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Abstract

This thesis is concerned with the problem of how to outlirggars of interest in medical images, when
the boundaries are weak or ambiguous and the region shap&segular. The focus on machine learn-
ing and interactivity leads to a common theme of the need lanica conflicting requirements. First,
any machine learning method must strike a balance betweemmhech it can learn and how well it
generalises. Second, interactive methods must balandésmaiinser demand with maximal user control.

To address the problem of weak boundaries, methods of sspdnexture classification are investi-
gated that do not use explicit texture features. These rdstliable prior knowledge about the image to
benefit any segmentation framework. A chosen dynamic comodel, based on probabilistic boundary
tracking, combines these image priors with efficient modesteraction. We show the benefits of the
texture classifiers over intensity and gradient-based @magdels, in both classification and boundary
extraction.

To address the problem of irregular region shape, we deussatype of statistical shape model
(SSM) that does not use explicit boundary features or assuigtelevel similarity between region
shapes. First, the models are used for shape discriminatiaonstrain any segmentation framework
by way of regularisation. Second, the SSMs are used for shaperation, allowing probabilistic seg-
mentation frameworks to draw shapes from a prior distrdyuti The generative models also include
novel methods to constrain shape generation accordingfaoniation from both the image and user
interactions.

The shape models are first evaluated in terms of discrincinatpability, and shown to out-perform
other shape descriptors. Experiments also show that theghadels can benefit a standard type of
segmentation algorithm by providing shape regularisere fWally show how to exploit the shape

models in supervised segmentation frameworks, and eesteir benefits in user trials.
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Chapter 1

Introduction

Image segmentation identifies regions and/or boundaris image to turn pixel intensities into seman-
tic information. This aids interpretation of an image andésessary as a pre-processing step in many
image analysis techniques. Segmentation is a fundamdrafiénge to image processing, encompass-
ing numerous approaches, goals and requirements depesdthg application. For many applications,
segmentation is challenged by poor image quality and vier&iape of the region of interest (ROI). This
is true of many medical imaging tasks, where images aredjlgimonospectral, low contrast and noisy.
Along with these difficulties, medical tasks such as diseésgnosis and monitoring, treatment planning
and image guided surgery have high demands in terms of ag¢r&cision and generalisation.
Automatic segmentation often fails to generalise beyowrdi§is applications and strict experimen-
tal conditions. As a result, and due to the user’s desiredotrol, manual segmentation is commonplace.
However, fully manual methods are labour intensive and ¢iselts are prone to variability. Our aim is
to balance automation with user control by finding new wayke#osn from the texture and shape of

pre-segmented regions, along with the efficient use of m@dupervision in a segmentation algorithm.

1.1 Background

Segmentation has received various definitions, influengetsbmany applications. A standard image
processing text states that segmentation 'subdivides agennto its constituent regions or objects’
[1]. Definitions in the computer vision literature includeartitioning of a given image into a number
of homogeneous regions according to a given critical’ [2Zjjlevthe medical image analysis literature
includes definitions such as 'identification and quantitaf tissues and organs’ [3]. Similarly, there

are numerous approaches to segmentation, depending opglieation and the form of results sought.

1.1.1 Pros and cons of fully automatic and manual methods

To understand the motivation for semiautomatic methods iseful to look at the two extremes of fully
automatic and fully manual methods. The project can thevesto maintain the benefits, and suppress
the disadvantages, of each.

Fully automatic methods can produce the same result foategesegmentations. The removal of
variability can make automatic methods more reliable fa imslongitudinal studies, but places more

demand on the results themselves. In theory, the resultstofratic methods are not affected by the
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user. However, in practice the unique segmentation preddnt automatic procedures often requires
post editing before the user is satisfied with the resultstosatic methods often compensate for the
lack of user information with a relatively high amount of grecessing such as classification of image
texture or multispectral data. Pre-processing often ilmpdemands upon the data, such as multispectral
acquisitions, calibrated dynamic ranges, isotropy othatignt in a standardised coordinate system. The
increased pre-processing can also lead to the loss or smgathinformation and impractical compu-
tation times.

The fully manual method of freehand boundary delineati@uires maximal user input, leading
to three main disadvantages. First, the inevitable sukijgcof a single user leads to inter-operator
variability. Second, human imperfection and the 'usergia# arising for longer tasks leads to intra-
operator variability when the same user repeats a segnntask on the same region. Third, the
manual approach introduces demands on an operator, as tistyhave expertise in the segmentation

task and be able to spare the time to perform manual segrizentat

1.1.2 Deformable contour models

Methods of segmentation can be divided into thresholdiagion-based, boundary-based and hybrid
[4]. This project focuses on boundary-based methods, whiatiel a region outline as a 2-dimensional
parametric or geometric contour. This general family of moefs will be referred to adeformable
contour model$DCMs) and, while their approaches vary widely in the litare, their frameworks share
a common set of components listed in Table 1.1. These conmp®aee separated to aid discussions
throughout this thesis, but we note that the list is not aiecdind components are naturally linked. For
example a shape models) might naturally yield a measure of agreement between aocomhodel
and shape class, which can be used in an objective funafign Certain sections of this thesis refer
explicitly to components in table 1.1 (with labels.) to help place certain topics in the context of a

segmentation framework.

1.1.3 Boundary ambiguity and variable shape

This project addresses segmentation tasks confoundedimyglaoy ambiguity and variable shape. These
tasks pose particular challenges to a segmentation frarkesgothe image modeC¢) should identify
boundaries and a shape modgj)(generally requires some predictable features of the négghape.

Boundary ambiguity occurs due to weak intensity gradiethis,presence of texture and ’clutter’,
and similarity of intensity histograms between ROl and suinding data. These factors are common
in medical imaging applications because of physical litiotas of the imaging technology and the fact
that a region, which is distinguished from its surroundibgsts pathology, function, or other semantic
attribute, may not be distinct in its signal response. Amgxia of boundary ambiguity is the outline of
a liver tumour in a CT slice such as that in figure 1.1. The tunioa) is hardly visible and the edge
map in (c) shows that tumour edges have low gradient magniad are barely discernible from nearby
clutter.

Variable shape arises, for example, when shapes belongitihge tsame class do not share global

shape properties such as spatial correspondence betweeddry points. Figure 1.2 illustrates variable
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Table 1.1: Components of a deformable contour segmentitiorework.

shape along with a counter example of regions with corred@oce points. In (a) a class of shapes,
healthy vertebra, exhibits correspondence between tharieg boundary featurespinous procegs
present in all examples of this class. (b) shows a differéasscof shapes, namely multiple sclero-

sis lesions, which do not share obvious global propertieanywimedical regions of interest have such
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. e

@) (b) (©) (d)

Figure 1.1: (a) Cropped slice from an axial CT image showitgw@our region in the liver. (b) The same
image after contrast enhancement. (c) The boundary of theuu(green), delineated manually by an

expert. (d) Gradient magnitude of (a), shown in grey scamfblack (zero) to white (maximum).

(@) (b)

Figure 1.2: (a) Cropped slices from two separate axial CTgesaeach showing a cross-section of a

human vertebra. Arrows indicate tepinous process recurring boundary feature. (b) Cropped slices
from mid-axial regions in MRI scans of two separate humatinistaOutlines (green) show a multiple

sclerosis lesion in each case, as delineated by an expant rat

variable shape due to the complex boilogical processedsdiratthem.

1.1.4 Medical and biological imaging applications

Segmentation is necessary as a pre-processing step inahietige analysis techniques such as surgery
planning, diagnosis, image registration and disease wamgt to mention but a few. This work uses
data from multiple sclerosis lesion and liver tumour regionhese ROIls are often segmented manually
or semiautomatically, as combinations of boundary ambygamd shape variability make automation
difficult.

Multiple sclerosis is a chronic disease that causes thewbisin of myelin and loss of axons
throughout the central nervous system. Demyelinationdéadunctional and sensory impairment but
is reversible. Axonal loss, while less common, can causmaeent neurological disorder. Magnetic
Resonance (MR) is the predominant imaging tool usedhfeivo studies of MS. T2- and PD-weighted
MR images are commonly used to detect and measure the whitertesions (WML) that characterise
the disease. Precise segmentation or delineation of l&giandaries leads to measures of lesion load
(total volume) and morphological information. Segmewtatherefore aids studies of the disease itself,

and enables more informative monitoring of changes ovee tifor example in response to drugs in
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clinical trials. The main challenge to the future of convenal MR in MS studies is to provide better

discrimination of lesions in images [14].

MS lesions have a wide variety of shapes and sizes. The mimgphand internal structure of
lesions vary over time due to the complex histology of thease [15]. A single brain can also contain
multiple lesions at different stages of their evolution][1or a given stage in the disease, the pathology
of a lesion also varies between patients [17]. MR imagesh@dpatial intensity non-uniformity, due to
magnetic field inhomogeneities within the field of view, leapto apparent differences between lesions
in different areas of the brain. Scanner inconsistenciesitsd cause the same lesion in the same patient

to be presented differently in successive scans using the szachine [18].

In practice, MS lesion contouring routinely calls for mahnaut [19, 20, 21]. At London’s Institute
of Neurology (loN), four people who routinely segment lesioeported that0% to 60% of automated
contouring using the tool in [22] required subsequent mbhadiing, of which roughly half required

complete replacement with a freehand contour [23, 24, 2, 26

Liver tumours are among the most common tumours affectingjgds the liver is the largest inter-
nal organ of the human body and its risk from abnormal celvginas increased by lifestyle factors such
as alcohol consumption. Liver tumours also occur metastiifiin relation to other common diseases
such as colorectal cancer [27]. Metastatic liver cancehragdian survival rate of less than one year if
left untreated [28]. Surgical resection is the most comneomfof treatment for metastatic liver tumours.
This places a high demand on improved practices in imagesdugdrgery, as reduced resection margins
leads to more patients eligible for the treatment and highecess rates. Radiotherapy is also used to
treat liver cancer (malignant tumours), which in turn dedsaccurate localisation of the radiation dose.
Surgery planning, guidance and radiotherapy all benefibfagcurate tumour segmentation in medical
images.

Livers are commonly studied using abdominal X-ray CT imggidowever, tumours do not appear
with distinct intensity or texture characteristics andtheundaries are difficult to see even by the human
eye. Liver tumours pose one of the biggest challenges todlisfof tissue classification and boundary

extraction in medical image analysis [29].

To emphasise the wider applicability of the ideas preseintéhis thesis, we briefly mention here
some other areas that our investigations do not considierhm®re manual segmentation in 2-dimensions
is commonplace. First, biomedical research is also seeingcaease in live cell imaging thanks to ad-
vances in phase-contrast microscopy [30]. This imagingatitydoroduces 2-dimensional data, wherein
the cell boundaries are discontinuous, have badly lochkskyes spanning several pixels, and are not

known to benefit from existing shape models [31].

In another area, novel neuroimaging techniques can disshdgndividual synaptic structures such
as axons using data from state-of-the-art scanning efeatioroscopy [32]. The technology can image
tissue volumes with voxel dimensions of tens of nanometahngyein the segmentation of axons would
allow the reconstruction of complete neuronal structutescellular level. For this application, boundary

ambiguity results from the presence of 'clutter’ and thexpraty of neighbouring axons. State-of-the-
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art segmentation uses region-based 'graph-cuts’ [33]@mgtric active contours [34]. However, in both
approaches, the boundary ambiguity problem leads to etfiatsare rectified by post editing, which is
fully manual in the case of [34]. Also, neither this nor thagn-cut approach of [33] use prior shape
models and in the latter case, the algorithm does not reamtibrporate shape priors if such knowledge
were available

Alzheimer’s disease, the most common type of dementia,aghanapplication area calling for im-
proved supervised segmentation. Hippocampal segmeniatiR|l neurcimaging plays an important
role in the diagnosis, monitoring and studying of the diseadippocampi can be seen to shrink over
time, serving as indicators of brain atrophy, or loss of gratter volume, associated with the disease
[35]. At London’s Institute of Neurology (IoN), hippocamgegmentation uses the software in [36].
Depending on the extent of atrophy, a single hippocampahsatation can take an experienced user up
to 45 minutes [37].

