top) and direction

ψ (bottom) of image gradient sampled along radial vectors, with angleθi marked. (c) Radial profile of

gradient magnitude corresponding to angleθi, with Gaussian fit after translating into the zero-mean field

and re-scaling to the range{0 . . . 1}.

an interactive tool. After obtainingx′
c we sample|g| andψ along the each radial vectorθi. In the case

of the gradient magnitude we rescale values along each profile to the range0 . . . 1 and fit a Gaussian

function with mean̂gi at the first peak of|g| and standard deviationσgi given by the full width at half

maximum. Next we take an estimatēr′ of the scale parameter from the mid-point of all the profile

meanŝgi, i = 0, . . . , Nobs− 1 whereNobsis the number of observation angles. Figure 8.1 (c) shows

an example radial profile of|g| after translating into the zero-mean field by subtracting the estimatēr′.

Finally, we form the likelihood ratiopon
i /poff

i , wherepon andpoff represent the probabilities that the
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local section of a generated shape corresponding to{ri, θi} is on or off the region boundary, given by

pon
i (r) = exp

[

−(ψi(r) − φi(r))
2
]

, and

poff
i (r) = 1 − exp

[

−(
r − ĝi
σgi

)2
]

,
(8.2)

andφi is the angle with respect to the horizontal, made by the contour section from point{ri−1, θi−1} to

{ri, θi}. This definition of likelihood ratio is inspired by the jointuse of gradient direction and magnitude

in the jetstream algorithm of [43]. Repeating for alli ∈ {1, . . . , N∗ − 1} whereN∗ is the number of

observation angles, results in the observation modelD = {ĝ,σg}.

8.1.2 Modelling centre-point uncertainty

When using the shape models in segmentation, an initial userinteraction provides an estimate of the

centre of an unseen ROI, denotedx′
c. This initialisation is not precise, as a region’s ’centre’does not

correspond to a visual cue. For consistency, the chosen centrex′
c should be the same as that which would

have been used, if the ROI were part of the training data, denotedxc. Recall from section 7.1.2, that

for star a shaped regions,xc is the centroid of the region’s kernel. In practice, we must assume that the

user-initialisation is close to the true centrex′
c ≈ xc, and incorporate uncertainty into the segmentation

algorithm. The task of incorporating centre-point uncertainty is twofold. First, we seek a statistical

model of the discrepancy betweenx′
c andxc. Second, we need to understand how this discrepancy

affects a time series model in order to incorporate the effect.

For rotation invariance, we model centre-point uncertainty as an anisotropic Gaussian distribution

Pr(xc|x′
c) = N2(x

′
c, σ

2
c I), (8.3)

whereσc is a common variance inx andy andI is the2 × 2 identity matrix. We estimateσc using

interactive experiments. We present medical images, with aregion clearly delineated by its ’ground

truth’ contour to a volunteer who selects the pixel that theyconsider to be the ’centre’ of the ROI. We

denote an estimated centre point byx′
c. The software then calculates the translations∆x = xc − x′c

and∆y = yc − y′c. We use these to calculate an absolute value∆c =

√
∆x2+∆y2

r̄
, divided by the

scale of the corresponding region. This gives a normalised measure of the absolute ’error’ the manual

estimate. We repeat for 30 regions, and repeat this sequenceso that the volunteer estimates the centre of

each region twice, then calculate the mean value∆̂c over 60 centre-points. The results arê∆c = 0.154

for liver tumours and∆̂c = 0.0.250 for MS lesions. We translate a centre point estimate according to

equation 8.3 by first drawing an angleθ from a uniform distribution and compute∆x = ∆̂cr̄ cos(θ)and

∆y = ∆̂cr̄ sin θ. Figure 8.2 shows the effect of translations{xc, yc} → {xc, yc} ± {∆x,∆y}, on a

perfect circle (a). Each translation adds a sinusoidal trend to the centre (̄r) of a radial series (b). It follows

that centre point perturbation affects any time series in the space of (b) by a periodic offset∆r(θ) given

by

∆r(θ) = ∆x cos(θ) + ∆y sin(θ). (8.4)

When modelling centre point uncertainty by translations{∆x,∆y} we add the sinusoidal trend in equa-

tion 8.4 to a generated time series. This scheme reduces computation time, compared to generating a

series, transforming into image space, and then translating by{∆x,∆y}
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Figure 8.2: Effect of perturbing the centre-point on a constant radial time series.

8.1.3 Bayesian formulation

The generative segmentation algorithms adopt a Bayesian formulation so that an optimisation scheme

(C5) estimates the maximuma-posterioriprobability (MAP) solutionQMAP

star. The MAP solution is the

shape that maximises the posterior probability given by

Pr(Q|D) = Pr(D|Q) Pr(Q), (8.5)

wherePr(Q) is the shape prior andPr(D|Q) is the data likelihood. RecallingQstar = {r, r̄,xc} we

can write

Pr(Q) = Pr(r) Pr(xc) Pr(r̄) (8.6)

wherePr(r) is a probabilistic ’score’ from equation 7.6 or 7.16,Pr(xc) comes from equation 8.3 and

Pr(r̄) is estimated for a given image as described later. We construct the data likelihood by repeating

equation 8.2 for allθi ∈ θ, giving

Pr(D|Q) = Pr({pon,poff}|Q), (8.7)

wherepon = {pon
0 , . . . pon

i , . . . pon
N−1} andpoff = {poff

0 . . . poff
i , . . . poff

N−1}. This sets up the general

Bayesian formulation for all time series shape models used in segmentation. Sections 8.4.1 and 8.5

present specific methods for Bayesian MAP estimation using generative models. First, the next section

uses the discriminative shape models for shape regularisation.

8.2 Shape Regularisation for Segmentation
This section presents methods of shape regularisation using the Langevin model and discusses regularisa-

tion with the GP model. We start with a simple deformable contour model and incorporate discriminative

shape models into the objective function. Section 8.2.1 develops the theory for a segmentation frame-

work and section 8.2.2 demonstrates its performance on synthetic images to observe the role of the shape

prior.

8.2.1 Radial active contour model (RACM): a simple framework

The deformable contour model is adapted from the classical ’snake’ of Kasset al, [5] for use with the

shape models. We refer to this DCM as theRadial Active Contour Model(RACM), which is charac-
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terised by the choice of contour parametrisation (C1), objective function (C4) deformation mechanism

(C5) and optimisation scheme (C6).

The contour parametrisation (C1) is the radial time series 7.1(a) or 7.1(b). We demonstrate for the

star-shaped case (7.1(b)) for convenience, as it enables usto work with the radial profile image model

introduced above. The RACM extends to the generalised parametrisation (7.1(a)), by using a consistent

image model derived from the image frame.

The objective function (C4) is an energy functional, combining the shape model with elements of

the observation modelD. Upon estimation of the region centrexc, we calculate vectors ofN means

Ĝ andN variancesσg from the radial profile model above, where for simplicity theobservations are

gradient magnitude. We use these to define animage energyterm given by

Eimage(r) =

N−1
∑

i=0

exp

[

− (ri − ĝi)
2

(σgi )
2

]

. (8.8)

We also define ashape energyterm, which is simply the normalised log probability used for shape

scoring in the previous chapter

Eshape(r) = SLAN for Langevin, and

Eshape(r) = SGP for GP,
(8.9)

whereSLAN andSGP are given by equations 7.6 and 7.16 respectively. Finally the contour energy is defined

by

E = αEimage+ (1 − α)Eshape, (8.10)

whereα is a parameter that controls the relative influence of image and shape model.

The deformation mechanism (C5) and optimisation scheme (C6) combine stochastic sampling with

a greedy algorithm. Greedy algorithms such as the one described for snakes in section 2.1.2 are attractive

for their simplicity. By replacing the greedy search with stochastic sampling we introduce the benefits

of a stochastic framework as noted in section 2.5, as well as avoiding the case where a greedy algorithm

enters an oscillatory state rather than converging.

The RACM is initialised with a noisy circle centred onxc, with radiusr̄ estimated by the mean of

ĝ. The algorithms proceed by perturbing successive pointsri (in the Langevin case) or whole seriesr (in

the GP case). In the Langevin case we draw eachr′i in turn fromN (ri, 1), while in the GP case we draw

a seriesr′ from NN(r, I). In each case the perturbation is ’accepted’ if it causes a reduction in global

energyE. The RACM terminates after a fixed number of iterations or, inthe Langevin case, when

all radii in a series are perturbed without acceptance, giving no change in energy between successive

iterations.

8.2.2 Demonstration of the Langevin RACM

Next, we demonstrate the RACM, used with the Langevin model and different weightingsα. Figure 8.3

shows the results using the Langevin model for a synthetic images low signal-to-noise ratios (SNR).

The boundary is given by a ground truth liver tumour, which was omitted from the training set. We

repeat segmentation withα decreasing from1, where the shape prior is ignored, to0.5, where image
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(a) (b)

(c) (d) (e) (f)

Figure 8.3: (a) Binary image showing ground truth liver tumour shape. (b) Synthetic liver tumour image

with SNR=1.84. (c) - (f) Results of RACM segmentation, (green contours) using Langevin regularisation

with (c)α = 1.0, (d)α = 0.85, (e)α = 0.75 and (f)α = 0.5.

and shape priors are equally weighted. Panel (c) shows the affect of image noise in the absence of shape

priors, where points of high gradient resulting from image noise cause jagged boundaries. Panels (d) and

(e) seem to give a good balance between image and shape modelswhile the smoother contour in panel

(f) suggests that the RACM is over-constrained when image and shape energies are equally weighted

(α = 0.5).

We also implemented the RACM with regularisation by the GP model and found the approach to

be impractical for two reasons. First, GP regularisation isvery slow, as scoring shapes by equation 7.16

requires inverting aN × N matrix at each iteration of the RACM. In practice the GP RACM barely

converges after 500 iterations, which can take several minutes. Second, it is not clear when the RACM

has converged under GP regularisation. The algorithm iteratively considers proposals in the form of

complete contours, and must be able to reject a complete contour at any iteration. This means that an

energy change of zero is not an appropriate termination criterion.

The use of GP models for shape regularisation may be suited tonon-interactive tasks such as image

reconstruction or registration, which can be performed off-line.

In summary, we have presented a general framework for segmenting star-shaped regions with

Langevin regularisation, which naturally extends to the generalised Langevin model and parametrisa-

tion. We also state that GP regularisation is possible but defer this for future work.
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8.3 A Generalised Framework for Interactive Segmentation using

Generative Shape Models

We have just seen how image and shape models can be used together in an ACM framework, where

a contour is deformed stochastically (C5), and an optimisation scheme minimises an energy functional

that includes a term for the shape prior. Next we introduce a different approach to segmentation, where

generative shape models replace the deformation mechanismand ana posterioriprobability replaces the

energy functional. This section presents the general framework, which is independent of the choice of

shape model. We state in general terms, and with reference tothe following sections 8.4 and 8.5, how

to proceed using the Langevin and GP shape models. This places the subsequent sections in context, as

well as contributing to the wider field of segmentation by formalising a general framework

The framework comprises the general components in the left hand column of table 8.1, where the

right hand column introduces the corresponding Langevin and GP method to be detailed in the next 2

sections.

8.4 Generative Langevin Models for Segmentation

Section 5.1.2 described how a Langevin series is simulated by the numerical solution of a stochastic dif-

ferential equation (SDE). In the context of shape modellingwe desire a similar scheme to generate shapes

from a model. The resulting shapes can serve as proposals or ’hypotheses’ in probabilistic segmentation

frameworks. This section introduces adaptations to the Euler-Maruyama scheme, designed to generate

appropriate series. Subsection 8.4.1 adapts the Euler-Maruyama scheme for solving SDEs, making it

appropriate for shape generation by generating closed contours and addressing issues concerning the

centre pointxc and the discrete nature of training data. Subsection 8.4.2 combines particle-filtering

with the generative models as a novel approach to data assimilation and 8.4.3 presents the segmentation

framework.

8.4.1 Euler-Maruyama scheme for shapes

We start by writing the Euler-Maruyama scheme in polar coordinates

r(θ + dθ) = r(θ) + dθ ×A(r(θ)) +
√

dθ ×B(r(θ))ω(θ), (8.11)

which we initialise with a small valuer(0) = 0.01. Next we choose the integration time step dθ via the

following observations.We noted in section 5.1.2, that no single choice of integration time step is optimal

for all Langevin models. In practice we find that the models are not too sensitive to this parameter for a

range of small values. There is an upper limit, however, as larger values introduce chaotic behaviour to

the stochastic process. To explain this behaviour we note that the well-known ’logistic equation’ [277]

which models chaotic fluctuations of a populationx asx(t+ 1) = kx(t)(1 − x(t))), is a special case of

equation 8.11. We choose dθ . 0.5, which works well in practice.

Next we incorporate the effect of centre point perturbationin equation 8.4. The Euler-Maruyama
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General component proposed Examples we present

(1) any SSM that defines a closed con-

tourQ as an instance of a contour rep-

resentation , and uses machine learning

methods.

Langevin and GP SSMs from chapter 7 above, with

Q = Qstar= {r,xc, r̄} .

(2) any model that derives a data likeli-

hoodD from information in an image

The ’radial profile’ model introduced in section 8.1.1

above .

(3) an interactive method of initialisa-

tion , which provides as much infor-

mation to the shape model as possible

from as simple an interaction as possi-

ble .

Mouse curser click in the centre of a region. Gives es-

timatex′
c for use with the uncertainty model in sec-

tion 8.1.2. Also used to extract the radial profile model

from the image and in turn estimate the SSM parameter

r̄.

(4) a generative mechanism, which

is capable of drawing samples from

the prior distributionPr(Q) after the

model is trained

Generative Langevin SSM (section 8.4.2 ) or generative

GP SSM (section 8.5.1 ).

(5) a method of constraining the gener-

ative model to draw samples from the

posterior distributionPr(Q|D) .

Langevin method using the generative model as a glob-

ally adaptive prior instep-wiseparticle filtering (sec-

tion 8.4.2 ). GP method using probabilistic regression

technique where the image provides noisy observations

(section 8.5.1 ).

(6) an optimisation scheme capable of

estimating the maximuma posteriori

probability (MAP) solutionQMAP, ac-

counting for the inaccuracy of user ini-

tialisation.

Maxim. Pr(D|Q) = Pr(Pr(D|Pr(r) Pr(xc) Pr(r̄)),

accounting for uncertainty on the user-initialised centre

x′
c. Done by estimating the MAP solution directly from

(5) and combining withshape-wiseparticle filtering in

sections 8.4.3 (Langevin) and 8.5.2 (GP) .

(7) an interactive method of post edit-

ing, which works with the shape model

as closely as possible.

Enabling repeated initialisation, and boundary-

based correction procedures for the Langevin (sec-

tion 8.4.3.1) and GP contours (section 8.5.2.1), where

the GP method refines the shape prior and re-calculates

the MAP estimate .

Table 8.1: Components of a generalised framework for interactive segmentation using generative SSMs.

The components are listed here along with the examples presented for Langevin and GP frameworks.

scheme becomes

r(θ + dθ) = r(θ) + dθ ×A(r(θ)) +
√

dθ ×B(r(θ))ω(θ) + ∆x cos(θ) + ∆y sin(θ), (8.12)

where{∆x,∆y} are drawn fromN2(x
′
c, σ

xc) during optimisation in the algorithms introduced below.
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The next two subsections address certain issues regarding the generation of closed contours

(8.4.1.1), and discrepancies between a prior model and generated series resulting from the discretisa-

tion of training data in{x, y} coordinates (8.4.1.2).

8.4.1.1 Generating Closed Contours

The Langevin models were partly motivated by conclusions made in section 6.4, that boundary track-

ing methods are prone to self intersection and lack satisfactory methods of loop closing. The star-

shaped parametrisation naturally rules out self-intersecting contours by asserting monotonically increas-

ing angleθ. However, Langevin series allow discontinuities at the start/end of a2π cycle due to the

Markov property. A discontinuity arises from a net displacement |rN−1 − r0| > 0 over a period

of N points. However, due to the natural fluctuations in the time series, discontinuities are only ap-

parent if |rN−1 − r0| > B(rN−1,b) ≈ B(r0,b), i.e. the difference between first and last radii is

greater than the magnitude of the noise term local to the radius of the ’join’. As such we can produce

a pseudo-periodic series by allowing the magnitudes ofrN−1 andr0 to differ within a ’tolerance’ of

|rN−1 − r0| ≤ B(rN−1,b).

To generate closed contours we run the Euler-Maruyama integration forN ′ ≥ N − 1 iterations,

terminating as soon as|rN ′ − rN ′−N | ≤ B(rN ′ ,b). Two observations reveal the efficiency of the

proposed algorithm. First, the algorithm need never store more thanN points at a time as, by using

a ’list’-type data structure, we remove the zeroth point from the list each time theN th point is added.

Second, the existence of stable regions in the radius space (governed by the drift function) increases the

likelihood that two pointsri andrj , of arbitrary separationj − i, are at similar radii. However, care

should be taken if a model has stable regions at either side ofthe zero-centre. In these cases, a series

might satisfy the termination criterion after spendingN iterations in the positive (or negative) half of

state space. The resulting series would not occupy a zero-mean field, affecting estimates of the scale

parameter̄r. To preserve the zero-mean field we sum thesignof series values overN points and only

accept a closed loop that has a total sign within the range±0.2, chosen empirically. The joint termination

criterion for generating model-consistent closed contours is therefore given by

|rN ′ − rN ′−N | ≤ B(rN ′ ,b) and
N ′

∑

i=N ′−N
sign(ri) < 0.2. (8.13)

The use of the joint termination criteria in equation 8.13 raises two issues. First, excepting the

special case whereN ′ is an integer number ofN , the termination criteria result in an angular offset

between the ’start’ of the series and the presumed angleθ = 0 (horizontal in the image frame). While

the prior shape model is rotation invariant, soθ = 0 is arbitrary, the use of generative models with image

observations below demands that the initial angle in equation 8.12 corresponds to the ’start’ of the radial

profile model. The segmentation algorithms recognise and correct for this offset.

Second, the need forN ′ ≥ N iterations to generate a series ofN points could slow down the

algorithm, in theory to speeds below what is practical in an interactive framework. The probability

of termination is governed by the shape prior and, when used in segmentation, the image model that

constrains series generation (below). This type of constraint is expected to speed up shape generation in
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a similar way to the probabilistic loop closing algorithm insection 6.1.3.1. In practice the criteria are

met quickly and any delay is not noticeable.

8.4.1.2 Compensating for discretisation errors

Because training shapes are originally defined on a pixel grid, the state spacer of training series is dis-

cretised. This leads to an inconsistency between the dynamical properties learned from data and those

of a generated series. To investigate the inconsistency we trained models on synthetic data generated by

known models, where we expect to retrieve the known parameters. We repeat for two types of synthetic

data. In the first case we generate series, transform these into shapes of chosen̄r on a discrete{x, y} grid,

then re-sample the shapes in the same way that radial time series are derived from medical ROI contours.

In the second case we generate series and leave them un-touched. We find that models trained on raw se-

ries retrieve the ’true’ parameters while models trained onseries derived from shapes give errors. Figure

8.4 (a)/(b) illustrate this effect for a simple model using acubic drift functionA(r(θ),a) = a0(1−r(θ)3)
with a single parametera = {a0}. Figure 8.4 shows that the discrepancy is systematic and apparently
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Figure 8.4: Effect of state space discretisation on shape dynamics. Panels (a) and (b) show the offset

between the ’true’ parameter in the drift function of a Langevin model used to generate synthetic shapes,

and the parameter retrieved from500 of these shapes by the direct estimation method. The offset is

slightly different for shapes generated with (a)r̄ = 18 and (b)r̄ = 26. Panel (c) shows the relationship

between scale parameterr̄ and the number of pixelsN in a training contour.

linear. Comparing plots(a) and(b) reveals that the discrepancy also depends on the scale parameterr̄,

as the state space is more finely discretised further from a region’s centre.To correct for discrepancies

between those parameters we learn and those that would reproduce consistent boundary dynamics in the

generative model, we store parameter sets in vectors of the form{a0, . . . ap, b0, . . . bp, r̄} and compute a

linear mapping between learned and ’true’ sets. For each combination of drift and diffusion function we

vary{a0, . . . ap, b0, . . . bp, r̄} so that mappings generalise over a range of parameter choices. The result

allows us to calibrate any trained model for the purpose of shape generation.

Finally we need to down-sample the high resolution series before transforming to the image frame

{x, y}. As the training data were up-sampled to a common, high resolution, series generation must

also occur at this resolution. This would lead to too high boundary resolution in all but the largest

shapes (greatestr̄). We down-sample each series to containN points, whereN is chosen from a linear
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relationship betweenN andr̄ in the training data. Figure 8.4 (c) shows this relationshipin the case of

liver tumour boundaries.

Figure 8.5 demonstrates the use of the generative shape models for creating shape instances (irre-

spective of an image). The figure verifies the success of the loop closing procedures, as well as revealing

the affect of calibration and changing drift/diffusion parameters. Examples demonstrate affect of chang-
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Figure 8.5: Example instances from generative Langevin shape models.Top row: the drift functions

(a) after parameter estimation and (b) after calibration, for the liver tumour data, and (c)/(d) the same

for the MS lesion data.Second row: the corresponding diffusion functions (e)/(f) for liver tumours and

(g)/(h) for MS lesions.Third row: three instances of series generated by each model.Bottom row: the

corresponding shapes.

ing the drift and diffusion parameters, on generated series/shapes. We also note that discontinuities are

not visually noticeable.
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8.4.2 Data assimilation

Before we can estimateQMAP

star we first need a method of drawing closed contours from the posterior

distributionPr(Q|D) (equation 8.5). This means generating closed contours thatnot only agree with the

shape model as above, but also incorporate observations from the image. Incorporating observations is

equivalent todata assimilation, which we described in section 5.1.3 and noted that this is the subject of

ongoing research [240, 241] in the case of Langevin simulation. We present a data assimilation method

inspired by the particle filters in [43]. The result is an example of boundary tracking according to the

definition in 2.2, but which tracks a whole boundary to produce a closed contour with global shape

constraints.