1.2 Problem Statement

This project focuses on applications where the region efr@dt is poorly defined due to variable shape

and poor image quality. This applies to a family of medical®@ferred to in [38], as

“natural objects, such as those found in biomedical imaghsse diversity and irregu-

larity of shape make them poorly represented in terms of fizatlres or form”.
For these applications we maintain that
Lemma 1 There is no single perfeatsultof segmentation [39], and

Lemma 2 The perfectmethodof segmentation allows for different outcomes, where a huma

expert ultimately dictates the result.

Adopting Lemma 2rules out fully automatic segmentation for our purposes. aitle instead to
develop semiautomatic tools that increase user controlybtk with the user to reduce the demand on

them. We adopt the requirements stated in [40, 41, 42], of
Requirement dproviding as complete control as possible to the user, and

Requirement 2minimising user involvement and total user time necesaattyout compromising

precision and accuracy.

The problem falls inside the broader area of region segrtientan medical imaging, where im-
provements for accuracy, user demand and repeatabilitikahgto be made for years to come. Manual
or supervised segmentation is likely to survive even asraatic methods improve in the future. As
well as the need for user input implied hgmma land Requirement 2research into fully automatic
segmentation depends in turn on manual/supervised peadtidwo ways. First, methods that use ma-
chine learning, such as statistical shape models or sigaehtexture classification, require training data
defined by expert observers. Second, methods of performevateation often assume some form of

'ground truth’, which is ultimately created or approved hynan experts.
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1.3 Approaches

Requirementd& and2 are conflicting and need to be balanced. We believe that theresments are bal-
anced by efficient interaction and prior knowledge. To tinid e develop dynamic contour models with
on-line supervision by novel modes of interaction alondweiff-line machine learning to maximise the
prior knowledge available. To address boundary ambiguéylevelop a support vector machine (SVM)
classifier for use as a generalised image observation médelddress variable shape and further assist
the weak boundary problem we develop novel statistical smpdels based on time series analysis.
We build the texture models into a boundary tracking franméwand the shape models into various
novel closed contour DCMs. These segmentation framewatksduce novel modes of interaction for

efficient run-time supervision.

1.4 Constraints

The focus on user interaction leads to three key constraimtthis work. First, the study is mainly
concerned with 2-dimensional segmentation, but suggedim&nsional extensions. We justify this

constraint as follows:

e The aim is to semiautomate those scenarios mentioned ilmsdcf.4, where manual delineation
is common practice. Semiautomatic methods 'do some of thé'vem behalf of the user, by
pre-empting or mimicking their actions. By viewing manualideation as a starting point to be

improved by semiautomation, we constrain the method todhses 2-dimensional domain.

e During a segmentation procedure, it is only practical ta@ise a cross-section containing the
ROl at any one time. Although 3-dimensional surface remags possible in contemporary image

analysis software, this is used to display tesultsof segmentation.

e Common medical imaging modalities such as MRl and CT prodlueges that are isotropic in 2-
dimensions, having different (lower) resolution in thedhdimension. Itis therefore often sensible
to segment the whole of a 3-dimensional region by the sui@essgmentation of cross-sections

in the 2-dimensional plane of higher resolution.

e A 2-dimensional framework allows more natural interatgivas a user is most likely accustomed

to drawing 2-dimensional objects, either on computer digpbr with pen and paper.

e For some applications such as MS lesion contouring, theigdif)sthin ROIs might only appear

in one image plane or otherwise show little corresponderteden slices.

The second constraint concerns multiple regions. Where tthen one ROI exists in a given image,
a user only pays attention to one at a time. This excludes aay for simultaneous segmentation of
multiple regions. The third constraint concerns regitatection We assume that user-initialisation

removes the need for automatic detection of a region ofester
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1.5 Contributions

This project advances the field of supervised segmentayionaking the following key contributions.
SVM texture classification
We develop binary SVMs for generalised texture classificain applications suffering boundary

ambiguity. Experiments motivate the use of SVMs to providsasvation model<’).

Tracking ambiguous boundaries
We develop and test interactive boundary tracking methadsdgmentation by boundary tracking.
The contributions are extensions to the ’jetstream’ athariin [43], to use texture classification in the

observation model%,), adapted deformation mechanisr@s)(and novel modes of interactio@).

Time series shape models

We introduce nonlinear time series methods to the field digjlshape modelling’g). We demon-
strate using Langevin and Gaussian Process methods follingdedimensional regions. Experiments
motivate the use of nonlinear time series analysis for smapéelling and their extension for use in

semiautomatic segmentation.

Time series segmentation frameworks

We introduce the use of novel time series models as shape pmimteractive segmentation by de-
formable contour models. We use radial time series contpresentationg() and design frameworks
that exploit various techniques of Langevin and Gaussi@edds models. Discriminative use of time
series models leads to shape regularisation by incorpgrgtobal shape information into probabilistic
objective functions. Generative use of time series moeeldd to new DCM frameworks that build the
shape information into the deformation mechanighy) @nd optimisation schemé&{). We show how
to exploit user interactions in setting key model paransetgon initialisation as well as, in the case of
Gaussian Process models, conditioning the model durirtgmanExperiments demonstrate the success

of the models in these various roles.

1.6 Overview

The remainder of this thesis is organised as follows. Chigj@téo 5 form a review of relevant literature,
divided into methods with the general goals of segmentatimhshape modelling (chapters 2 to 3) and
other background material used in the project (chapter$.to

The review of segmentation and shape modelling methodsdeslboth 'state-of-the-art’ and other
approaches that bare relevance to this work. Chapter 2dsarsinteractive boundary-based segmenta-
tion methods and highlights their application to tasks mviy boundary ambiguity and variable shape.
Chapter 3 focuses on global shape models with a machinadgeelement, highlighting when these are
used in segmentation frameworks and their applicability&alical tasks or ROIs with variable shape.

The review of background material covers ideas that thikvdoaws from in its methodological
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approaches, including ideas that are not directly relateidnige segmentation. Chapter 4 describes
supervised classification with emphasis on kernel methatigch are treated as a machine learning
approach to the image modé&k{ for use in segmentation. This topic is relevant to our meshaf dis-
criminating regions and their boundaries in texture ima@d¥sapter 5 reviews chosen topics in the field
of nonlinear time-series analysis, which are treated aschime learning approach to shape modelling
(C3) for use in segmentation.

Chapters 6 to 8 report on the research undertaken. We usénaaeharning techniques to increase
prior knowledge from both image and shape to reduce the atebon-line supervision necessaiyg-
quirement 2. We build these into segmentation frameworks along withehanodes of interaction that
work with the underlying segmentation algorithm or shape&lei¢o increase user contrdéquirement
1). Chapter 6 investigates a machine learning classifierantity boundaries for use as an image model
(C2) and incorporates modes of interactidiy added to the jetstream algorithm in [43]. Chapter 7
introduces nonlinear time series methods for statistibape modelling. Chapter 8 introduces novel
segmentation frameworks based on the shape models, udimdiboriminative and generative methods.

All demonstrations and experiments use both synthetic agdical data. For texture classification
we use synthetic textures derived from images in the 'Vidiexture’ database [44] along with textures
presentin MR images. For ROl segmentation we use both mediages and synthetic images, where
synthetic images allow more robust performance evaluatiomto the availability of 'ground truth’.
Synthetic texture images in chapter 6 recreate the bouratabjguity problem by using textures that
share first- and second-order histogram statistics withicab&OIls and surrounding tissue. Synthetic
contrastimages in chapter 8 recreate shape variabilitgimgueal tumour and lesion contours as region

boundaries. .



Chapter 2

Deformable Contours for Interactive

Segmentation

This chapter reviews current segmentation methods, pganticular attention to methods that are ap-
plicable to the problem stated in section 1.2. Accordingiegeama 2a user must be able to influence
segmentation, so this review emphasises interactive igebs. The need to balance requiremdrasd

2, of maximal user control with minimal user demand, leadsri@mphasis on where methods make
efficient use of interactions and incorporate machine iegrrin addition, the review is weighted toward
methods belonging to the family afeformable contour mode(®CMs), as outlined in section 1.1.2,
which are suited to the project for two main reasons. Fingsé¢ models readily allow the user to visu-
alise and interact with the various contour representatibrectly. Second, the contour representations
facilitate internal and global shape constraints, helpingvercome challenges of boundary ambiguity
and variable shape. We further weight the review towardr2edlisional practices as justified in sec-
tion 1.4. However, we naturally consider a method’s extam$d 3 dimensions as an asset, and discuss
these extensions in section 2.5. Where a method uses a glodyaé modelds), this is mentioned in

passing and revisited in a more detailed review of shape leadehapter 3.

The contour representatiofi;() of boundary-based methods can be geometric or paraméieic-
metric contours are smooth and implicit, while parametantours comprise explicit points, which are
joined either in a spline representation, giving smoottvesi(eg. [45, 46]), or by linear interpolation.
The project emphasises parametric contours as they adudnegsals in two ways. First, making discrete
boundary elements visible to a user facilitates efficientlesoof user interaction. Second, parametric
contours allow certain boundary tracking and shape maodgitiethods, which we extend in chapters 6

to 8.

This project does not use region-based methods for the meagwen above, in particular it is
harder to incorporate global shape models into these msthtmivever, the state of the art of interactive
segmentation includes region-based methods such as thssd bn graph-cuts, Markov random fields
and region growing algorithms, and a review of interactisgrsentation should not overlook these. We
review these methods in terms of their modes of interactidrere this gives insight into more general

issues of supervised segmentation.
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The remainder of this chapter is organised as follows. 8e@il looks at closed contour models,
divided into geometric contours 2.1.1 and parametric ao$t@.1.2. Section 2.2 reviews a certain type
of parametric contour, which start as an open contour aml ieclosed region boundary. Section 2.3
goes into more detail on where these and other segmentaéithods make use of run-time interactions.
Section 2.4 elaborates on how deformable contour framewbake been evaluated and section 2.5

discusses the main findings in the review, summarising tipdigations for the present research goals.

2.1 Closed Contour Models

This section reviews segmentation frameworks that usedlosntour models. We first discuss a ge-
ometric contour approach in section 2.1.1, which introdus@me common aspects and challenges of

deformable contours, while the rest of the review is weidhsvard parametric contours.

2.1.1 Level sets

Geometric Active Contours or ’level sets’, were introdudgd Malladi et al [6] and developed by
Caselleset al [47]. Level set methods define a contour as a continuous ibmoif the image field,
discretised at pixel level. The task is to find the continufwrsction for which a constant value (the
zero level set) coincides with a region boundary. Class@ad| sets evolve under the influence of edge
information and internal energy minimisation. For an eimiMunction¢(x, t) of the fieldx = (z,y),

the fundamental equation of level sets is [48]

% =V(x) x (x — ¢V9), (2.2)
whereV (x) is the velocity of the points on the zero-level curve, aciimghe direction normal to the
curve at(z, y) with magnitude governed by local curvature. At any titrteere is a set of solutions
(0,21, --Tn—-1), (Y0,y1, ---yn—1) for which¢(x) = 0. These are the coordinates of a discrete contour
in the image frame, at the interface of a propagating surdackthe image. Equation 2.1 is iteratively
solved forg, until the propagating 'front’ finds the region boundary.