We further adapt the Euler-Maruyama scheme above so that thesolution of the SDE is equivalent to

the iterative computation of posterior densities as in section 2.2.1. Rewriting the jetstream equation 6.1

for the time series models gives

Pr(ri+1|ri,a,b,D) ∝ Pr(ri|a,b,D) × q(ri+1|ri,a,b) × l(D|ri+1), (8.14)

whereq andl now denote a global shape prior and data likelihood given by

q(ri+1|ri,a,b) = N (ri −A(ri+1,a), B(ri+1,b)) and

l(D|ri+1) =
pon
i+1

poff
i+1

.
(8.15)

Note also that 8.14 shares the Markov property of Langevin models (equation 5.2).

For a fixed centre pointxc, the algorithm generates a set ofK seriesrk, k = 0, . . .K−1 as follows.

At each stepθi we drawK predictions forrk=0,...K−1
i+1 solving the SDE in equation 8.12)K times for a

fixedri. We then assign weightswk=0,...K−1
i+1 to each prediction, given by

wki+1 = α
pon
i

poff
i

+ (1 − α)N (ri −A(ri+1,a), B(ri,b)), (8.16)

whereα controls the relative influence of shape and image priors as in the regularisation example in

section 8.2. The weightsw form a discrete approximation of the posteriorPr(ri+1|a,b,D), specific

to θi. We performstep-wiseimportance sampling, by selectingK points with replacement from the

posterior. Repeating forN steps results inK separate series that can be mapped into image space.

Finally we take the single radial time series (closed contour) corresponding to the points of maximum

weightw∗
i .

8.4.3 Probabilistic algorithm

The techniques above modify the numerical integration scheme to incorporate the data likelihood by

a step wisedata assimilation technique. The resulting contours estimate the region boundary for

a fixed centre pointxc and scale parameter̄r in equation 8.6. To estimate the (MAP) solution

QMAP

star = argmax
Qstar

Pr(Qstar|D), whereQstar = {r,xc, r̄}, we simultaneously seekxc and r̄ in the

optimisation scheme. (the simultaneous optimisation ofxc is in common with the approach taken in

[73]). We extend the particle filter approach to sampleM complete contours from the posterior distribu-

tion.
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We drawM combinations of centre pointsxc and scale parameterr̄ from the distributionsPr(xc) =

N2(x
′
c,∆c), centred on the user initialisationx′

c, andPr(r̄) = N (ˆ̄r, σ2
r̄ ), whereˆ̄r comes from the mean

of ĝi estimated from the local image gradient andσ2
r̄ could either come from the image as the mean of

σgi or chosen empirically. For each combination we generate a closed contour with data assimilation as

described in section 8.4.2 and assign a weight to each closedcontour, given by

WQstar =

N−1
∏

i=0

w∗
i (8.17)

wherew∗
i are the maximum step-wise weights as described above. We refer to this procedure asshape

wise particle filtering, whereby each particle is a closed contour. The combination of step-wise and

shape-wise particle filtering results in a nested algorithm, which is fast enough in practice for use in

real-time segmentation.

8.4.3.1 Interactivity and post editing

The Langevin framework has two modes of interaction, for initialisation and post editing. Figure 8.6

demonstrates the use of this tool. A user initialises the segmentation by giving the centre point estimate

x′
c inside the region of interest. Upon initialisation the software immediately displays the contour given

by the MAP solution above. The user can repeat the initialisation any number of times, which might

give different contours. The user can edit the displayed contour by dragging any of the pointsri in the

contour model that miss the desired region boundary. It is possible that contour points are too close

together, meaning that a large number would need to be dragged onto a small section of the boundary.

To alleviate this problem we allow the user to adjust the boundary resolution using a slide-bar. This

adjustment is reversible.

8.5 Generative Gaussian Processes for Segmentation

This section adapts GP models to generate model shapes (hypotheses) and, in section 8.5.1, to incorpo-

rate the data likelihood from the radial profile observationmodel above (section 8.1.1).

Whereas the Langevin model required numerical procedures to ensure the generation of closed

contours, GP models facilitate analytical closed contour models. This is because, unlike the Markovian

case of Langevin models, GP models encode the global constraint of correlating a pointr(θ) with r(θ+

2π) by using a periodic kernel function. We use equation 7.11 introduced in section 7.3.1.

GP models readily generate samples from the prior as described in section 5.2.2. In the case of

radial time series this means evaluating

r′ = µ + Az. (8.18)

As with the Langevin models above, we use a linear relationship to calibrate the generative model with

respect to the parameter estimation, and down-sample a generated series to give a suitable boundary

resolution for the corresponding scale parameter. Figure 8.7 shows the chosen kernel function for

different parametersa = {a}, along with the corresponding radial time series and shapes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.6: Interactive contouring with the Langevin SSM tool. (a) Close-up of a MS lesion in an axial

PD weighted MR image. (b) A contour (MAP estimate) shown in blue/green after selection of an initial

estimate of the centre pointx′
c (red). (c) An alternative initial contour shown after re-initialisation with

a new estimatex′
c. The same contour as in (b), shown after the user has reduced the resolution of those

boundary points (blue) that can be ’dragged’. (e)/(f) The dragging mode before/after two boundary

points are moved. White lines are added here to highlight thetranslation of the dragged points, but are

not shown to the user during run-time. (g)/(h) The final contour before/after returning to the original

boundary resolution.

8.5.1 Conditioning the prior

This section shows how to directly generate samples from theposterior over contoursPr(Qstar|D) ∝
Pr(D|Qstar) Pr(Qstar) wherePr(Qstar) is the shape prior andPr(D|Qstar) is the data likelihood. We

follow the method of conditioning the prior on ’noisy observations’ as described in section 5.2.3. This

has the same role as the step-wise particle filter in the Langevin case but has two key differences. First,

unlike the Markovian case, the observation model constrains the whole radial time series in ’one-shot’.

Second, the anglesθi at which observations are made need not belong to the vector of inputsθ. We can

use any number of observations at arbitrary angles.

We define a noisy observation at angleθi using the radial profile model. We start with the Gaussian

model of the gradient magnitude, i.e.1 + poff
i (r) wherepoff

i is from equation 8.2 in the radial profile

model. The noisy observation for theith observation angle is given byN (ĝi, σ
g
i ).

For an arbitrary numberN of observationse store a vector of meansĝi and a matrix of variances

(1− pon
i (r))σgi I, whereI is aN ×N identity matrix. We construct a vectorθ′ of lengthN ′ = N +N∗

by concatenating the vector of observation inputsθ with the vector ofN∗ inputs for which we do not
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Figure 8.7: Generative GP model trained on liver tumours (top row) and MS lesions (bottom row). Panels

(a)/(d) show the kernel functions with a representation of the covariance matrix (inset). Panels (b)/(e)

each show three instances of a generated series and (c)/(f) show the corresponding shapes with typical

scale factor̄r

have observations, denotedθ∗. This new vectorθ′ = {θ, θ∗}T has a covariance matrix of the form

Σ(θ′, θ′) =











ε(θ0, θ0) . . . ε(θ0, θ
∗
N ′−1)

...
.. .

...

ε(θ∗N ′−1, θ0) . . . ε(θ∗N ′−1, θ
∗
N ′−1)











=





Σθθ + σ2I Σθθ∗

Σθ∗θ Σθ∗θ∗



 ,

(8.19)

whereΣθθ denotes aN ×N sub matrix,Σθθ∗ is aN ×N∗ sub matrix and so on. These sub-matrices

are used to form the posterior model defined by

r′ = NN(µpost,Σpost), (8.20)

where

µpost= µ + Σθ∗θ[Σθθ + σ2I]−1(Ĝ − µ) (8.21)

and

Σpost= Σθ∗θ∗ − Σθ∗θ[Σθθ + σ2I]−1Σθθ∗ . (8.22)

We could draw samples from the posterior by constructing aN -dimensional vectorZ, wherezi is

from N (0, 1), then evaluatingr∗ = µpost+ AZ. This is equivalent to replacingµ andΣ in equation

8.18 with equations 8.21 and 8.22 respectively. However, these samples are of limited use to the present
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framework. Whereas in the Langevin case we estimate the MAP solution (for a fixed centre-point and

scale parameter) from such samples, the GP model allows to calculate the MAP estimate directly from

the posterior model. This is because eachPr(ri|θi) is a Gaussian distribution, so the MAP estimate is

equivalent to the posterior mean calculated at all inputs, given by

QMAP = µpost= µ(θ∗) + Σ(θ∗, θ)

[

Σ(θ, θ) + σ2
gI

]−1
(

ĝ − µ(θ)
)

(8.23)

where vectorŝg andσg contain the observations from the radial profiles describedin section 8.1.1 and

µ(θ∗) andµ(θ) is the mean function evaluated at the inputs corresponding to unobserved and observed

data respectively.

8.5.2 Probabilistic algorithm

The estimate in equation 8.23 has a unique solution for a given centre-point and estimatedr̄. The present

segmentation framework has three remaining requirements.First, we require the MAP estimateQMAP

star=

argmax
Qstar

Pr(Qstar|D) whereQstar= {r,xc, r̄}. Second, we require the use of full observation model

incorporating the local boundary direction in the likelihood ratiopon
i (r)/poff

i (r). Third, we require

control over the relative influence of image and shape models. The chosen algorithm achieves all three

of these requirements by using a nested particle filter as follows.

We drawM combinations of centre pointsxc and scale parameterr̄ from the distributionsPr(xc) =

N2(x
′
c,∆c), centred on the user initialisationx′

c, andPr(r̄) = N (ˆ̄r, σ2
r̄ ), whereˆ̄r comes from the mean

of ĝi estimated from the local image gradient andσ2
r̄ could either come from the image as the mean of

σgi or chosen empirically. For each combination we compute the posterior mean by equation 8.23, for

use asM shape-wise particles. We weight each shape by

WQstar = α
1

N

N−1
∑

i=0

pon
i (r)

poff
i (r)

+ (1 − α)SGP (8.24)

wherepon
i (r) andpoff

i (r) are from the observation model (equation 8.2),SGP is the Gaussian process

shape score in equation 7.16 andα is the relative weighting between image and shape models.

8.5.2.1 Interactivity and post editing

As in the Langevin case, the GP framework involves two modes of interaction for initialisation and post

editing. Initialisation estimates the centre pointxc as before. The post editing procedure is new, and

makes more efficient use of interactions than the point-dragging mode in the Langevin framework. The

ability to interact closely with an underlying shape prior should intuitively reduce the demand on the

user and has been shown to benefit different interactive frameworks in [147] and [148] .

Recall from section 2.3, that successful modes of interaction in the literature work closely with the

underlying segmentation algorithm. The method here uses run-time interactions to update the posterior

model. After initialising the tool the user can identify points on the region boundary that the displayed

contour does not pass through. The software calculates the angleθ′j and radiusr′j corresponding to this

point and defines anoise-free observationsbyN (r′j , 0) corresponding to angleθj . The observation and

angleθ′j complement the observation model above and the MAP solutionis re-calculated, which passes
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through the user-defined boundary point. The new solution isdisplayed in real time and any number of

similar interactions can be performed to further refine the model. Figure 8.8 demonstrates the use of

interactions as noise-free observations.
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Figure 8.8: Using the GP SSM tool for interactive contouringof the same MS lesion image as in fig-

ure 8.6 (a).Top row: (a) The first contour (green) displayed after the user has estimated the region centre

x′
c (red). (b-d) Post editing by successively identifying one boundary point (b) followed by a second

(c) and third (d) shown in red.Bottom row: corresponding radial time series in the zero-mean field,

where black lines show the MAP solution, grey points show noisy observationŝg ± σg from the radial

profile model and ’⊠’ are polar representations of user-identified boundary points used as noise-free

observations.

It is interesting to consider an equivalent mode of interaction in the Langevin framework. Such a

scheme would require updating the drift and diffusion functions so that the refined model is constrained to

pass through a point{r, θ}. Changes could only update the transition densitiesPr(ri+1θ)|ri) and so the

analogy breaks down. An interaction can only assign a high probabilityPr(r(θ)), which not conditional

on the previous point. Even if a single transition densityPr(ri+1θ)|ri) could be somehow prescribed, the

Markovian nature of the model means that the information would only be used if the radial time series

passed through the corresponding radiusri. Moreover, the constraint would be effectiveeverytime the

series passed through radiusri, not only at the desired point{ri, θi}, i.e. at the angle corresponding to

the interaction.

8.6 Data and Performance Evaluation

This section describes how we evaluate the SSM segmentationframeworks. We select test images and

perform segmentation with both the RACM and the interactive, tools based on generative SSMs. In all

cases we seek to evaluate the power of the shape prior in the corresponding framework. Section 8.6.1

introduces test images common to all following experiments. Section 8.6.2 states what figures of merit
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we use, and explains their various roles in measuring accuracy, as well as useability and variability of

an interactive tool. Section 8.6.3 explains how we create reference tools that without learned shape

knowledge, and how we test for differences in performance between these and the full SSMs.

8.6.1 Test images

To allow us to make more reliable measurement of accuracy, wecreate synthetic images wherein the

true region boundary is known, and is a contour chosen from the set of MS lesion or liver tumour ground

truth. To isolate the benefits of the shape models it is desirable to use synthetic images that alleviate the

problem of boundary ambiguity. However, we also need to testthe segmentation tools in realistic data,

for the conclusions to be of practical use. As a compromise wecreate synthetic images of low SNR and,

in the case of MS lesions, repeat experiments on real MRI images.

The foreground and background in synthetic images have Gaussian histograms with mean grey-

levels187 and210 respectively, and standard deviations12.5. These statistics are equivalent to a SNR

of 1.84, within the range seen for tumour and lesion imaging applications. We also smooth the synthetic

images with a3 × 3 pixel averaging kernel. Figure 8.9 shows the complete set oftest images.

Starting with 241 star-shaped training contours from manual liver-tumour segmentations [29] and

1307 from MS lesions. We remove the three test contours from each set and train Langevin and GP

SSMs on the remaining contours.

8.6.2 Figures of merit

We evaluate segmentation tools in terms of accuracy, variability and useability. As in section 6.3.1, we

choose performance measures and comparison methods to suitthe application and the components of a

segmentation framework being evaluated. As with the interactive jetstreams of section 6.3, we evaluate

the present segmentation frameworks with a combination of spatial similarity measures and quantitative

measures of user behaviour.

In the case of the generative segmentation frameworks, similarity measures each have five distinct

roles relating to the two stages of initialisation and post editing. First, the similarity between aninitial

contour and the ground truth indicates the accuracy of the probabilistic algorithms in sections 8.4.3 and

8.5.2, in the absence of post editing. Second, the similarity between afinal contour accepted by the user

and the ground truth indicates the accuracy of the process. However, the ’process’ here refers to a combi-

nation of the probabilistic framework, the modes of interaction and the user’s ability to both use the tool

and perceive a region. Given the level of user control and thesubjectivity of supervised segmentation,

accuracy is best suited to comparing two tools used by the same person. Third, the similarity between

a final contour and a second contour, accepted by a different operator using the same tool to segment

the same ROI, measures the inter-operator variability of that tool. Similarly, the similarity between a

final contour and a second contour, accepted by the same operator using the same tool to segment the

same ROI, measures the intra-operator variability of that tool. The final role of similarity relates to the

useability of a tool. The similarity between a final contour accepted by the user and the initial contour

before post editing, provides a measure of the level of post editing necessary.

In evaluating similarity we use mean minimum distance (MMD)[107] and Dice similarity coef-
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Synth. liver tumour (i) (ii) (iii)

Synth. MS lesion (i) (ii) (iii)

MRI MS lesion (i) (ii) (iii)

Figure 8.9: ROIs used in experiments, with numbers (i) to (iii) used in subsequent discussions.Top row:

synthetic liver tumour images.Middle row: synthetic MS lesion images.Bottom row:MS lesion images

from PD weighted MRI.

ficient (DSC) [104]. Following the arguments in section 6.3.1 MMD is appropriate as it is a stable

boundary-based dissimilarity measure and the region-based DSC is relevant to the secondary measure of

’lesion load’ sought by MS lesion segmentation.

In the case of the generative segmentation frameworks, we also use the Hausdorff distancedH to

measure the similarity between a final contour accepted by the user and the initial contour before post

editing [106]. Recall thatdH is a ’maxmin’ measure, giving the largest example around thewhole of

a contour, of the shortest distance from a pixel on that contour to any pixel on the compared contour.

This offers meaningful quantification of the amount of post editing performed using methods in sec-

tions 8.4.3.1 and 8.5.2.1, as these methods make local corrections where the contour deviates from the

true boundary. In the case of shape regularisation we do not implement any post editing procedures, so

we just use the MMD and DSC.
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In the case of the generative frameworks, which are interactive, we also measure the useability of

each tool using two aspects of user behaviour. First, we takethe number of boundary points interacted

with (’drags’ in section 8.4.3.1 or ’noise-free observations’ in section 8.5.2.1). The second aspect of

user behaviour is the number of initialisations deemed necessary before a contour is edited (or accepted

without editing).

8.6.3 Comparison methods

We have simultaneously developed new shape models along with interactive DCM frameworks for their

use in segmentation. Direct comparison with another segmentation algorithm in the literature is con-

sidered as future work, while we currently design ’proof of concept’ experiments to test if the shape

models are effective and the segmentation algorithms are useful. We take the same general approach as

in [73, 42, 149, 53], which is to test the value of a newadditionto a segmentation framework (eg shape

prior, image prior or interactive mode) by comparing the same framework with and without that addition.

Recall that, in the case of SVM jetstreams, we evaluated the role of the texture classifiers by consid-

ering an equivalent tool driven by intensity gradient as a comparison method. In the case of the Langevin

and GP frameworks we seek to evaluate the benefits of the global shape priors, which calls upon different

comparison methods for the shape regularisation framework(RACM) and generative frameworks. For

the shape regularisation framework we duplicate the algorithm without the shape prior by settingα = 1

to remove the shape scoring from the energy functional. For the generative frameworks, removing the

global shape prior is not trivial. We wish to replace the learned shape information with something that is

reasonable, but does not assume any prior knowledge about the global shape of a region. In the case of

the Langevin model we choose a stationary distributionPr(ri+1|ri) = N (ri, 1) to replace the transition

densities. This results in a subtly different tool, where local smoothness is retained but the global drift

and diffusion characteristics are removed. In the GP model we would ideally replace the covariance

matrix with theN × N identity matrixΣ(r, r) = I, equivalent to using the Kronicker delta function

as the kernel. However, this leads to numerical issues as near-singular matrices need to be inverted.

Instead we use a covariance kernel that approximates the delta functionε(ri, ri) ∼ δ(θi − θj) by setting

ε(ri, ri) = min[1, (N(θj − θi)
−1)]. In both Langevin and GP experiments we refer to their respective

reference models as having anormal prior as opposed to alearned prior.

For a given measure of accuracy, variability or useability,we look for significant differences be-

tween results for a framework with learned and normal prior.For this purpose we use both parametric

and non-parametric hypothesis tests. First we use the t-test (parametric) as before. We also use the

Wilcoxon signed rank test (non-parametric), which is appropriate when the assumption of normally dis-

tributed results. The non-parametric test is more conservative, making less assumptions about the data

than the t-test, and might alleviate problems associated with interpretation of results from small samples

discussed in section 6.4.
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8.7 Experiments
This section evaluates the discriminative and generative shape models for segmentation. Section 8.7.1

evaluates the benefits of the Langevin model for shape regularisation in star-shaped region segmentation.

As stated above, the regularisation method extends naturally for the generalised model with arc-length

parametrisation 7.1 (a) We defer evaluation of the generalised case for future work.

Section 8.7.2 evaluates the interactive generative frameworks used to segment star-shaped regions.

8.7.1 Shape regularisation

Experiments in this section test the use of discriminative Langevin models for shape regularisation in the

RACM framework described in section 8.2. We choose not to usethe GP model for shape regularisation

as discussed in the same section.

First, we test the ability of the regularised RACM to balanceinformation regarding image and shape

properties. We noted in section 2.5 that conflicting image and shape information need to be balanced

and that greedy algorithms can enter an oscillatory state without convergence. We hypothesise that:

H8.7.1.1: The evolution of a RACM terminates by convergence to zero energy

To test this hypothesis we run the RACM on the test images. Foreach region we fix the centre-point

xc at the ’true’ centre as described in section 7.1.2 and sampleradial profiles of the gradient magnitude

as described in section 8.1.1. We estimater̄ from the mean of vector̂g in the observation model and

initialise the RACM with a noisy circle, defined by drawingri fromN (r̄, 2.5) for i = {0, . . . , N − 1}.

As described section 8.2, the evolving RACM terminates whenthe total energy is zeroor when reaching

the chosen maximum number of iterations. We set this maximumnumber to 500. Table 8.2 shows the

number of iterations for convergence in each of the test images.

α

Synthetic MRI

liver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.7 311 458 406 73 65 66 111 214 113

0.8 308 166 364 71 76 99 107 176 58

1 115 123 120 32 46 36 52 41 46

Table 8.2: Number of iterations for convergence of the RACM algorithm

In all cases the algorithm terminates at zero energy (< 500 iterations) allowing us to accept hypoth-

esisH8.7.1.1.

Next, we test the accuracy of the regularised RACM. We hypothesise that:

H8.7.1.2: the accuracy of a simple deformable contour model is improved by the use of

Langevin shape priors.

To test this hypothesis we perform quantitative experiments using the RACM algorithm without

interactivity. We initialise the RACM in the test images in figure 8.9. Upon convergence to zero energy
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we evaluate RACM accuracy by calculating the mean minimum distance (MMD), Dice similarity coef-

ficient (DSC) and Hausdorff distancedH with respect to the ground truth contour. We repeat for each

of the test images both with and without shape regularisation, where shape regularisation is included by

settingα < 1 in equation 8.10, and excluded byα = 1. Tables 8.3 to 8.5 shows the results for images

(i) to (iii), in each of three image types as in figure 8.9, along with the overall mean. In all cases the

shape regularisation (α = 0.7 or 0.8) gives an increase in accuracy, indicated by lower mean MMD or

dH , or higher mean DSC.