As with many deformable contours, the classical framewargelol the image observation model
(C2) on intensity gradient. This causes problems in low cohasoisy images wherein boundaries
defined by gradient are ambiguous. For example, a contoufaridy recognise weak edges and extend
into areas outside the ROI - an artefact known as 'leakirgg @g. [49]). Conversely, stronger gradients
at nearby disconnected features or 'clutter’ may erronlg@isgact the contour.

Leaking is avoided by the use of regularisers’ in the vellptérm, such as region information or a
global shape model. There have been numerous studies atodlusion of shape priors in a level set
framework [50, 51, 52, 53]. In a different approach to spaggularisation, Sheet al [54] present a
method specific to segmenting individual vertebrae in insagfehe spine. The authors identify a centre-
line along the spinal canal and define planes that interbecténtre-line and lie between vertebrae.
These planes constrain the level sets so that individuaédaontours do not merge or overlap.

More recent improvements to level sets involve developieg,rstochastic optimisation schemes

(Cs). Two examples use stochastic calculus [55] and Bayesialbaility [56]. The 'stochastic active
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contours’in [55] minimise an objective function by solviagtochastic partial differential equation. The
results demonstrate, without proof, that this method da¢sonverge to local minima. However, the
contour model fails to delineate concave boundary sectioseme of the results shown. The contour
also appears jagged over long, straight sections wherei@nrégundary itself is smooth. This latter
artefact may affect medical applications if segmentingylahin anatomical structures such as vessels
or aorta.

The probabilistic level sets in [56] use Markov Chain Mont&16 (MCMC) optimisation. The
MCMC algorithm is a general optimisation method, and as sutthbe seen in other parts of this thesis.
In [56] the algorithm seeks to draw sample cur¢egrom a distributionp(C'|I), given the image data
I, where this distribution is intractable. Consider the zieseel setsC' andI" as continuous curves
parametrised by arc lengthe [0, 1]. Proposal curves are generated for the next time(¢tepl ) by the
prediction

T (5) = 0B (s) + rHD ()N () (2.2)

wherer(*1) is a random perturbation field at time- 1 and N (s) is the normal to the curvé’ at
timet. The perturbation is constructed from Gaussian noise deagavith a smoothing kernel, and also
incorporates a curve length penalty to ensure that a cuitialised at the image boundary will shrink
in the absence of external forces. Each proposal has ania@gsbacceptance probabilifT 1 |C?)
that uses probabilities conditional on the previous stdf¢C') and the image priorg(T'|1). The authors
calculate the acceptance probability by the Hastings ratio

p(LUHD[1)g(CHrtHY)

Ft+1 t —
(1) = e e e

(2.3)

whereq(C*|T(*+1) is thereverseproposal distribution that must be approximated. Afterasomable
number of iterations referred to as 'burn-in’, the sampleseguivalent to a set drawn from the unknown
distributionp(C|I).

The data driven probabilitieg C, I'|I) must incorporate an image model to favour level sets lying
on edges or separating distinct segments. In a demonstigtiglied to medical ROl segmentation, the
authors use supervised classification to segment prostgi@ns in MR images. These results demon-
strate qualitatively the success of the method.

A major benefit of this kind of probabilistic framework, isaththey give a distribution over likely
results, in line withLemma 1 Probabilistic observation models can tighten this distibn using ex-
ternal information provided interactively. In an elegaxample of this, the tool in [56] allows the user
to mark accepted sections of a contour model at intermesdiates. Evolution then continues with a

conditional probability distribution, having zero var@non accepted sections of the curve.

2.1.2 Active contour models

Active contour models (ACMs) or 'snakes’ introduced by Ka&ssal [5] are a family of parametric
contour models. The contour representation is a set of sint {sog,...,s;,...,s,—1} along the
arc-lengths. The evolving model, at time, is defined byu(s,t) = {x(s,t),y(s,t)}. ACMs are

characterised by an energy functional of the conf@(u), which changes with the shape of the contour
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and its position in the image. The energy is the objectivetion (C,), designed to be minimum when

the contour outlines the ROI, and generally involves twanter
E = Ejpt(u) + Ee(u), (2.4)

where the 'internal’ energ¥,+ constrains the shape of the contour and the 'external’ ggniéy, drives
the contour to align with region boundaries. Internal egésdraditionally calculated by two terms that
measure local 'tension’ and 'stiffness’ of a contour respety, given by
2
Eint(u,t) = /a|g—§(s,t)|2 + ﬁ|%(s, t)? ds, (2.5)

where the first increases with distance between successitewr points and the second penalises high
curvature. Constanis and/ allow relative weighting of tension and stiffness constrsi As ACMs
use a discretised contour, the continuous integrals intequa.5 are approximated by finite element
equations, summed overboundary points.

External energyFext is the image observation modely) and, as with level sets, the classical
framework uses the magnitude of the image gradient. Thédoé&ke energy becomes a weighted sum

of three terms

n—1

0 0?
E(u,t) ~ Z (Oé|8—;1(8i,t)|2 + 5|a—2151(517t)|2 - VEGXt(Siat)) ) (2.6)

=0
where constants,  and~ weight the relative influence of each term. In a snake frankwte opti-
misation scheme&’(;) must minimise the functional in equation 2.6. Kassl. use variational calculus,
which has several drawbacks summarised in [57]. Dynamigiaroming [57] and the greedy algorithm
presented in [12] offer common alternatives. The greedgrétym involves iteratively searching local
to each boundary point in turn, for a new position that redube total energy. An ACM evolving with
the greedy algorithm can become stuck in an oscillatorg statl never converge. This happens when
information regarding the image and local shape propeatiesonflicting.

Snakes are sensitive to the weightss and~ in equation 2.6. Optimal paits and3 depend on
the shape and smoothness of the true boundary while theechbicdepends on the reliability of the
image observation model. These factors vary between imagescing the generality of the method.
The parameters can be tuned to the application at hand bynieeaction as in the implementation of
Jacobet al. [45]. However, fixed values might not be suitable for some iceddapplications where a
ROI boundary has spatially varying smoothness or corn@js ffome improvements to classical snakes
allow adaptive energy weights [12] and [59].

The authors in [12] and [59] modify different componentsha ACM framework. The method in
[12] changes the objective functio@,) enabling the stiffness to vary around the contour. Theasth
set3 = 0 at 'corners’ identified by limits of local curvature and edgieength. The method in [59]
modifies the framework by changing the optimisation schef@® (The authors use a localinmax
search that simultaneously solves the minimisation of thretaur energy with an optimisation of the
energy term weights. The weights are first combined in a sipgtametei, which is allowed to vary

with position along the contour as= Ao, A1..A\,—1. All \; are then varied independently, along with
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the neighbourhood search of eaghand the method finds the unigoenimumwith respect taa, of the
maximumenergy over all\.

The tension and stiffness definitions above are not nedlssatimal for a given application. Perrin
and Smith redefine tension based on the mid-point betweghlpeiring boundary points and curvature
based on third derivativgjT in the 5-point neighbourhood centred n60]. This curvature definition
successfully segments ventricles in MR brain images in.[61]

As in the case of level sets, the classical snake framewoskdsigen by gradient magnitude and
subsequent improvements replaced this component of tiheefvark C;). A popular alternative to
gradient magnitude is the 'Gradient Vector Flow’ (GVF) oduced by Xu and Prince [7]. Computed by
minimising a functional of the intensity field, the GVF givesnap of gradient vectors that can attract a
contour over larger distances. The main benefit of this gnisrthat contours are less likely to traverse
concave boundary sections. Another benefit is that the Gilroes the need to initialise a contour close
to the true ROI, hence demand on the user. The occurrencenoéee boundary sections makes GVF
a popular choice of observation model in medical image seggtien (eg. [62]). However, problems
associated with false edges or clutter common in medicaj@sare not addressed by the GVF.

Again, in common with level set frameworks, another famifyobservation models overcome
leaking artefacts by incorporating region information. ge@ models were first introduced to ACM
frameworks by Ivins and Porrill [63] and independently bynRrd [64]. The 'Active Region Model’
(ARM) of Ivins and Porrill is equivalent to an ACM in all butéhimage energy term in equation 2.6,
which is replaced by a region model. Some authors use regaatels based on histograms of region
and background intensity [8, 65, 66]. For multidimensiodaia the distributions can be used to de-
rive the Mahalanobis distance from Gaussian joint prolitedsii The Mahalanobis distance serves as a
'goodness’ measure, of the agreement with training datdeawnstrated in [65] and more recently in
[66], and assessed in detail in [67]. Ivies al[8] use the ARM to segment medical images, where
the multidimensional data are made up of co-registered NM&RGT images. However, with the ex-
ception of hybrid imaging modalities such as PET/CT or muwkighted MRI, this approach relies on
numerical registration methods, which reduce the accuaadyresolution of boundary definition. When
only monospectral data is available, some authors impmyien models by calculating texture features
derived, for example, from Laws masks [68] or grey-leveboourrence matrices [69, 70]. In addition to
an image modeld,), external energy can incorporate information providedibgr interaction;). In
their seminal work, Kasset al [5] suggest an extra term in equation 2.6, being a functichefistance
to points located by the mouse cursor. This so called 'valtaoncept allows the user to guide the

contour toward the target region by specifying points ofitsjon.

2.1.3 Brownian strings

In 1997 Grzeszczuk and Levin introduced 'Brownian Strinfigs’interactive boundary extraction [11].
We discuss Brownian Strings as they use novel or uncommanes of several component$ ( Ca,
Cs, C¢ andCr). The work also highlights the way in which certain compdsenre inextricably linked,

and the difference between validation and performanceiatiah.
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As a contour representatiod;( the authors use connected 'cracks’ between pixels ingide a
outside the region. This representation removes the antpiguthe resulting segmentation, where
‘boundary pixels’ in the representations above may sjribdlong to either region or background. In
practice, contours are stored as a 2-dimensional arrayagksrcalled a 'crack diagram’, rather than a
1-dimensional list. This data structure retains the nedgpiositions of each crack and allows constraints
to avoid self-intersection of the contour.

The observation model§) exploits the contour representation. The authors derjw@bhabilistic
boundary measure from training examples of crack diagrdigseal with true ROI boundaries. This
boundary measure is based on the 2-dimensional histogramedfintensities on either side of a single
crack. In the medical example of whole-brain extraction iRIMolumes, this supervised approachto an
observation model makes use of interactive initialisgtemthe histogram is built up from a boundary
defined manually in a single slice and used to segment the toraieighbouring slices.

The deformation mechanisr@y is also specific to the contour representation. The auhesent
two stochastic methods to generate proposal boundarysedti the form of small crack diagrams.
In one case, crack diagrams are simulated by novel geonpeticesses that ensure non-intersecting
boundary sections. In the second case, valid crack diagaegrdrawn at random from a library.

The contour evolves under a stochastic method of energymmisation (), namely simulated
annealing [71]. The authors state that this method is gteedno find the global energy minimum,
although strictly speaking this is only true if the algonitiuns for infinite time.