Next we test for significant differences between the accuracy of the RACM with and without shape

regularisation using a one-tailed paired-samples t-test.The p-values in tables 8.3 to 8.5 indicate the

significance of differences in accuracy between the RACM without shape prior and the cases when

α = 0.7 andα = 0.8. Superscript ’+’ denotes an increase in accuracy (no results give a decrease in

accuracy), when using shape priors (non-zeroα). Bold values indicate where differences are significant

with a confidence interval of 95%. Results are given separately for each image segmented.

α

Synthetic MRI

mean p-valueliver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.7 0.53 1.01 1.60 0.72 0.92 0.89 0.87 1.72 0.90 1.018±0.391 0.077+

0.8 0.57 1.00 1.68 0.73 0.61 0.78 1.08 1.91 1.02 1.042±0.466 0.028+

1 0.65 1.24 1.89 0.72 0.69 0.76 1.35 2.06 0.90 1.140±0.534 N/A

Table 8.3: Effect of learned shape regularisation on segmentation accuracy in terms of mean minimum

distance (MMD).

α

Synthetic MRI

mean p-valueliver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.7 0.97 0.95 0.94 0.79 0.83 0.85 0.74 0.71 0.84 0.847±0.092 0.270+

0.8 0.96 0.95 0.94 0.78 0.87 0.86 0.71 0.69 0.82 0.842±0.101 0.407+

1 0.96 0.93 0.93 0.79 0.88 0.86 0.71 0.67 0.84 0.841±0.101 N/A

Table 8.4: Effect of learned shape regularisation on segmentation accuracy in terms of Dice Similarity

Coefficient (DSC)

Tables 8.3 to 8.5 show that, for the boundary-based accuracymeasures of MMD anddH , regular-

isation gives significant improvement for one or both of the tested shape prior weightings (α = 0.7 or

0.8). In terms of the region-based accuracy measure (DSC) the benefit of shape regularisation is not

significant.

In conclusion, we accept hypothesisH8.7.1.2 for boundary-based accuracy, but not region-based,

where the improvement is apparent but not significant.
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α

Synthetic MRI

mean p-valueliver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.7 1.41 13.0 15.62 1.41 3.0 3.16 7.62 7.81 2.24 6.141±5.251 0.023+

0.8 1.41 15.65 16.64 2.83 2.0 2.0 8.54 8.06 2.24 6.597±6.032 0.014+

1 2.24 24.17 18.03 5.00 2.24 4.47 10.0 8.94 4.24 8.814±7.607 N/A

Table 8.5: Effect of learned shape regularisation on segmentation accuracy in terms of Hausdorff distance

(dH )

8.7.2 Interactive generative frameworks

Experiments in this section test the practical value of the interactive segmentation frameworks of sec-

tions 8.4 and 8.5, and the benefits of the dynamical shape priors to these frameworks. We design an

experimental protocol that tests the tools in various scenarios and calculate statistics of each tool’s per-

formance in user trials.

Following the findings above, we setα = 0.75 in both Langevin and GP frameworks. The number

of shape-wise particlesM in the shape-wise importance sampling common to both frameworks must

balance the benefits of this part of the algorithm with a linear increase in computation time. In practice

we find that reducingM to 5 allows real-time segmentation without compromising accuracy.

We ask 10 volunteers to use both segmentation frameworks in the following experiments. Each

volunteer uses a tool to segment the same randomised sequence of images from the set in figure 8.9. The

sequence includes each region twice for segmentation by thetool with normal and learned priors. In

addition, one region is included a further two times to allowrepeated segmentation by each prior type.

For this purpose we choose region (iii), from each image type(synthetic liver tumour, synthetic MS

lesion and MRI MS lesion). The resulting sequence comprises24 segmentations, which a user repeats

using Langevin and GP frameworks.

Both Langevin and GP frameworks involve an initialisation step followed by interactive post edit-

ing. In each case the user can repeat the initialisation any number of times. After initialisation, the user

either accepts a contour without post editing, or performs any amount of interactions. These interactions

are either ’drags’ in the case of the Langevin tool (figure 8.6) or noise-free observations (mouse clicks

on the boundary) in the case of the GP tool (figure 8.8).

Before performing the experiment, each volunteer practises by segmenting 3 regions (not from the

set in figure8.9) using each tool with learned and normal priors. Whilst using a given tool (Langevin or

GP) a user is not aware that it occurs in two different modes (learned and normal prior).

The remainder of this section presents various statisticalanalyses that test certain hypotheses re-

garding the benefits of the shape priors to the accuracy, variability and useability of each tool.

8.7.2.1 Accuracy

First, we hypothesise that:
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H8.7.2.1: the accuracy of each interactive framework is increased by the learned global

shape priors.

To test hypothesisH8.7.2.1 we measure the dissimilarity, in terms of MMD and DSC, between

segmentation results and ground truth and take the mean dissimilarity over all regions. Results for each

user are given in appendix tables 10.1 (for synthetic liver tumours), 10.2 (for synthetic MS lesions)

and 10.3 (for MRI MS lesions) along with the overall mean MMD and DSC for each tool. For synthetic

liver tumours (table 10.1) the mean accuracy is the same or superior for tools with learned shape priors,

with the exception of the accuracy of the Langevin tool as measured by MMD, which shows a small

(0.022 pixel units) increase in MMD when the prior is used. For synthetic MS lesions (table 10.2)

the mean accuracy is consistently superior for tools with learned shape priors. For MRI MS lesions

(table 10.3) the mean accuracy is the same or superior for tools with learned shape priors, with the

exception of the accuracy of the Langevin tool as measured byDSC.

To look for significant differences between the accuracy of the tools used with learned and normal

priors we use a paired-samples t-test and a non-parametric (Wilcoxon signed rank) test. Table 8.6 shows

thep-values revealed by both tests, when similarity is measuredby mean minimum distance (MMD) and

Dice similarity coefficient (DSC). Thep-values in table 8.6 indicate the significance of the difference in

accuracy resulting from learned shape priors. Superscripts ’+’ and ’-’ denote an increase and decrease

in accuracy respectively, when using learned shape priors.Bold values indicate where differences are

significant with a confidence interval of 95%. No results give a significant reduction in accuracy. Results

are given separately for synthetic liver tumour (LT) and multiple sclerosis (MS) regions as well as the

real MRI images of MS lesions.

Model Measure
T-test Wilcoxon

synth. LT synth. MS MRI MS synth. LT synth. MS MRI MS

Lan
MMD 0.287− 0.485+ 0.050+ 0.361− 0.480+ 0.057+

DSC 0.476− 0.815+ 0.340− 0.439− 0.193+ 0.228−

GP
MMD < 0.001+ 0.250+ 0.064+ 00.003+ 0.288+ 0.057+

DSC < 0.001+ 0.194+ 0.006+ 0.003+ 0.288+ 0.004+

Table 8.6:p-values indicating significance of the effect of learned shape priors on the accuracy of inter-

active segmentation

Table 8.6 leads to the following observations:

- According to a parametric test, the accuracy of the Langevin framework, as measured by MMD,

is significantly increased by the learned shape prior when segmenting MRI MS lesions.

- The accuracy of both tools is consistently increased when segmenting MS lesions in synthetic

images, but this increase is not significant.

- According to both parametric and non-parametric tests, the accuracy of the GP framework, as
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measured by MMDandDSC, is significantly increased by the learned shape prior when segment-

ing synthetic liver tumours, and that measured by MMD alone is significantly increased by the

learned shape prior when segmenting MRI MS lesions.

In conclusion, we accept hypothesisH8.7.2.1 in the Langevin case for MRI MS lesions and in the

GP case for all regions except for synthetic MS lesions. The apparent (but insignificant) reduction in

accuracy for the Langevin tool segmenting synthetic liver tumours could caused by a reduction in post

editing. The tool with shape priors may give a reasonable contour, which subconsciously influences

the user to accept the result with insufficient post editing.Indeed, this post editing involved on average

10.520 boundary interactions for the tool with shape priorsand 16.075 without.

8.7.2.2 Inter-operator variability

Next, we hypothesise that:

H8.7.2.2: inter-operator variability of each interactive framework is reduced by the

global shape priors.

To test hypothesisH8.7.2.2 we measure the dissimilarity, in terms of MMD and DSCbetween the

segmentation by two different users, of a single ROI. For each ROI we take the mean over all 45 distinct

pairs of users. Because each region can be perceived differently by each user we give results for each

region separately. Table 10.4 gives the results separatelyfor segmentation of synthetic (liver tumour and

MS lesion) and MRI (MS lesion) images. In the Langevin framework, learned shape priors reduce the

inter-operator variability measured by MMD and DSC in 5 out of the 9 images, namely synthetic liver

tumours (i) and (iii), synthetic MS lesions (i) and (iii) andMRI MS lesion (iii), as well as synthetic liver

tumour (ii) in terms of MMD alone. In the GP framework, learned shape priors reduce the inter-operator

variability measured by MMD and DSC in 3 out of the 9 images, namely synthetic liver tumour (i),

synthetic MS lesion (ii) and MRI MS lesion (ii), as well as MRIMS lesion (i) in terms of MMD alone.

To look for significant differences between the inter-operator variability of the tools used with

learned and normal priors we use a paired-samples t-test anda non-parametric (Wilcoxon signed rank)

test. Tables 8.7 and 8.8 show thep-values revealed by parametric and non-parametric tests respec-

tively, when similarity is measured by mean minimum distance (MMD) and Dice similarity coefficient

(DSC). Thep-values in tables 8.7 and 8.8 indicate the significance of thedifference in inter-operator

variability resulting from learned shape priors. Superscripts ’+’ and ’-’ denote a reduction and increase

in inter-operator variability respectively, when using learned shape priors. Bold values indicate where

differences are significant with a confidence interval of 95%. Results are given separately for each image

segmented. Tables 8.7 and 8.8 lead to the following observations:

- For some images, the reduction in inter-operator variability is significant in terms of one or both

measures (MMD/DSC) according to one or both tests (parametric/non-parametric). In the case of

the Langevin framework this is true for synthetic liver tumours (i) and (ii), synthetic MS lesions (i)

and (iii) and MRI MS lesion (iii). In the case of the GP tool this is true for synthetic liver tumour

(i), synthetic MS lesion (ii) and MRI MS lesion (ii).
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Mod. Meas.

Synthetic MRI

liver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Lan
MMD < .001+ 0.338+ 0.006+ 0.008+ 0.047− 0.278+ 0.359− 0.011− 0.008+

DSC 0.159+ 0.019− < .001+ 0.002+ 0.208− < .001+ 0.003− 0.011− 0.055+

GP
MMD 0.087+ 0.321− 0.018− 0.245− 0.010+ 0.032− 0.260+ 0.323+ 0.098−

DSC 0.046+ 0.462− 0.056− 0.305− 0.009+ 0.002− 0.061− 0.030+ 0.490−

Table 8.7:p-values from T-test indicating significance of the effect oflearned shape priors on the inter-

operator variability of interactive segmentation

Mod. Meas.