As mentioned above, the algorithm is initialised by the {€e) in one image slice for subsequent
segmentation of another. Rather than manual drawing, #renugst perform interactive, iterative thresh-
olding. It is not clear whether this method is faster or mareusate than manual drawing. The initial
contour has two roles. First, the user defined contour pesvichining data for the image model. Second,
the authors use morphological operations of dilation andien to define an annular region, for use as a
binary mask in neighbouring slices. The mask speeds upringaied annealing by reducing the search
space.

The results in [11] do not evaluate the performance of Brawrtrings. The authors merely
demonstrate the method by segmenting synthetic and MR isn&géhe latter case the contour variously
delineates the intended brain boundary and the boundamekatgrey and white matter in the cortex.
The synthetic images also provide only qualitative reduitsare powerful validation tools. The authors
create images designed specifically to pose the challerfgesal minima, broken edges and clutter.

Results clearly show the ability of the algorithm to overentinese challenges.

2.1.4 1D Cyclic Markov Random Fields

The 1D Cyclic Markov Random Field (1D-CMRF), first seen in J;7 one of a family of con-
tour models that represent a contour in polar coordingte®}. The representatiorC() is a list
r = {ro,...7+...ry_1}, Of N radial distances from a fixed point inside the ROI to its bamd
separated by angular incremefts- {6, ...6;...0x_1}. This representation will be referred to here-

after as aadial time series The 1D-CMRF model treats the radial time series as a veétdr discrete
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random variables;, and each radiug; as a site in a Markov Random Field (MRF). After choosing a

point inside the region, the 1D-CMRF is defined by

Pr(r=p)>0 2.7)
and
Pr(r; = pilrj = pj,j # i) = Pr(ri = pi|r; = p;, j € W), (2.8)
wherep = {po,...,pi,...,pn} iS a possible configuration far, p; is a 'hidden variable’ or sample

point forr; andW; is a 'clique’ or neighbourhood af(W = {i — 1,4 4 1} for the example in [73]).

Equation 2.8 simply states the Markovian property that ttedability for a givenr; = p; is con-
ditional only on a (small) neighbourhood. MRF methods fallon from the Hammersley Clifford
theorem [74] which states that if equation 2.7 holds thenjolre probability Pr(r) is uniquely de-
termined by conditional probabilities in equation 2.8 ahdttthese follow a Gibbs distribution, i.e.
Pr(r) oc exp[— >y, U;] whereU; is an energy function or ‘clique potential’ that embodies ¢h
priori information, combining image and shape priors. In [73] thgue potential is a weighted sum
of both 'low-level’ and 'high-level’ information. The highevel information is a crude statistical shape
model, revisited in the next chapter. The low-level infotimais a weighted sum of a smoothness term
and a 'step’ term designed to align the radial time seriel patints of high image gradient. The smooth-
ness term penalises local variation of radial distancadéressmall angular window (the clique) and can
be considered a re-formulation of the stiffness term of agital ACM.

Subsequent work by [75] and [76] present 1D-CMRF models toaek contours of the left ven-
tricle in X-ray angiography and ECG cardiology respectiverhe different applications call for dif-
ferent clique potentials and likelihood function%), and the authors also choose different optimisa-
tion schemes(). The clique potentials are all low-level according to th&tidction above, imposing
smoothness of different derivative-order by using neighthoods\V; of different sizes. The image ob-
servation models reflect the characteristics of the diffem@age modalities but all assume an intensity
difference between the region and background. Experiniar{6] use the segmentation method to
derive the secondary results of ventricular volume and thadkness and show that results agree with
the same measures derived from manual segmentation. Qivalitesults of ventricle segmentation in
[75] further support the use of 1D-CMRF in medical imagesdmhot allow for comparison.

In a novel adaptation of the 1D-CMRF, Martin-Fernanded Aibertola-Lopez define the radial
time series as a list of radipkrturbationsabout a ‘'mean contour’ [77, 78]. Theirs is a supervised frame
work, wherein the mean contour is defined manually by the d$es is an example of making efficient
use of interactivity, as the initial contour only approxiesthe ROI and is therefore fast to produce,
but provides high-level information that is integral to tbentour model. The authors demonstrated
acceptable results for whole-organ segmentation of kidegipns in ultrasound images.

The polar representation leads to certain advantages sadwiintages of the 1D-CMRF. As pointed
outin [72], the representation requires a 1-dimensiorralasf sizeN, saving considerable computation

compared to region-based MRFs (see eg. [79, 80, 81]). Therrdmased counterpart operates on a
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random field of sizéV x H whereW andH are the width and height of the image. A minor drawback
of the 1D-CMREF is that a point near the centre of the ROI mustlegtified to fix the polar coordinates
in the image frame. In [72] the authors use an automatic tleteprocedure, which introduces extra
computation time possible of errors, especially for lowtcast or otherwise badly defined regions in
medical images. However, as we will see in chapter 8, sufficistimates of a region centre can be
provided with little effort by user interaction.

The main drawback of the polar representation is the assomibiat each radius intersects with the
boundary only once. By definition, this limits the approagimodel regions that are 'star-shaped’ [82].
However, some applications naturally involve ROIs thatiaherently star-shaped. In these cases other
authors have chosen star-shaped representations of tegioalaries. Examples in the biomedical field
are tumours in PET images [83], kidney and pelvis regionshrography [77] and the left ventricle in

cardiac images [75, 76].

2.2 Boundary Tracking Methods

This section describes deformable contour modelsttiagk a region boundary using open contours.
Starting from a point on the boundary, an open contour pssg®earound the ROl and forms a closed

contour if the whole boundary is tracked, as illustratedguife 2.1.

@) (b) (© (d)

Figure 2.1: Schematic diagram of boundary tracking methildstrated on a region (MS lesion) in

an axial MR image of the brain. (a) A single boundary pointjris located. (b) Starting from the
boundary point, a contour model progresses around therrdgéoe in an anticlockwise direction. (c) As
the algorithm continues the contour approaches the sggetimt. (d) In this case, the algorithm achieves

a closed contour.

An appropriate starting point could be detected automitioadefined interactively by a point or
anchorlocated by the the user. Boundary tracking methods arendtdtiom other open contour models
by their deformation mechanisr@s). Boundary trackers deform at one end as the open sectiovsgro

in arc-length.

2.2.1 Active testing and particle filtering

The contour representatiod;() in a boundary tracking framework is a chain of successieenehts
{x0,...,Xi,...,Xn}, Wherex is the position vectox = {z,y}. One family of boundary tracking

algorithms treats the contour as the resulboélecisions, made to follow the boundary at eatdp The
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earliest example of this is the 'Active Testing’ algorithemgloped by Geman and Jedynak [84, 85]. The
algorithm iteratively appends the contour with straighelsections of equal length. Each iteration must
choose the angle, from a discrete set, between the curididrsand the next.

If the contour model is made up @¥ sections, and each decision chooses from three directions
{—¢,0,+p}, the resulting 'decision-tree’ involves" potential outcomes. Ultimately, the segmenta-
tion task is to choose the outcome that is most likely to tthekboundary. Active testing is a general
technique for estimating the true 'hypothestsivhilst only considering a fraction of the possible out-
comes. This involves discarding sections of the tree at amnglecision, thus reducing computational
complexity. The ternary decision that selects frémyp, 0, +¢} involves testing candidate directions
(or pixels in those directions) against a prior observatmmudel C2). The example in [85] uses a filter
based on a statistical model of the relative intensity betwgxels on and off the desired boundary. The
outcome of a test is to accept one direction while the otherawe rejected, which discards subsequent
branches in the decision tree. Acceptance is based on stistdttest derived from information theory.
The authors demonstrate using both 'entropy testing’ ral @ maximum likelihood estimator. The
authors demonstrated active testing for the applicatidnagking roads in satellite imagery. However,
as noted in [85], the filters designed to distinguish roadsifbackground can be replaced to generalise
the algorithm for other applications.

Active testing can alternatively be performed using Mongéel€rejection sampling in place of the
statistical tests above. The resulting 'particle filteg@iithm was first used for multi-dimensional object
tracking in Isard and Blake’s 'CONDENSATION'’ algorithm [B8n one dimension, the same algorithm
extends to the task of tracking boundaries in images. Thétiag algorithm, introduced as ’jetstreams’
__________ Mm—1- Tracking is based on
the iterative computation of posterior densities over thet step ak; ;. Given image dat®(z, y) the

posterior probability for the next step is given by

Dit1(Xo,....i+1|D) o pi(Xo,....i| P) X ¢(Xit1|Xi-1,....i) X L (D(Xi+1)), (2.9)

whereg(X;+1|Xi—1,....;) is the prior distribution over steps ah(x;+1)) is the likelihood that a contour
section lies on the region boundary, given the data. Thisildligion is defined over the continuous angle

©, made betweer;_ ; a Markov chain.

.....

.....

The jetstream algorithm computps,; in three stages. Aredictionstage randomly selects/
locations for the next point; 11, from the normal prior angular distributionix;+1(X;—1,....;) = q(¢) =
N(0,0,). By choosing angles distributed about zero, the jetstreaintains a smoothness constraint
governed by the parametet,. Next, aweightingstage weights thes&/ proposals by the product
q(Xit1/Xi—1,....i) X I(D(X;+1)). The likelihood comprises the image observation mo@gl&nd is given
by the ratio of two probabilities, for point_; being on or off the boundary. The probability that a point

is on the boundary is given by

pon(D(Xi+1)) = pon(t) < N(0, %x (2.10)

where) is the angle between the proposed direction and the locatdayy direction estimated by
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the normal to the image gradient. Equation 2.10 constraiagetstream to follow the local boundary
direction. The spread agfon is modified by the magnitude of the intensity gradig#t| so that this
constraint is relaxed where the edge strength is weak. Tdtgapility that a point is off the boundary is
given by

—|G|

<G71>)2]’ (2.11)

pof‘f(D(Xi+1)) X exp[(
where< G > is the mean gradient magnitude, so that the jetstream greféie on strong edges. Note
that the weighting only depends on the proposed point locand the last completed particle section
Xi—1,....;» Making this a Markov process. The weights are used as a discrete approximation of the
posterior density orp. The third stage of the algorithimportance samplingdraws samples from this

posterior with replacement, to complete @tepof the boundary tracker.

Jetstreams terminate after a fixed number of steps, referteereafter as eun. The open contour
is then defined as the mean path over the particle set, obthingaking the mean andy coordinates

at each point.

The jetstream algorithm incorporates an extra procedureh&mdling sharp corners. A pre-
processing stage uses a standard corner detector to ydsh#fp corners. The algorithm then relaxes
the smoothness constraint by replacing the normal prioulanglistribution with a uniform distribution
at suspected corner pixels. Recently Faratal. [87] improved the corner handling by introducing a

variable step length (or 'speed’ in the motion tracking agg).

The fact that jetstream particles progress with Markoviamaginics means that local contour shape
is treated as being independent from the whole of a contonis d@pproach is suitable for ROIs of
interest to this project in the absence of a global shape.dderwythe Markov property means that any
jetstream diverging from the desired boundary will fail fabsequent iterations, having no 'memory’
of the boundary pixels in its history. Another limitation pérticle filter tracking is that the posterior
distribution at a given step can be multi-modal, caused lytmeclutter or dork in the tracked boundary.
Recently Allenet al. [88] presented a similar particle filter for tracking bloogbgels in medical images,
which handles bifurcations in the forked structures bemgked by a 'rejuvenation’ procedure in the

Markov Chain.