Synthetic MRI

liver tumour MS lesion MS lesion

(i) (ii) (iii) (i) (ii) (iii) (i) (ii0 (iii)

Lan
MMD <.001+ 0.357+ 0.008+ 0.019+ 0.141− 0.328+ 0.400− 0.005− 0.012+

DSC 0.230+ 0.025− < .001+ 0.015+ 0.255− 0.001+ 0.006− 0.012− 0.082+

GP
MMD 0.136+ 0.444− 0.136− 0.489− 0.021+ 0.053− 0.154+ 0.173+ 0.123−

DSC 0.063+ 0.431− 0.084− 0.484− 0.015+ 0.003− 0.077− 0.039+ 0.480−

Table 8.8:p-values from Wilcoxon signed rank test indicating significance of the effect of learned shape

priors on the inter-operator variability of interactive segmentation

- For some of the images revealing anincreasein inter-operator variability, this increase is signifi-

cant in terms of one or both measures (MMD/DSC) according to one or both tests (parametric/non-

parametric). In the case of the Langevin framework this is true for synthetic liver tumour (ii),

synthetic MS lesion (ii) and MRI MS lesions (i) and (ii).

- To summarise results for the Langevin framework, the parametric tests reveal 7 cases where the

inter-operator variability is significantly reduced and 5 cases where it is significantly increased.

These numbers become 4 and 0 in the case of non-parametric tests.

- To summarise results for the GP framework, the parametric tests reveal 4 cases where the inter-

operator variability is significantly reduced and 3 cases where it significantly increased. These

numbers become 3 and 1 in the case of non-parametric tests.

In conclusion, we can not accept hypothesisH8.7.2.2 due to the appreciable amount of significant

negative results. These results could be explained by the high levels of user control offered by both post

editing methods. More user control allows for different styles of post editing between users, which can

override the benefits of the shape priors to the variability of results.
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8.7.2.3 Intra-operator variability

Next, we hypothesise that:

H8.7.1.3: intra-operator variability of each interactive framework is reduced by the

global shape priors.

We measure the similarity, in terms of MMD and DSC between twosegmentations of a region (iii)

by the same user at different times. The full results are given in appendix tables 10.5 (for synthetic liver

tumours), 10.6 (for synthetic MS lesions) and 10.7 (for MRI MS lesions) along with the overall mean

MMD and DSC for each tool.

Results for each user are given in appendix tables 10.1 (for synthetic liver tumours), 10.2 (for

synthetic MS lesions) and 10.3 (for MRI MS lesions) along with the overall mean MMD and DSC for

each tool. For synthetic liver tumours the mean intra-operator variability is the same or superior for tools

with learned shape priors, with the exception of the intra-operator variability of the Langevin tool as

measured by MMD. For synthetic MS lesions the mean intra-operator variability is the same or superior

for tools with learned shape priors, with the exception of the intra-operator variability of the Langevin

tool as measured by MMD and the GP tool as measured by DSC. For MRI MS lesions the mean intra-

operator variability is consistently superior for tools with learned shape priors.

To test hypothesisH8.7.1.3 we look for significant differences between the intra-operator variability

of the tools used with learned and normal priors using a paired-samples t-test and a non-parametric

(Wilcoxon signed rank) test. Table 8.9 shows thep-values revealed by both tests, for each image type

and when similarity is measured mean minimum distance (MMD)and Dice similarity coefficient (DSC).

Superscripts ’+’ and ’-’ denote a reduction and increase in intra-operator variability respectively, when

using learned shape priors. None of the differences are significant with a confidence interval of95%.

Model Measure
T-test Wilcoxon

synth. LT synth. MS MRI MS synth. LT synth. MS MRI MS

Lan
MMD 0.063− 0.279− 0.128+ 0.121− 0.430− 0.143+

DSC 0.279+ 0.500− 0.405+ 0.322+ 0.399− 0.288+

GP
MMD 0.184+ 0.377− 0.458+ 0.254+ 0.323− 0.400+

DSC 0.323+ 0.268− 0.494− 0.480+ 0.305− 0.480−

Table 8.9: p-values indicating significance of the effect of learned shape priors on the intra-operator

variability of interactive segmentation

Table 8.9 suggests that the intra-operator variability of both Langevin and GP frameworks is reduced

in all cases except for synthetic MS lesion segmentation, which involves the smallest regions.

In conclusion, we can not accept hypothesisH8.7.1.3 due to the lack of significant difference be-

tween intra-operator variability of the tools with learnedand normal priors. These results could be

explained by the high levels of user control as in the case ofH8.7.2.2.
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8.7.2.4 Useability

Next, we hypothesise that:

H8.7.2.4: the number of initialisations necessary in each framework is reduced by the

global shape priors.

We test hypothesisH8.7.2.4 in two ways. First, we count how many times number of initialisations

Ninit = 1. In these special cases a user accepts or edits a contour after a single initialisation. We compare

this number for each framework with and without learned shape priors. For the Langevin framework,

Ninit = 1 72 times with learned prior and 54 with normal prior. For the GP framework,Ninit = 1

103 times with learned prior and 95 times with normal prior. In both cases the learned shape prior leads

to an increase in the number of once-only initialisations, where the difference is more apparent in the

Langevin case.

Second, we count the number of initialisationsNinit that a user invokes before accepting or editing

a contour. We take the mean over all regions and compare for tools with normal and learned prior,

reporting the difference for each user. Table 10.8 shows theresults for each user along with overall mean

and standard deviation. We also look for significant differences between the number of initialisations

of the tools used with learned and normal priors using a paired-samples t-test and a non-parametric

(Wilcoxon signed rank) test. Thep-values in table 8.10 indicate the significance of the difference in

the number of initialisations resulting from learned shapepriors. Superscripts ’+’ denote a reduction in

the number of initialisations, when using learned shape priors. Bold values indicate where differences

are significant with a confidence interval of 95%. All results give a significant reduction in the number

of initialisations. Table 8.10 reveals that, for both Langevin and GP frameworks, the learned shape

Model T-test Wilcoxon

Lan 0.017+ 0.008+

GP 0.039+ 0.046+

Table 8.10:p-values indicating significance of the effect of learned shape priors on the number of ini-

tialisations

priors lead to a significant reduction in the number of contour initialisations necessary, according to both

parametric and non-parametric tests.

In conclusion, we accept hypothesisH8.7.2.4 for both segmentation frameworks and all image

types.

Next, we hypothesise that:

H8.7.2.5: The level of post editing necessary in each framework is reduced by the global

shape priors

We test hypothesisH8.7.2.5 in two ways. First, we count how many times the numberof boundary

point interactions madeNint = 0. In these special cases a user accepts a contour after initialisation
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without post editing. We compare this number for each framework with and without learned shape

priors. For the Langevin framework,this happens 10 times with learned prior and once with normal

prior. For the GP framework, this happens 16 times with learned prior and 9 times with normal prior. In

both cases the learned shape prior leads to a striking increase in the number of first-time acceptances.

Second, we compare the level of post editing performed on initial contours for each tool used with

normal and learned shape priors. We quantify the ’level’ of post editing in two ways. First, we count the

number of boundary point interactions madeNint, being the number of points ’dragged’ in the Langevin

framework (figure 8.6) and the number of noise-free observations in the GP case (figure 8.8). Second, to

account for the subjective nature of the level of post editing deemed ’necessary’ by a user, we measure

the dissimilarity between initial and final contours using the Hausdorff distancedH . In each case (Nint

anddH ) we take the mean over all regions and compare for tools with normal and learned prior. The

full results are given in appendix tables 10.9, 10.10 and 10.11. We also look for significant differences

between level of post editing of the tools used with learned and normal priors using a paired-samples

t-test and a non-parametric (Wilcoxon) test. Thep-values in table 8.11 indicate the significance of the

difference in the level of post editing resulting from learned shape priors. Superscript ’+’ denotes a

reduction in the level of post editing (no results give an increase in the level of post editing), when using

learned shape priors. Bold values indicate where reductions are significant with a confidence interval of

95%. Results are given separately for synthetic liver tumour (LT) and multiple sclerosis (MS) regions as

well as the real MRI images of MS lesions.

Model Measure
T-test Wilcoxon

synth. LT synth. MS MRI MS synth. LT synth. MS MRI MS

Lan
Nint 0.002+ 0.334+ 0.157+ 0.004+ 0.323+ 0.143+

dH 0.019+ 0.173+ 0.418+ 0.024+ 0.143+ 0.323+

GP
Nint < 0.001+ 0.010+ 0.001+ < 0.001+ 0.013+ 0.004+

dH 0.021+ 0.185+ 0.299+ 0.021+ 0.180+ 0.288+

Table 8.11:p-values indicating significance of the effect of learned shape priors on the level of post

editing

Table 8.11 leads to the following observations:

- The level of post editing is significantly reduced by learned shape priors when using Langevin or

GP frameworks to segmenting synthetic liver tumours. This is true regardless of the statistical test

or method of measuring the level of interactivity.

- In terms of the number of interactionsNint, the level of post editing is significantly reduced by

learned shape priors when using the GP model to segment any ofthe region/image types. This is

true regardless of the statistical test.

We accept hypothesisH8.7.2.5 for both segmentation frameworks and all image types.
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8.8 Conclusions and Future Work
This chapter has shown that two new dynamical shape models, namely Langevin and Gaussian process

SSMs, can be used in region segmentation. We constructed a simple ACM algorithm for a radial con-

tour parametrisation (RACM) and introduced the use of dynamical shape models for regularisation by

incorporating discriminative models in an energy functional. We demonstrated this with the Langevin

SSM.

We also presented a generalised framework for interactive segmentation using generative shape

models. This framework uses samples drawn from a prior distribution over shapes, along with appro-

priate observation models from image and interactions, in aBayesian optimisation scheme. We demon-

strated for the case of generative Langevin and GP SSMs, for which we presented methods of generating

model shapes, incorporating image observations and, in thecase of GP SSMs, make efficient use of

run-time information from user interactions. The incorporation of observations to condition the shape

priors is a major contribution.

We performed experiments to isolate the learned shape information and test its benefit to the rest of

a segmentation framework. These experiments reveal that

• a simple deformable contour model (RACM) that combines Langevin shape regularisation with a

stochastic deformation mechanism converges to a stable solution in a range of images,

• Langevin shape regularisation improves the accuracy of segmentation by the RACM,

• GP shape regularisation is not practical for run-time segmentation but might benefit reconstruction

or registration tasks,

• learned shape priors generally improve the accuracy of interactive segmentation tools based on

Langevin and GP SSMs,

• prior knowledge of shape does not reduce segmentation variability in a framework that gives ulti-

mate control to the user, which echoes the conclusion drawn from chapter 6, and

• the demand on the user of an interactive framework is reducedwhen exploiting learned shape

priors.

The experiments above represent a ’proof of concept’ for thenew shape models and their respective

segmentation algorithms. The next step would be to compare the methods with the closest competitor

in the literature. It would be interesting, for example, to compare the power of the shape priors, with

those encoded by a PDM, built without explicit point correspondence as in Berkset al. [130]. We noted

in section 3.1.1, that using the method of Berkset al. for supervised segmentation would first require

the incorporation of the simulation algorithm in a segmentation framework. The generalised framework

above could incoprorate the method as a generative mechanism, i.e. (4) in table 8.1.