Another drawback of jetstreams is the lack of a pre-definediteation point for a single run. A
user selects the start of the boundary tracker without babig to assert where the tracked section
should terminate. Peret al. imply that the boundary tracker should be allowed to divérge the true
boundary, and the user identify the point of divergence.lAteel drawback is the lack of a global shape
model. The algorithm must draw from a static prior angulatribution which gives local smoothness,
but discounts any prior knowledge of global shape. In tujatsiream is very unlikely to track the whole
of a boundary in one run, and so a closed contour is built ugér-defined sections. It is not clear how
the final run is expected to reach, and terminate at, the @ftaéine contour. Indeed, examples given in

[43] are not closed contours but rather start and end atgoimthe image border.
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2.2.2 Dynamic programming methods

Mortenseret alintroduced the boundary tracking framework of 'live wir§89] or 'intelligent scissors’
[90], which use dynamic programming as the optimisatioresoh (). A live wire is initialised by
selecting an anchor on the region boundary. Dynamic progyiag computes the minimal cost path
between the anchor and the moving cursor, where the €gsis(designed to favour short paths that lie

along intensity gradients.

After initialisation, the fully interactive framework gitays the patlas the cursor movesllowing
the user to ’'steer’ the contour. When the cursor approxipédiows the ROl boundary, a section of
the live wire 'snaps’ to the boundary in minimising edge gyerAt any moment the user can accept a
contour section by locating an anchor point to lock the livievin place, and the process continues with
any minimum cost path being that from the cursor to the lashanpoint. Performance evaluations in
[42] suggest that a live wire leads to higher reproducipitian manual segmentatiod8¥ compared to

96%) although the time taken to segment a region is, on averages &s long.

Falcio et al [42] improve live wires with three key modes of interacti@ndreate the ’live lane’
algorithm. First, the user 'trains’ the live wire in an imilisation procedure. The operator uses brushes of
variable width to define example sections of the region bamdrhe program calculates the minimum,
maximum, mean and standard deviation of pixel values fraadlexamples. These features are used to
update the cost map and the contour subsequently avoids fie differ too much from values in the
training set. Second, during calculation of the optimahp#te live wire is constrained to exist within a
‘lane’ that contains the true boundary. This lane is centred rough estimate of the ROl boundary as
it is traced in real time by the user. Third, when the contswlose to completion, the user constrains
the contour to terminate at the starting point with a keytaateraction. The training step is shown to
improve the segmentation of knee bone regions in CT imagesrewariable edge strength confounds
other edge-based segmentation methods. Subsequentegptsin [41] show that an experienced user
of live lanes segments talus bones in MR images of the fodt thi¢ same accuracy and precision as

with original live wires but with up to 31 times the speed.

The main attraction of the live wire method is in its userridéness. However, live wires have no
internal constraints, which can lead to jagged sectionkénpresence of noise and artificially straight
sections between anchors at either side of a weak sectipnAd0Other limitation of dynamic program-
ming methods is that they give a unique (minimum cost) patlvéen a given pair of anchors, which
violatesLemma 2 This is in contrast with probabilistic algorithms such atsfreams, which can in
principle produce more than one solution as we will see irptéra6. If the minimum cost path is not
that desired by the user, the only method of control is tog@laeany, close anchors along the boundary,

which overrides the algorithm with manual drawing.

Because of these limitations, live wires are often used mjurtction with other interactive tools.
In one medical example, Past al. [91] present a protocol for segmenting various anatomiegilons
in MR images using the live wire, thresholding, region gnegveind other 2-dimensional, interactive

tools in Adobe’s 'Photoshop’ software. In another medicadraple, the 'United Snakes’ framework
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of Liang et al. [40] use live-wires to initialise an active contour algbrit. This both speeds up the

initialisation process and alleviates problems assodiafiéh the sensitivity of snakes to initialisation.

Although not necessarily smooth or accurate, the live vatesBes the requirement that a classical ACM
is initialised close to the ROI boundary. The contour theohes under internal and external energies
that introduce smoothness. In addition, a hard constrantet the final contour to include the initial

anchors. The authors segment heart and lungs in X-ray floopgamages, blood vessels, bladder and
corpus callosum in MR images, vertebra in X-ray CT images\wasdels in an angiogram. Results are
compared qualitatively with the use of live wire alone andvgh to be superior. The benefits over ACMs
alone are in the speed of accurate initialisation. The teablove required only around 5 — 10 initialising
anchors, and 3 anchors were sufficient to accurately segimebteast region occupying most of a large

mammogram3691 x 6466 pixels).

2.2.3 Greedy methods

Plummer [22] designed a contouring tool that combines bagnillowing with local automatic thresh-
olding. The algorithm has never been formally written up Hlummer, in correspondence), but is
summarised in [92], which compares the tool with threshr@dind freehand techniques for MS lesion
segmentation. The boundary follower is initialised by a&&eixel located close to, but inside, a lesion
boundary. The algorithm initially defines a local point dfé&gest edge’ as the largest difference of in-
tensity between any two connected pixels in a square seantlow centred on the seed. Starting from
this point, the algorithm searches four directions:(and +y) for that with the strongest gradiefit.
The next boundary pixel is chosen from the four-connectetiased upoi®* and an extra requirement
that the corresponding pixel value is above a threshold/éérirom the seed neighbourhood (it is not
clear how the threshold is obtained). The algorithm prosdsdmaking single-pixel steps around the
boundary until the final step reaches the initial boundamtdd is not clear how the steps are guaranteed
to terminate at the intended point to close the loop).

Plummer’s algorithm frequently fails to extract part of site’s boundary and, as a result, freehand
delineation is necessary to edit or replace around half efrésults [23, 24, 25, 26]. This, and the
method’s sensitivity to initialisation, could be due to tige of a single seed to initialise both the local
search for boundary pixels and the region model.

In a similar boundary tracking framework, Luabal. [93] introduced the 'Filter Function Algo-
rithm’. The filter function is a symmetrical function overglasf made with the horizontal, in polar
coordinates centred on the current boundary pixel. Givemiséial anchor on the boundary, the algo-
rithm uses the filter function to track the boundary in thecklmise direction. The algorithm convolves
the filter function with 'candidate’ pixels that lie on theockwise side of a radial line passing through
the current pixel. By rotating the filter function througlsdliete orientations, the method seeks both the
pixel and the direction that give the maximum response.

As with Plummer’s algorithm, it is not clear how the stepsg@uaranteed to terminate at the starting
pointto close the loop, the authors merely state that tharidihgm 'repeats until the starting pixel becomes

a candidate pixel'.
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The authors demonstrate the algorithm by tracking the barynaff cranial cross sections in foetal
ultrasound images. The results are a visual improvemennt tireeresults of gradient filters and an

implementation of classical snakes driven by gradient ritade.

2.3 Modes of Interaction

Recent literature has aimed to improve the efficiency of irderaction rather than removing it. In this
section we review the modes of interaction in more detadyder to highlight their strengths/weaknesses
and how they relate to the underlying segmentation algoritthile we are primarily concerned with
boundary-based segmentation, some interactive procedtegenore common in region-based methods.
We include these interactions for their general applidighid supervised segmentation. In particular,
interactions that train a region-based observation moxkelnel naturally to any deformable contour
framework driven by a similar models).

We stated in chapter 1, that balancing requirements of mabdontrol Requirement land min-
imal demand Requirement Rcalls for efficient interactions. An efficient interactiomaximises the
information provided to the algorithm. This means not omgvyiding moreinformation, but providing
types of information readily used by the underlying alduris. The remainder of this section discusses
interactive procedures in the literature, in terms of edficly and other merits. We divide the procedures

into the categories adhitialisation, run-time interactionandpost editing

2.3.1 Initialisation

Initialisation can be region-based or boundary based andrain an observation model or locate the
approximate centre or boundary of the ROI. Initialisatian provide both spatial information and image
data to train an observation model, which we refer to agltred role of initialisation.

Some initialisation procedures are common to both boundarg region-based segmentation. A
simple example is seeding, where the user locates a pixételsfpelonging to the ROI, and sometimes
the background. Seeding is the only interaction used irsidakseeded region growing (SRG), where a
single mouse-click provides the location and image intgrisiinitialise the model [94]. The growing
region is an evolving list of connected pixels and the diatisof the corresponding pixel intensities
provides the observation model. Instead of a single pixagdsg can identify a small collection of
seeds from a region or background, outlined by the user okedawith a 'brush’ stroke. Adams and
Bischof [94] suggested that this would provide a more statbelel for region growing segmentation,
and the approach is commonplace in graph-cut methods [99,7968, 33, 81].

Graph-cut methods are interactively trained upon ingation by user-defined foreground and
background pixels. Following seminal works by Boykewal. [99, 100], interactive graph-cut algo-
rithms have become popular for segmentation in digital ptaotd video editing [95, 96, 97, 98] and
have recently received interest in the biomedical imagialyl fifor example to segment liver tumours
in CT images [13] and neuronal axon regions in electron nsmopy images [33]. The method in [13]
combines the graph-cut method with watershed and Markowd®&arield (MRF) algorithms, but re-

sults still rely on interactive post editing by a user-cotitd morphological opening operation. The
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method in [33] complements the graph-cut algorithm withdggat filtering, but satisfactory results also
demand extra interactions in the form of iterative re-tiragrand manual post editing to remove erroneous
sub-regions.

Seeding can be region- or boundary-based, reflecting thresmonding segmentation framework
and image observation models. Examples of boundary-ba&sesling are the anchors used in the Live
Wire [90] and jetstream [43] algorithms. Classically, these single pixel locations to initialise the con-
tour model. However, there are examples of boundary-basgalisation with the dual role of training
a boundary-based observation model and providing spaiiataint [22, 42]. First hand accounts of
using Plummer’s algorithm [22] suggest that the dual role cause adverse sensitivity to initialisation.
One regular user of the tool reported great sensitivityeeisly for seeds close to the true boundary
[19]. This highlights that, while we desire to maximise théormation gained from a single interaction,
there is a balance between the value of an interaction andibourate the user input must be. However,
despite the need to edit or manually replace around half@fttntours, this tool has survived years
of routine use at UCL's Institute of Neurology, due in parttie ability for a user to correct erroneous
results.

Other than seeding, the literature includes frameworksalised by placing bounding boxes or
initial closed contours. The bounding box initialisation[B3] has the dual role of building a model
of the background, and defining a sub-image to be segmenteel.sfatial constraint of a sub-image
greatly reduces the computation time of the associatechgeapalgorithm. Placing an initial closed
contour initialises the contour model without training d@servation model [5, 9, 77, 78]. The closed
contour could be a manual approximation of the ROI boundartaken from a prior shape model.
When no shape model is available, approximate manualligétéon can constrain as well as speed up
the evolution [77, 78]. This introduces more demand on thex,ushich can be reduced by using a
second semiautomatic tool to provide the initial contouckly, as in the use of live wire initialisation
in [91, 40].

2.3.2 Run-time interactions

Closed contour models and boundary-tracking methods altimvolve different modes of interaction
during run-time. In the case of closed contour models, agrimédiate contour can be displayed dur-
ing evolution, prompting user guidance. Here, 'intermegliaould mean before the termination of an
iterative optimisation scheméy) or when the algorithnhasterminated but the results not yet accepted
by the user. Interactions constrain subsequent evoluéitiner for the remainder of the optimisation
scheme, or in a repeated run of the optimisation. An earlyngta is provided by the 'volcanoes’ of
classical ACMs [5]. Where a deformable contour frameworsues probabilistic objective function, this
can incorporateonditionalprobabilities, where the condition is derived from the uségractions. In
[56] the authors condition the location of boundary sedimrresponse to interactions.