This chapter developed and tested SSMs for star-shaped regions only. In the case of shape regular-

isation, the extension to the generalised contour parametrisation is straightforward, although the polar

image model used here needs to be replaced. Future work will evaluate the SSMs for generalised shape
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Figure 8.10: Ambiguity for the contour parametrisation of radii r vs. arc-lengths.

regularisation and for different segmentation methods such as classical snakes and level sets. A frame-

work that parametrises a contour as a Fourier decompositioncould also benefit from this type of shape

regularisation following the findings in the previous chapter (section 7.5.2). In the case of the gener-

ative frameworks, extension to non star-shaped regions requires more changes to the algorithm. The

arc-length parametrisationr(s) introduces an ambiguity problem. For any starting points0, there is no

1:1 mapping between a point{ri, si} and a point{x, y} in the image frame as shown in figure 8.10.

To overcome this problem, future work will replace the radial time series with anangular time series

{φ, s}, where{φ = {φ0, φ1, . . . , φN−1} are angles with respect to the horizontal in the image frame and

s = {s0, . . . , si, . . . sN−1} are arc-length increments. By using this representation with the Langevin

model above we could create an open-contour model for interactive boundary tracking with shape priors.

However, the models would lose rotation invariance.

Finally, the models in this chapter would extend to 3-dimensions. One approach would be to pro-

pogate the 2-dimensional model from one slice to the next, until the whole of a 3-dimensional volume is

segmented. Another approach would be to reduce a 3-dimensional shape to a 1-dimensional representa-

tion as in [278].
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Conclusions and Future Work

This project has tackled the problem of segmenting difficultregions of interest in medical images,

where interactive, 2-dimensional contouring is in common practice but where these lack automation and

the applications offer little prior knowledge. We introduced image models and modes of interaction

to a boundary tracking framework designed for lesion contouring, and novel statistical shape models

designed to introduce global shape priors to supervised contouring. We demonstrated the benefits of

new interactive frameworks, as well as the specific roles of the image and shape models, in terms of

segmentation quality, variability and the useability of a tool. Section 9.1 presents a condensed form of

the findings and contributions made by this project and section 9.2 suggests future research motivated

by these findings.

9.1 Conclusions

This section concludes the thesis by summarising the findings and contributions resulting from the work

herein.

9.1.1 Key findings

This project has made the following key observations:

1. SVM texture classification leads to better edge detectionthan gradient filtering, without calcu-

lating explicit texture features.

2. The combination of SVM texture models and jetstream interactions benefits segmentation in

terms of accuracy and user demand.

3. In a framework that gives ultimate control to the user, prior knowledge from an SVM texture

model does not reduce segmentation variability.

4. Two new SSMs based on nonlinear dynamics capture global shape information with high dis-

crimination power, and can be used in applications without correspondence points or other high-

level shape similarity, such as tumours and lesions.
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5. A simple active contour model benefits from shape priors embedded in the SSMs, in terms of

accuracy.

6. A generalised interactive segmentation framework can use different generative shape models as

the basis of a probabilistic optimisation scheme.

7. Two dynamical shape models (Langevin and GP SSMs) work well in the generalised segmen-

tation framework, and can incorporate observation models in an efficient and novel manner.

8. Prior knowledge of shape, embedded in the generative models, benefits the interactive segmen-

tation frameworks in terms of accuracy and useability.

9. In a framework that gives ultimate control to the user, prior knowledge from an SVM texture

model or time series shape model does not reduce segmentation variability.

9.1.2 Other contributions

We have made the following contributions to the various fields encompassed by this multidisciplinary

project:

1. Motivated the use of incremental learning in MS lesion segmentation, by training ’small’ SVMs

on local data.

2. Presented novel modes of interaction for a boundary tracking framework, including two meth-

ods of ’loop closing’.

3. Highlighted the importance of user preference when designing modes of interaction.

4. Motivated new research into the use of time series modelling for shape modelling, which draws

from the rich nonlinear dynamics literature beyond the autoregressive and Markov random field

models.

5. Introduced techniques from time series analysis, for training SSMs, scoring unseen shapes,

simulating model contours and constraining simulations inthe light of observations.

6. Presented a novel method of ’data assimilation’ for Langevin modelling, by combining simula-

tion techniques with theory from the tracking literature.

7. Stimulated the wider field of medical image analysis by prompting the future avenues of re-

search detailed below.
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9.2 Future Work
This project has motivated solid avenues of future work, including novel extensions for which we have

proposed clear starting points. We start by listing the future work, roughly in the order according to the

thesis, and finish by prioritising the three most pressing matters and recap our suggested approaches.

1. Combining both featureless texture models and correspondence-free shape priors in a unified

framework for supervised segmentation of variable shapes with ambiguous boundaries.

2. Using either of the constrained jetstream algorithms, which terminate at a fixed point, as a fast

and accurate post editing tool for replacing partial boundary sections in any deformable contour

model.

3. Extending Langevin and GP models to other applications than MS lesion and liver tumour

contouring, and exploring novel covariance kernels in the GP case.

4. Using discriminative Langevin and GP SSMs for regularisation in other deformable contour

frameworks such as level sets

5. Using discriminative Langevin and GP SSMs for classifying MS lesions in terms of ’Lassman

types’.

6. Using discriminative Langevin and GP SSMs for regularisation in image registration tasks,

where source and target images from different time points are known to contain tumours or lesions

7. Using discriminative Langevin and GP SSMs for regularisation in image reconstruction, where

the imaging object is known to contain a tumour or lesion and its rough location is known.

8. Using the generative SSM tools in other applications, such as tumour segmentation in 2-

dimensional ultrasound images that have very low SNR.

9. Extending the generative SSM tools for 3-dimensional segmentation by contour stacking,

whereby the third dimension could comprise a new variable for orthogonal time series modelling

and the observation model could use information propagatedthrough image slices.

10. Extending the generative Langevin model for interactive, open-contour boundary tracking that

generalises to non star-shaped regions.

The three prioritised tasks for future work relate to the time series shape models, which reflects

their novelty. First, having validated the role of the shapepriors in improving the accuracy and useability

of a segmentation framework, the resulting tool should be compared with others from the contemporary

literature. In particular, it would be of great value to assess the advantages and disadvantages of the

frameworks over the use of point distribution models for pathological regions of interest, which resorts

to arbitrarily assigning points of correspondence, as in [130]. In one case the arbitrary PDM could be

built into the generic framework presented in section 8.3. In another case the arbitrary PDM could be

built into an active appearance model [279].
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The second priority extends the generative models for non-star shaped regions. One approach is to

generate series according to theangular time series{φ, s} as suggested in section 8.8, which could be

realised for both Langevin and GP models. Another approach in the Langevin case is inspired by the

work of Jafariet al. [224], who describe microscopic surfaces with Langevin models. In these models the

independent variable is replaced by a 2-dimensional field. For region boundaries the analogous scheme

is to maintain radiusr as the state variable but model the behaviour ofr(x, y) rather thanr(θ).

The third priority generalises the models to 3 dimensions, for which section 8.8 suggested two

distinct approaches. In the first case, the 2-dimensional models can be repeated throughout successive

slices of a 3-dimensional image, which is in line with both the anisotropy of tomographic images and the

natural way in which humans interact with 2-dimensional models as discussed previously. In addition

this approach would naturally allow information to propagate through tomographic slices by updating the

radial profile model to constrain subsequent hypotheses. The second approach would extend the models

themselves to describe 3-dimensional shape. This proposedextension is based on the re-parametrisation

of a 3-dimensional surface into a 1-d signature resembling the radial time series. Such a parametrisation

is realised by the ’spiral’ transform, as used in [278]. In this scheme a radial vector originates from the

centre of a volume of interest, and traces a path in sphericalpolar coordinates, from the ’North pole’ to

the ’South pole’. If the surface were a perfect sphere with radial vector originating from its geometric

centre, the resulting time series would be a straight line, analogous to the case of a perfect circle in the

2-dimensional case.
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Appendix

This appendix gives the full set of results from experimentsin section 8.7.2. These results were used

for statistical analyses in section 8.7.2, which evaluate generative segmentation tools in terms of ac-

curacy (tables 10.1, 10.2 and 10.3), inter-operator variability (table 10.4) and intra-operator variability

(tables 10.5, 10.6 and 10.7) as well as useability in terms ofnumber of initialisations (table 10.8) and

level of post-editing (tables 10.9, 10.10 and 10.11).
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 0.901 0.560 0.8566 0.926 0.753 0.745 0.716 0.730 0.729 0.989 0.792±0.126

normal 0.686 0.583 0.965 0.942 0.747 0.893 0.730 0.655 0.668 0.830 0.770±0.131

DSC
learned 0.954 0.974 0.955 0.955 0.964 0.961 0.966 0.967 0.963 0.951 0.961±0.007

normal 0.955 0.972 0.949 0.953 0.965 0.955 0.961 0.970 0.969 0.960 0.961±0.008

GP

MMD
learned 1.303 0.995 1.145 1.276 1.024 0.884 1.070 1.126 1.123 0.993 1.090±0.138

normal 1.4773 1.446 1.276 1.454 1.422 1.223 1.393 1.141 1.548 1.268 1.365±0.130

DSC
learned 0.935 0.950 0.944 0.939 0.948 0.953 0.945 0.943 0.941 0.947 0.945±0.005

normal 0.925 0.931 0.934 0.928 0.924 0.938 0.931 0.941 0.923 0.934 0.931±0.006

Table 10.1: Effect of learned shape priors on the accuracy ofinteractive segmentation of synthetic liver tumours in terms of mean minimum distance (MMD) and Dice

similarity coefficient (DSC)
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 0.501 0.440 0.705 0.821 0.658 0.574 0.546 0.650 0.661 0.711 0.627±0.112

normal 0.485 0.551 0.935 0.645 0.569 0.755 0.530 0.588 0.748 0.480 0.629±0.145

DSC
learned 0.910 0.906 0.852 0.830 0.872 0.892 0.866 0.878 0.865 0.880 0.875±0.024

normal 0.885 0.873 0.827 0.864 0.897 0.861 0.860 0.883 0.848 0.883 0.868±0.021

GP

MMD
learned 0.560 0.710 0.774 0.857 0.877 0.575 0.731 0.719 0.644 0.581 0.703±0.113

normal 0.774 0.612 0.813 0.720 0.769 0.754 0.717 0.678 0.864 0.651 0.732±0.075

DSC
learned 0.887 0.849 0.849 0.842 0.833 0.877 0.831 0.857 0.865 0.883 0.857±0.020

normal 0.843 0.866 0.840 0.845 0.840 0.841 0.852 0.867 0.837 0.877 0.851±0.014

Table 10.2: Effect of learned shape priors on the accuracy ofinteractive segmentation of synthetic MS lesions in terms of mean minimum distance (MMD) and Dice similarity

coefficient (DSC)
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 1.248 0.939 1.533 1.072 1.135 1.197 1.026 0.969 1.202 1.125 1.145±0.054

normal 1.306 1.076 1.329 1.241 1.246 1.349 0.929 1.264 1.300 1.219 1.226±0.041

DSC
learned 0.819 0.822 0.650 0.787 0.831 0.827 0.810 0.828 0.793 0.790 0.796±0.017

normal 0.802 0.835 0.668 0.807 0.826 0.811 0.833 0.798 0.787 0.817 0.798±0.015

GP

MMD
learned 1.575 1.306 1.849 1.248 1.241 1.384 1.032 1.236 1.598 1.316 1.379±0.074

normal 1.449 1.299 1.812 1.297 1.478 1.415 1.521 1.353 1.699 1.367 1.469±0.054

DSC
learned 0.769 0.782 0.684 0.787 0.797 0.800 0.829 0.803 0.758 0.806 0.782±0.040

normal 0.760 0.781 0.666 0.788 0.762 0.773 0.748 0.776 0.747 0.781 0.758±0.035

Table 10.3: Effect of learned shape priors on the accuracy ofinteractive segmentation of MRI MS lesions in terms of mean minimum distance (MMD) and Dice similarity

coefficient (DSC)
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Mod. Meas. Prior