Boundary tracking methods of live-wires [90] and jetstredd8] rely on run-time interactions to
progress open contour sections around a region boundarh rBethods use anchoring to mark the

last accepted poinafter a tracked section veers from the true boundary. In #se of live-wires the



2.3. Modes of Interaction 39

termination of the optimal path at the mouse cursor leadsdaeal-timesteeringprocess. Steering has
two distinct advantages. First, displaying the optimahgatreal-time influences the user's movement
of the cursor, and the resultifgedbackmaximises the length of an accepted section. Second, as the
path terminates at the cursor, the user can easily creatsadctontour from the open-ended live wire.
In the case of jetstreams, the particle filtering is not stéen a similar way, but the authors devise
run-time interactions that take advantage of the prolsulnature of the algorithm. Whilst tracking a
boundary the user notices or anticipates where image fEsatause the tracker to take a false path (due
to a multimodal posterior as mentioned above). By markimgfitlse paths with a thick line or 'dam’,
the user assigns zero-probability to any proposal stepsahd there.

Another type of user interaction allows the adjustment oapeeters between executions of an algo-
rithm. Parameters controlling properties such as contm@oshness can be reset between segmentation
attempts (as in [45]) or for different parts of an image. Tigsoves the need for the optimisation of

hard-coded parameters and can allow a tool to generalisssantultiple applications.

2.3.3 Post editing

Freehand post editing can be used to replace part of a clasedw. However, in this case, contour
sections must be both created and removed. This could beljothe successive use of an 'erase’ and
a drawing tool, but other mechanisms exist. The image aisghgckage 'MIDAS’ (see [36]) realises
freehand post editing in the following three steps. Fitst, wser draws manually, along a section of the
true boundary missed by the displayed contour (in this dasedsult of intensity thresholding). This
leaves an ambiguous contour comprising two segments tlaa¢ gine boundary section. Second, the
user places a marker in any new segment to be included ingimregemoving the ambiguity regarding
which side of a shared boundary is desired. Finally, the ins®kes a 'clean up’ procedure to remove
the unwanted section and leave a simple closed contour. asimechanism is used in the ROl analysis
module of the popular 'Analyze’ software [101] and in thegjrecut tool recently proposed to segment
axonal cross sections in electron microscopy images [33].

Some post editing procedures better exploit charactesisti the underlying contour model. One
example is to display the contour as a polygon and allow sestio bedraggedto new positions. The
authors of [95] report that, overall, users were more satisfiith this interactive tool than with live wires
that use run-time steering. The dragging mechanism can &gted so that boundary points adjacent
to that being dragged will also move, maintaining any indé¢energy constraints. The 'SplineSnake’
software in [45] is one example.

In a second example, the authors in [102] provide a novel noddeost editing specific to the
underlying segmentation algorithm. Their framework imead a weighted combination of an observation
model (image), global shape model and internal constraint®undary smoothness. Where a section
of the contour has missed the true boundary, the user identifis erroneous region approximately by
dragging lines that are displayed perpendicular to theazontesembling 'error bars’. The observation
model is re-weighted according to a Gaussian distributietwvben these error bars and the boundary

section is re-computed. This software is designed for thgensatation of atria in cardiac imaging, but



2.4. Notes on Performance Evaluation 40

the general idea of updating a global model in response tbiptesaction extends to other applications
and models as we will see in chapter 8.

Post editing can also incorporate prior knowledge of theifipeapplication and the type of seg-
mentation error. For example, Heimaghal. [103] design efficient post editing for the case where
leaking causes a segmented liver region to include the heiging kidney in an abdominal CT scan. In
this context the authors can be confident that that the Igaliginates from the narrowest point between
the two regions. The method identifies this point automHgiesing morphological skeletonisation of
the combined regions, and estimates the boundary betweetwthanatomical regions. Subsequent

interaction need only tell the algorithm which of the twoimts is the desired (liver) region.

2.4 Notes on Performance Evaluation

Throughout the literature there are varying approachesetéopmance evaluation of a segmentation
framework. This section discusses issues regarding theititefi and evaluation of accuracy, and the
evaluation of other aspects of a framework’s performance.

Accuracy metrics are based on the similarity between a setatien result and some notion of
'ground truth’. Accuracy is badly defined for the biomediagplications central to the project because
of the lack of ground truth. An alternative is to use synthatiages where the ground truth is known.
These images must reproduce real-world image conditiomsedningful conclusions are to be drawn
from the results. On the other hand, synthetic images allestam properties of a region or image
to be exaggerated and controlled to validate and evaluateotiustness and specific capabilities of a
segmentation framework. As well as accuracy, authors atathe repeatability of segmentation results.
Repeatability metrics are derived from the similarity be¢w two instances of a contour model assumed
to segment the same ROI.

Performance metrics that use the similarity between coatowst first define what is meant by
similarity. Similarity can be computed from a region- or bdary-based definition of the spatial overlap
between segmented regions. Common region-based measetbe dice similarity coefficient [104]
and Tanimoto coefficient [105]. For a 'true’ regidh containingNg pixels, and its segmentatiofi
containingNr pixels, these measures are derived from the intersectgigné’ N S. For example, the
Dice Similarity coefficient is computed by the rat}@;\’i—“Nz. This project is particularly interested in
boundary-based similarity, as we focus on boundary-basguentation methods and modes of interac-
tion. A popular boundary-based measure is the HausdotHmtie [106]. The Hausdorff distance is a
'maxmin’ measure, computed by taking thenimumdistance from each point on the boundarysoto
the boundary of’, and then taking themaximunof these distances over all points on the boundary.of
This measure is sensitive to outlying points of high disegrent and can give misleading evaluations
when contours are similar for all but a small section. A papuallternative is to take thmeanrather
than the maximum of the minimum distances [107, 108].

In some cases, overlap measures are replaced by a simitegdigure that reflects the application
at hand. These use a derived quantity of a segmented regtbery than its spatial properties. Examples

include the 'lesion load’ relevant to multiple sclerosigsdies [92] and the ventricular volume and wall
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thickness relevant to cardiology [76].

The literature also reveals qualitative approaches topmdnce evaluation, to evaluate qualities of
an interactive framework such as 'user satisfaction’ [109]is relates to the user’s experience, such as
how 'easy’ or 'frustrating’ they found the tool, which is nsaed using questionnaires. Standard ques-
tionnaires such as that in [110] are popular in the wider figlduman-computer interaction. However,
for systems with the single aim of segmenting ROIs, more ifipequestions might be appropriate as
used in [95].

When comparing one segmentation method with another, thieelof reference method governs
what conclusions can be drawn. In many cases, results arpasechwith manual delineation. The re-
sults of manual delineation represent a form of ground tamith separately, the method itself represents
a benchmark. In this studigemma land the implication oL.emma 2that with enough interaction any
deformable contour model should give the same result assiresibest manual delineation, justifies the
use of manual contours as ground truth when evaluating acguHowever, for the same reasons, we
cannot expect any framework to be more accurate than freetemeation.

Other authors choose 'state-of-the-art’ frameworks to gara with their own. Conclusions drawn
from these comparisons are limited as the state-of-this-Betdly defined. A definition based on popu-
larity might reflect a method’s age, ease of implementatiomser satisfaction rather than the accuracy
or chosen performance metric used in experiments. A defintiased on the best results quoted in a
research paper only holds for the performance evaluatiahaeds and specific data sets used in that
paper. Liet al. [95] use many performance metrics and test their method aryrdata sets, but still
their evaluation is based on the direct comparison with aesamat arbitrary reference method.

In order to address the requirement of minimal user demdRelj{irement 2n section 1.2), we
must also evaluate segmentation methods in terms of denraticeouser. The overall segmentation
time is not a reliable measure for two reasons. First, a wsikaly to use a tool faster as he/she gains
experience with it. Second, a user can interrupt a segnientask before completion, as the framework
waits indefinitely for user input. Total time might be usedaasindicator of useability in experiments
where the user has been instructed to complete the task@dygas possible as in [42, 41], but this false
scenario might compromise segmentation quality. Whereswaervised methods share similar modes
of interaction it is possible to compare the useability mairectly. For example, experiments in [43]
compare the demand on the user of two anchor-based interéctindary-tracking algorithms, in terms

of the number of anchors placed by the user.

2.5 Discussion and Conclusions

Interactive segmentation methods in the literature falrsbf balancing the requirements df) (naximal
user control and) minimal user demand. The most promising improvementg driam the use of
machine learning and the ability to exploit informationrfrahe user in an efficient manner. We are
motivated to combine machine learning with boundary tragknethods and radial time series.
Boundary-based image models are traditionally based omtgnitude of the image gradient,

although some also incorporate gradient direction (eg43}). However, for many medical applications
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the image gradient is insufficient, and some authors seele migcriminative visual cues including
region-based models. In the absence of multispectral datdels based on texture classification give
promising results [68, 69, 70]. While some image energiesrporate machine learning, the internal
energies of smoothness, stiffness and tension energiestdo n

The review motivates the use boundary-based contour motiesBrownian String method taught
us that an image modef{) and deformation mechanisi@s) can be particularly suited to, and designed
to exploit, the chosen contour representation. In anotkemele, the 1D Cyclic Markov Random Field
exploits the radial time series representation. This igr&ation is suitable for star-shaped ROls, includ-
ing medical examples in the literature noted in sectiond2.Eurthermore, we propose that by allowing
the user to identify a point near the centre of a ROI, framé&wbased on radial time series gain a lot of
information from a simple interaction, helping to minimisser demandRequirement2

Boundary tracking appeals to our focus on interactive neth@he general scheme of progressing
around a region boundary in the arc-length direction (figurkis consistent with the way that a user’s
fixation follows a boundary during manual delineation. Jaddy the popularity of the live-wire algo-
rithm, this results in a user friendly method. Also, it shibbke possible to make particularly efficient
use of user input during segmentation by boundary trackitayvever, there is a need for methods that
ensure a closed contour.

Where parametric contour models extend to 3 dimension$adsteither replace the 2-dimensional
contour representation with a surface mesh [111, 112, I&kate a 3-dimensional surface by stacking
2-dimensional contours [114, 42, 41, 115, 58, 34]. In theetatase the contour models deform in 2-
dimensions only, but information regarding the shape andtion of a contour can propagate through
successive planes. In principle any 2-dimensional DCM &anrk can be extended to 3 dimensions by
contour stacking but we note that a good DCM should expleititifiormation between image planes in
an efficient manner.

Stochastic optimisation schemes are particularly attra¢od the present research for two reasons.
The first relates to the prior probability distributions @rant to a stochastic sampling algorithm. These
probability distributions are derived from properties bétimage or the contour model. Through the
use ofconditional probabilities, we propose that the optimisation can (i) enaKicient use of user
interactions to condition the observation model, as demnatesl in [56], and (ii) readily incorporate
a probabilistic shape models for regularisation. The se@itraction to stochastic optimisation stems
from their ability to sample from a posterior distributiomes contours. The notion of a distribution
over plausible results is in keeping wittemma 2 which says that a segmentation algorithm should
offer different solutions. We will see in chapter 6, that stdbution over contours lends itself to on-line
supervision, whereby alternative solutions are presewtéue user for manual selection.