Synthetic MRI

liver tumour MS lesion MS lesion

i ii iii i ii iii i ii iii

Lan

MMD
learn 1.072±0.200 1.454±0.207 1.278±0.217 0.999±0.234 1.298±0.423 1.179±0.310 1.023±0.302 2.110±0.890 0.997±0.136

norm 1.351±0.259 1.478±0.424 1.422±0.376 1.144±0.288 1.183±0.235 1.220±0.305 1.004±0.208 1.910±0.984 1.106±0.272

DSC
learn 0.940±0.014 0.947±0.010 0.965±0.006 0.844±0.047 0.845±0.052 0.871±0.036 0.790±0.090 0.702±0.199 0.887±0.027

norm 0.937±0.017 0.952±0.009 0.952±0.009 0.805±0.066 0.858±0.037 0.835±0.048 0.830±0.045 0.730±0.210 0.876±0.037

GP

MMD
learn 1.194±0.220 1.406±0.190 1.916±0.284 0.573±0.258 0.787±0.177 0.787±0.247 0.755±0.240 1.548±0.575 0.910±0.279

norm 1.272±0.318 1.377±0.373 1.769±0.322 0.536±0.222 0.902±0.292 0.703±0.209 0.789±0.228 1.600±0.798 0.841±0.307

DSC
learn 0.935±0.018 0.953±0.012 0.948±0.014 0.855±0.061 0.889±0.029 0.867±0.046 0.817±0.057 0.783±0.112 0.869±0.038

norm 0.928±0.024 0.953±0.017 0.953±0.012 0.861±0.048 0.871±0.049 0.890±0.042 0.836±0.049 0.760±0.168 0.869±0.051

Table 10.4: Effect of learned shape priors on the inter-operator variability of interactive segmentation in terms of mean minimum distance (MMD) and Dice similarity

coefficient (DSC)
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 3.101 1.026 2.547 2.135 1.114 1.444 1.015 1.534 2.686 1.459 1.806±0.756

normal 0.947 0.975 1.092 1.435 0.871 1.725 1.293 1.412 1.137 2.178 1.307±0.404

DSC
learned 0.954 0.967 0.955 0.966 0.966 0.956 0.966 0.973 0.969 0.955 0.963±0.007

normal 0.957 0.970 0.964 0.960 0.975 0.948 0.958 0.970 0.963 0.949 0.961±0.009

GP

MMD
learned 1.959 1.270 1.832 1.450 1.768 1.801 2.114 1.339 2.023 1.476 1.703±0.299

normal 1.849 2.096 1.400 1.852 1.687 1.841 1.911 1.125 2.563 1.925 1.825±0.384

DSC
learned 0.942 0.964 0.960 0.958 0.948 0.947 0.937 0.972 0.951 0.966 0.955±0.011

normal 0.948 0.946 0.968 0.957 0.962 0.952 0.940 0.976 0.919 0.956 0.952±0.016

Table 10.5: Effect of learned shape priors on the intra-operator variability of interactive segmentation of syntheticliver tumours in terms of mean minimum distance (MMD)

and Dice similarity coefficient (DSC)
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 1.069 0.848 1.086 0.706 0.996 1.054 0.905 1.019 1.354 1.675 1.071±0.272

normal 1.003 0.992 1.246 0.916 0.996 1.070 0.939 1.024 0.891 1.154 1.023±0.109

DSC
learned 0.884 0.903 0.868 0.878 0.877 0.885 0.869 0.874 0.789 0.885 0.871±0.031

normal 0.892 0.860 0.856 0.875 0.880 0.871 0.896 0.877 0.849 0.856 0.871±0.016

GP

MMD
learned 0.371 0.797 0.756 0.652 0.756 0.791 1.069 0.716 0.560 0.646 0.711±0.180

normal 0.527 0.610 0.210 1.290 0.646 0.862 0.702 0.541 0.777 0.610 0.678±0.277

DSC
learned 0.938 0.813 0.887 0.910 0.891 0.881 0.753 0.892 0.921 0.905 0.879±0.055

normal 0.911 0.880 0.977 0.790 0.899 0.873 0.895 0.917 0.891 0.906 0.894±0.046

Table 10.6: Effect of learned shape priors on the intra-operator variability of interactive segmentation of syntheticMS lesions in terms of mean minimum distance (MMD)

and Dice similarity coefficient (DSC)
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

MMD
learned 0.836 0.870 1.399 0.931 0.810 0.894 0.701 0.628 0.723 1.207 0.900±0.236

normal 2.289 0.601 0.815 1.064 0.775 0.772 0.977 0.876 1.296 1.675 1.114±0.515

DSC
learned 0.917 0.876 0.811 0.906 0.921 0.900 0.901 0.925 0.916 0.914 0.899±0.034

normal 0.874 0.931 0.911 0.874 0.920 0.939 0.887 0.915 0.853 0.840 0.894±0.034

GP

MMD
learned 0.803 1.099 1.005 0.596 0.887 0.666 0.656 0.360 0.691 0.125 0.689±0.290

normal 1.134 0.747 0.246 0.904 1.184 0.606 0.677 0.375 0.591 0.550 0.701±0.302

DSC
learned 0.898 0.858 0.857 0.924 0.851 0.898 0.903 0.934 0.905 0.983 0.901±0.040

normal 0.847 0.894 0.967 0.841 0.825 0.925 0.911 0.957 0.922 0.925 0.901±0.049

Table 10.7: Effect of learned shape priors on the intra-operator variability of interactive segmentation of MRI MS lesions in terms of mean minimum distance (MMD) and

Dice similarity coefficient (DSC)
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model Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan
learned 2.917 3.167 1.333 1.167 1.583 1.500 2.417 1.917 1.750 2.167 1.992±0.670

normal 3.000 3.250 1.167 1.917 2.167 1.750 4.167 2.917 1.917 2.250 2.450±0.878

GP
learned 1.917 1.500 1.000 1.000 1.250 1.083 1.167 1.417 1.250 1.417 1.300±0.278

normal 1.583 2.000 1.000 1.250 1.667 1.333 2.000 1.667 1.250 1.333 1.508±0.332

Table 10.8: Effect of learned shape priors on the number of times a contour model was initialised
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Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

Nint
learned 2.500 21.250 5.000 14.250 12.250 10.000 11.250 5.750 6.000 17.000 10.520±5.895

normal 5.500 28.000 9.000 18.250 17.750 22.500 14.000 12.750 18.000 15.250 16.075±6.450

dH
learned 3.555 2.962 4.971 4.485 4.827 4.220 3.559 3.100 4.321 8.083 4.413±1.466

normal 4.733 7.977 6.440 5.974 6.210 6.911 4.615 6.807 7.884 4.487 6.204±1.273

GP

Nint
learned 2.250 5.7501 5.500 2.750 5.250 4.500 4.500 9.500 4.750 4.500 4.925±1.958

normal 7.500 9.000 9.000 11.250 7.000 9.500 13.750 16.250 6.500 9.000 9.875±3.078

dH
learned 3.331 3.135 3.343 3.269 4.014 4.176 4.019 4.782 4.520 2.316 3.691±0.742

normal 4.450 4.190 3.272 2.722 4.075 4.180 5.589 4.767 5.579 3.800 4.262±0.907

Table 10.9: Effect of learned shape priors on the level of post-editing necessary during interactive segmentation of synthetic liver tumours in terms of the number of interactions

(Nint) and Hausdorff distance (dH ) between contours before and after post-editing



175

Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

Nint
learned 4.250 12.500 1.750 8.500 12.500 6.750 7.500 5.000 9.500 13.500 8.175±3.900

normal 6.750 12.250 4.0005 8.000 11.250 11.750 9.000 10.250 6.000 7.500 8.675±2.708

dH
learned 2.081 2.894 2.140 2.179 3.493 3.393 2.193 3.871 3.427 1.927 2.760±0.733

normal 3.212 3.362 3.0504 2.163 3.159 3.454 2.727 2.460 3.374 3.087 3.005±0.425

GP

Nint
learned 1.500 3.250 1.5006 0.750 1.2505 3.250 1.250 5.750 2.000 3.750 2.425±1.550

normal 3.500 4.500 2.500 1.000 2.750 6.250 3.250 8.750 1.311 2.750 3.656±2.336

dH
learned 1.250 2.223 1.809 0.604 0.901 2.016 0.957 1.707 2.250 1.663 1.538±0.579

normal 1.559 2.168 1.500 0.854 1.350 2.340 0.913 1.894 2.057 1.516 1.615±0.503

Table 10.10: Effect of learned shape priors on the level of post-editing necessary during interactive segmentation of synthetic MS lesions in terms of the number of interactions

(Nint) and Hausdorff distance (dH ) between contours before and after post-editing



176

Model Measure Prior User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Mean

Lan

Nint
learned 11.000 16.500 3.250 6.750 13.750 14.500 9.750 10.000 7.750 9.250 10.250±3.926

normal 5.250 16.500 3.750 9.750 16.750 18.500 19.000 9.500 8.750 8.000 11.575±5.615

dH
learned 3.7186 3.460 2.472 1.766 2.460 3.632 3.027 2.668 2.753 1.766 2.772±0.699

normal 2.942 3.811 2.118 2.179 2.738 2.943 3.108 2.699 2.964 2.557 2.806±0.484

GP

Nint
learned 3.000 5.250 2.000 3.750 1.500 2.500 2.500 4.000 1.750 1.000 2.725±1.299

normal 4.000 6.250 2.750 4.500 3.750 4.250 4.750 8.000 1.750 2.750 4.275±1.808

dH
learned 2.759 2.4104 1.766 1.972 1.973 1.973 1.663 1.913 1.266 1.061 1.876±0.493

normal 1.809 2.475 1.663 2.121 1.914 1.913 2.266 1.516 2.505 1.604 1.979±0.352

Table 10.11: Effect of learned shape priors on the level of post-editing necessary during interactive segmentation of MRI MS lesions in terms of the number of interactions

(Nint) and Hausdorff distance (dH ) between contours before and after post-editing
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