In conclusion, this project will aim to develop DCM framewstthat

e alleviate user demand by incorporating machine learniing @me or more of internal energy,

global shape models and image observation models,

e seek an image or shape model that will generalise, so thanite trained on any region-type
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having boundary ambiguity or variable shape,

choose contour representations and optimisation schdmaeseflect the other components of a

framework,
use probabilistic optimisation schemes that allow efficieteraction,
use open contours with on-line supervision based on 'stgemechanisms,

use Markovian open contour models for their suitability tgoredictable shapes, but therefore

seek methods of closing a contour,
exploit the simple global constraint offered by polar camtepresentations,

seek generalised frameworks that readily exploit inforamafrom the user and the image, and
potentially from segmentations in neighbouring sliceserehthe latter allows generalisation for

3-dimensional segmentation by contour propagation,
use synthetic images in evaluations, for more robuse measfiaccuracy, and

use reference frameworks that have similar modes of inierato measure relative levels of user

demand.



Chapter 3

Statistical Shape Models

Many of the deformable contour models in the previous chdee been adapted to use machine learn-
ing to acquire prior knowledge of the region’s shape. Shamegconstrain the segmentation to ensure
plausible results and alleviate problems associated vaitserand occlusion. They draw from the more
general field of shape modelling, which has application®nét in segmentation but also classification,
object recognition/categorisation and data compres$idrere a model is used in a segmentation frame-
work, this commonly has the role of 'shape regularisatiamiereby the objective functio€f) includes

a penalty for contours disagreeing with the prior model (@46, 52, 117]). Shape regularisation is an
example of usingliscriminativeshape models in segmentation. Another way to introduceeshaprs
into segmentation is in the use génerativemodels (eg. [118, 119, 120, 121, 122]). In the generative
case, a model produces candidatepmposalshapes which share shape properties with the training set.
Generating proposal shapes can be viewed as a constraiioethd#on mechanisnct) in a deformable

contour framework.

This chapter reviews approaches to shape modelling, wifthesis on methods suited to a super-
vised segmentation framework. In particular, we are irstie@in various types of statistical shape model
(SSM). We consider as a SSM, any shape model that uses méehinang to give a compact represen-
tation of shape information present in training data. Theere also focuses oglobal shape models.
We use the terms 'global’ to refer to information that chéeases a whole contour. This definition is
not restricted to the case where a boundary has recurritigrésa but is distinct from the case where
local information is simply integrated around a contourtif@us such as [11] claim that this leads to a
global model). The review looks at SSMs from the point of viegf2-dimensional shape, but some of

the methods extend to 3-dimensions.

Two popular SSMs are point distribution models and mediptesentations. We discuss both of
these approaches in order to highlight a fundamental balletwveen the discriminative power of a
SSM and the assumptions it makes about a class of shape® $8&4s capture high-level information
about an object’s shape, giving them much discriminatiguabdity, but rely on a high level of similarity

between shapes in a given class.

Another family of shape models use the radial time seriesmtary representation described in the

previous chapter. We review radial time series models kmxthey assume relatively little shape simi-
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larity, and therefore apply to the types of region considénehis project. The review shows that time
series contour representations lend themselves to dyaamiadelling techniques, which potentially
characterise global shape.

The rest of this chapter is organised as follows. Sectiond&@&usses point distribution models
and medial representations, introducing common aims aatleciges of statistical shape modelling.
Section 3.2 reviews radial time series models, discussiag televance to the aims of this project, in
acquiring prior knowledge of shape and using this in suge/segmentation. Section 3.3 reviews other
methods that demonstrate the intention of capturing the dissriminative information with the least

complex model.

3.1 SSMs for High-Level Shape Information

This section describes two families of SSM, namely the 'pdistribution model’ (PDM) and 'medial
axis representations’ (M-reps). These capture high-iefetmation about global shape characteristics,
by virtue of the similarity and points of correspondencenssn any two shapes of the same semantic
class. The PDM and M-reps are both generative SSMs, andragarsinethods from information theory.
Due to their similarities we review PDMs in more detail andega shorter overview of M-reps, where

the former bares more relation to the current project dutstodundary-based representation.

3.1.1 Point Distribution Models

A Point Distribution Model (PDM) represents a shape as aoremft N points, i.e. coordinates around
an object’s boundary or, in the case of 3-dimensional moaelsr its surface [118]. The method is
an example of machine learning, where the PDM learns fidntraining shapes belonging to the
class of ROIl. The PDM assumes spatial correspondence thootighe training set, between the lo-
cations defining each of th& points in a given shape. In general, the correspondencéspaia dis-
tributed evenly between comméandmarkpoints, which serve to align the training shapes. The tngini
shapes must be co-registered by iterative adjustment ef (ioanslation, rotation and scaling). The

M aligned shapes are stored in the vectBts Y1,... Y1 where thei?” shape vector is given by

Y, = (0, Yios -+ TiN—1, yiN_l)T. The mean shape and covariance matrix are then given by
B 1 M—-1
and
1 M—1 B B
S=a"1 Z (Yi=Y)(Y:i-Y)" (3.2)
1=0

respectively. By Principal Component Analysis (PCA), mafsthe variability in the training set is rep-
resented by the eigenvectors®that correspond to the largest eigenvalues. Fron2 fiieigenvectors,
the firstm are chosen, whene << 2N, and stored in the matri®R = (po,p1,- -+ ,Pm—1). The PDM
is then defined by

Y ~ Y + Pa, (3.3)

wherea = (ag, a1, -+ , a,n—1) is vector of weights, or 'shape parameters’.
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The assumption of correspondence leads to two main drawslzEdke PDM approach. First, it
assumes that there is correspondence in the first placegbetny two shapes in a training set. Consid-
ering the simple illustrative example of 'quadrilateratie four corners would serve as correspondence
points after removing the ambiguity as to which is the 'td [goint and so on. As noted in section 1.1.3,
some anatomical regions have recurring features that ssreerresponding points, such as $pigous
procesgpresent on all vertebra (figure 1.2). However, regions se¢hraours and lesions can be variable

in shape, having arbitrary undulations around the boundadyno sense of 'top’ and 'bottom’.

The second drawback of the correspondence assumptiort BEs require points to be marked
on all training shapes by manual or automatic labelling. tdrnabelling is labour intensive and not
guaranteed to preserve anatomical correspondence. Ehactve research into automating this proce-
dure, primarily using registration-based methods [123, 125, 126] or 'minimum description length’
(MDL) methods [127, 128].

The registration-based method in [123] involves alignihgpges in a training set with their best
matching pair, computing a mean shape from each pair anatiageuntil a single mean shape rep-
resents the whole training set. Landmarks placed on the sieame can then be projected back onto
each original shape. This approach, in common with all tegfisn methods, relies on procedures for
"aligning’, and measuring the agreement between, pairsajiss. The authorsin [123] use dynamic pro-
gramming to match boundary sections of high curvature. 24]1the same team replace this alignment
procedure with a nonlinear registration method that tranmms$ shapes to minimise the local disagree-
ment between boundaries, defined by non-overlapping af@éser registration-based approaches in

[125, 126] borrow from more familiar medical image regititra literature.

Methods of MDL are based on the assumption that the 'simippestt distribution model is that
in which the pointsY; correspond the most between training shapes. Da&tias [127, 128] borrow
from information theory, to define the 'simplest’ PDM as tath the minimum 'description length’
[129]. Landmark placement then becomes an optimisatiobleno, where the description length is the
objective function and the poin®; are first initialised throughout a training set and then rpalaited
during optimisation. The algorithm requires that each shigprojected into a base domain, eg. a circle

in the 2-dimensional case, which causes problems for cosivapes.

At the same time as this project was investigating new shayteia (presented in chapters 7 and 8),
Berkset al. [130] suggested that the MDL method can be used to build a REtRbut explicit corre-
spondence between shapes. Their method starts with tgashapes that have landmarks placed at equal
arc-length intervals, starting from a chosen origin. Inrtegample of mammographic masses, there is
no obvious choice of starting point, which would correspbetiveen examples. In the absence of a
single landmark, the authors choose the optimal startirigt for each shape during alignment, being
that which gives rise to the minimum variance in the resgltimdel. The goal of modelling this type
of shape (tumour masses) without assuming explicit coomdence is in common with this project. We
consider the work of Berkst al. to be the closest competitor of methods that we develop ipteha7

and 8. However, the ultimate aim of [130] is to simulate thepghand appearance of mammographic



3.1. SSMs for High-Level Shape Information 47

masses to provide training and testing data, and more wothdame needed to base segmentation al-
gorithms on these models. Also, the evaluation of the meihedmewhat limited. The authors use the
models to simulate ground truth instances and define a peaioce metric based on the similarity be-
tween generated and original tumours, in terms of combihedesand appearance (texture). Results are
compared with an earlier method proposed by the same gr@1p\Which overcame the correspondence
problem by enforcing a single landmark point on the tumoussi@undary. The landmark was defined
in relation to a nearby, anatomical landmark (the nipplé)tbare is no confirmed physiological basis

for assuming this to be a consistent geometrical relatipnsh

Other methods of automatic landmark placement draw fronwider geometry and shape litera-
ture such as the 'growing neural gas’ method [132], 'nodétsml and merging’ [133] and extracting

'"dominant points’ from ordered curves [134].

Another limitation of the PDM stems from its linearity (bywaion 3.3). The model assumes that
any shape belonging to the same semantic class as the ¢rdta is given by a linear combination of
m < M eigenmodes from the PCA. This in turn assumes that the ptgulaf shapes form a unimodal
multivariate Gaussian distribution in shape space, antligatraining data represent this distribution.
According to Cremergt al. [135], these assumptions break down when data exhibits lexnspape
deformations, such as the nonlinear deformations arigiog fdifferent 2-dimensional cross sections
of a 3-dimensional object. The problem is made worse in somdical applications by the presence
of pathological variations. The limitations of the lineaodel have prompted methods that remove its
assumptions [136, 137, 138]. An intuitive approach by Ceated Taylor [137] uses a mixture model to
handle multimodal Gaussian distributions. However, théghrad requires that the number of modes can
be estimated. A more recentimprovementover the linear hi@geovided by Cremerst al. [135, 138].
Their approach uses kernel PCA, whereby the data are assoniedn a Gaussian distribution in a

higher dimensional space, after a nonlinear mapping.

Another problem associated with PDMs is that choices fomilmaber of training shapes and the
number of principle modes are somewhat arbitrary. Btedl[139] showed that this can lead to sub-
optimal modelling for segmentation, and the task of optinggor the number of distinct modes is the

subject of ongoing research [139, 140].

An extension of the PDM adapts it to model multiple regioret #re disconnected but part of the
same ’'constellation’ [141, 142]. Examples occur in medaggplications where anatomy guarantees a
known constellation, such as vertebra making up the spimeeatatarsal/metacarpal bones making up
joints of the ankle/wrist. The individual regions are mdeelby their own mean shape and modes of
variation, while the relative positions of the individualgions are assigned a second statistical model,
coupled to the first. Constellations do not arise for the i@ppbns central to this project, which involve
either an individual ROI, or a group (such as multiple sdértesions) that are unpredictable in number

and relative position.
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3.1.1.1 PDM in interactive segmentation: the Active Shaeléd

Cooteset al. [9, 118] popularised the use of PDMs for segmentation withitliroduction of Active
Shape Models (ASMs). The method exploits the generativeraaif the model in an optimisation
scheme. After initialising with the mean shape placed innaage somewhere near the ROI, the Active
Shape modeK = (zi0, yio, - - - ,:CiN_1,yiN_1)T evolves by iteratively varying pose to fit the image
and varying shape parameters to minimise the differencedset the generated shape and the closest
shapeY; in the training set. First, the points & are subjected to small displacements that reduce
an image energy’t) to move boundary points toward high gradient magnitudesséhdisplacements
are stored in the vectatX = (dz;o, dy.o, - - ,dxiN_hdyiN_l)T. Then a least squares estimation
calculates the changes in pose, (defined by scalingtationd and translation of the model centke.),

that best describes the adjustmeiXs The new contour is given by
X = M(s,0)[Y + Pa] + X, (3.4)

wherel (s, 0) is a linear transformation for scaling and rotation. To ctetean iteration, an adjustment

to the shape parameteta is calculated by
da=PTqY, (3.5)
wheredY is the residue’ in model space [143], calculated by
dY = M (s (1 +ds)~1,0 —do)[M(s,0)[Y] + dX — dX ] — X (3.6)

(see [9] and [143] for derivation), whetk, df anddX. are the changes in scale, rotation, and transla-
tion.

Despite the correspondence assumption of the Point Disiwib Model, the impact of the ASM
on the medical imaging community has been huge. Exampldésdad¢he segmentation of ventricles
in ultrasound images [144], or bones [145] and the trach46][th X-ray CT images to mention but a
few. Some refinements to the classical ASM make it even matedsto medical applications. Benefits
are seen when the optimisation scheme is replaced with hagtic method [119], or assisted by user
interactions [147, 148, 149].

The interactive algorithm by Hugt al. [147] is based on the idea that the most efficient user-
guidance comes from interacting with the most influentidhfmon a parametric contour. The most
influential points, or 'principal landmarks’ are those tleatry more shape information, identified by
iteratively removing points responsible for the most vdmia The remaining points form a coarse
‘control polygon’ of points that can be placed in an imagefamst initialisation. The ASM algorithm
is then constrained so that all modes of variation produeg@e that share these control points. The
constraint is based on choosing basis vectors that disgh&ceontrol points in the x- and y-directions,
and which have the minimal Mahalanobis norm in the spacein€ijpal components.

The ’InterActive Shape Models’ (IASM) in [148] also constrahe ASM so that the resulting
shapes pass through boundary points defined by the userrsTsein iterative scheme, which seeks

shapes which occupy the intersection in shape space, hetilieeintersection of the subspate,
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spanned by the principal components, and the lower-diroeaksubspacg, of 'allowed’ shapes that
contain fixed boundary points. Experiments in [148] suggegsonable improvements in segmentation
accuracy for relatively few interactions, but these experits use ideal, simulated interactions rather
than real user trials. In [149] the same group combine thévAsth an image model exploiting super-
vised, region-based classification and the hybrid metheesgbetter results in heart segmentation than

either of the constituent algorithms.

3.1.2 Medial Representations

Medial representations or 'M-reps’ are another family os@hich, like the PDM, use an explicit
parametrisation of object geometry and have advanced tldedfisegmentation [150, 151, 152, 122].
We give a brief overview of M-reps here to reiterate the aggions of existing high-level shape models.
A detailed account of the method is given in [153].

The main distinction between M-reps and other methods is tise of a medial axis description
to parametrise shapes. Parametrisation is based on a 'hdb$poke’ model, where points along the
medial axis represent hubs, and spokes define straighfftimasa hub to the region boundary. Together,
the hub and spoke structure is known as an 'atom’, wherebgithplest atom comprises two spokes.
The number and type of atoms along the medial axis define th&hape representation.

To train M-reps, the atomic configuration is fitted to tragpghapes, then these are aligned by me-
chanical deformations. These deformations are modellgaribgipal geodesic analysis (PGA). Anal-
ogous to the PCA above, PGA represents the training set imeespf reduced dimensions, and it is
assumed that all objects from the same semantic class aathi@g set occupy the same space. PGA
can be viewed as a generalisation of PCA, where the Euclidpace is replaced by the Reimannian
space of medial parameters. As such, the method is thealhgtietter suited to handle complex modes
of variation associated with pathology.

M-reps share two key drawbacks with point distribution miedanalogous to landmark placement
for PDMs, the need to assign medial axes and atoms to tradtategis impractical. This procedure can
be partially automated by generating Voronoi diagrams [1%%], but this in turn must be initialised
by boundary points similar to the landmarks of a PDM. Alsowéth the PDM, these SSMs assume
high levels of shape similarity between regions of interékitable successes of the M-rep method are
seen for brain structures such as hippocampi and ventfiti€§ and the caudate nucleus [152], and for
whole organs such as the kidney [156] and liver [157]. Howeteeour knowledge, M-reps have not

been shown to model tumours or other variable shapes as défisection 1.1.3.

3.2 Radial Time Series models

Section 2.1.4 described deformable contour models thanpetrise a contour as a 1-dimensioralial

time seriesr = {rg,...,r,...,7n—1}. We noted that ther, 0} parametrisation limits a contour
model to the case of star-shaped ROIs. However, some clabsbape are known to be typically star-
shaped and the radial time series re-appears throughostatistical shape modelling literature as it

is convenient and in the case of object recognition, nonstaped objects can still be classified with
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high success rates. Also, some of the techniques apply getheralised parametrisatidn, s}, where

s={s0,...,8,...,8ny_1} are arc-length increments.

3.2.1 Autoregressive models

Kashyap and Chellappa [158] introduced a model using th&lréiche series representation for the
classification and reconstruction of closed boundaries. authors represent the radial time series by a
stochastic model belonging to the family of linear autoesgive (AR) models. In their Circular Aurore-
gressive (CAR) model, each pointis expressed as a weighted sum of the radii at earlier timgtgoi

(angles) on the boundary plus a noise term, giving the gésedaCAR equation

m—1
ri = o+ Z PiTi—j + ows, (37)
j=0
wherea is proportional to the mean radiug, = {po,...,p;,....pm—1} iS a vector of weights and

m < N is the number ofag termsin the model, also referred to as tbheder of the model. The
noise termow,; comes from an independent sequence of normally distribtetedom variables) =
{wo, ... w;...wn_1} and standard deviation. The full parameter vector for the CAR model@ =
{a, p, 8} and is estimated for a given shape using least-squares dsetho

In addition to the{r, 6} parametrisation, Kashyap and Chellappa suggest, wittembdstration,
that the CAR techniques extend to 2-dimensional séies {{xo, y0}, - .-, {zi,yi} - - {xn_1,yn-1}}
This bi-variaterepresentation extends the CAR model to include non stgpeshboundaries.

Kashyap and Chellappa first suggested @aan be used as feature vectors for shape classification.
Several authors have subsequently used and refined the CABI foo shape classification in this way
[159, 160, 161, 162]. Eom and Park [159] devise a maximuniiiked decision rule classifier to
classify outlines of eight aeroplane types and eight macharts, reporting 108 success rate in six
out of the eight in each case. Desal. [161] used the 1-dimensional CAR model to classify micrbbia
shape boundaries in classification experiments. The autkport lower success rates between 74.4
and 91.4% for models of order 2-4. However, these experiments werdlsosng ten training and
five testing images from each class, and used simple 'feateighting’ and 'rotated coordinate system’
classifiers. Miret al. [162] use the 1-dimensional CAR model in binary classifmatio discriminate
between liver and kidney boundaries derived from CT imaggth, 99 % confidence. The authors also
used a bi-variate AR model where points are represented iim2rsions as complex numbers, but
found no improvement even though some contours were nesBtared. Although the classification
experiments above generally revealed better performardeigher order models, it is noted in [162]
that this rule does not always hold and the best model oraerdie identified empirically for a given
application.

Another key extension to the CAR model is given by Dubois ateh@163]. The authors change
the contour parametrisation to represent non star-shapeddary as a 1-dimensional series by 'un-
wrapping’. First, the boundary points in tHe, 8} case are stored, where more than enis possible
for a givend;. The method then steps around the boundary and recordsdihen@ered by arc-length.

However, the resulting 'time’ increments become somewhaitrary. The arc-length intervals are not
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equal and not used. The angles corresponding to the reeargeints are from an equi-spaced set but
the axis is no longer monotonic and has repetitions. Theoasithicknowledge this loss of 'phase in-
formation’ and note that a given un-wrapped series doesamesent a single unique boundary. The
success of the unwrapping algorithm is challenged by expartal results in [164] and [159]. D&t
al.[164] used two classifiers and two sets of shapes to direotlypare the 1-dimensional model with
and without unwrapping. Their experiments revealed thatmple 1-dimensional case out-performed
the un-wrapping case for all of the tested model orders (1) torda set of shapes that includes non
star-shaped boundaries. Eom and Park’s experiments algotsht their maximum likelihood classifier
using the simple 1-dimensioanl model gives higher clasgifio accuracy, even with non star-shaped
boundaries, than the classifier used in [163] after unwrapp®ne explanation for the inferior classifi-
cation rates using unwrapped time series is the loss of ymhase information [164].

As well as classification Kashyap and Chellappa use the CA&eirfor encoding shapes to reduce
data storage. This relies on the ability to reconstruct asfilom estimates of the paramet€yswhich
includes simultaneously retrieving the exact noise seceen= {wy, .. .w; ... wy } associated with the
shape. The authors also note that, by sampling noise seegifom a Gaussian distribution rather than
approximating the original sequence, perturbations orotiggnal shapes can be generated. However,
this is only used for model validation and to demonstrateefative information stored in the parameters
a,p andg. The use of CAR as a generative model is not seen in subsddgaeature.

Kartikeyan and Sarkar [165] showed that the linear CAR matteiggles to classify shapes with
complex boundaries and intra-class variability. The argldapt equation 3.7 to form a nonlinear variant

of the CAR model. The so called non-causal quadratic V@Et@CQV) model is given by

m—1
rp = o+ Z Djri—j + Z Gup T OWs, (3.8)
j=0 (u,v)eG

wherem < N, g are the "Volterra kernels’ an€ is the set{(u,v) : g, # 0}. The procedure to find
the volterra kernels and fit the model is complex, eventugilling model parametel® = {«, p, g}.
The authors use these as feature vectors in a Bayesian ssifi@ni®th recognition and classification.
Experiments show that the NCQV model improves on the linase evhen classifying shapes with more
complicated within-class variability.

The NCQV is the only nonlinear radial time series model agléfor shape representation in the
literature. The method is complicated and has not receigsedwch interest as the CAR model in later
literature. The NCQV is designed for recognition and clésaiion tasks with no obvious extension to

shape generation. The authors even state that
“in the context of closed contour representation, forengss not an objective”.

In summary, the simple, 1-dimensional, linear autoredgresaodel has proved to be a useful tool
for classification and recognition of star-shaped and nansttaped boundaries that are not too complex.
For the case of non star-shaped objects there is a lack oérsgdthat classification benefits from the

bivariate representation [162] or the use of unwrappin®[1%4]. There is, however, evidence that
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introducing nonlinearity into the AR model allows more cdexpboundaries to be characterised [165].
The CAR model breaks down when used to characterise bo@sdhet are complex [165], noisy [160]
or occluded [166]. There are no examples in the literatdresing CAR models in segmentation, either

by developing generative models or adapting the classifiershape regularisation.

3.2.2 Markov models

Because the AR approach represents a whole contour by & sieglof parameters, He and Kundu
[166] claim that it is unable to model 'unpredictable’ shapéth ‘radical variations’. To address this
limitation, and the sensitivity of the CAR model to occlusjdistortion and local perturbation of shapes,
the authors combine the autoregressive model with a hiddekd¥ model (HMM). First, the radial time
series of a whole contour is divided indd smaller segments and different AR models are fitted to each
segment. The HMM then models the relationship between ARrpater vectors from neighbouring

segments. The authors represent a shape as radii sepayagqdd intervals of arc length rather than

angles and a single section bf< N radiiv’ = {ry,...,7,...,r5}, given the indice$ = {1...L},
has the AR model
m—1
rp = o+ Z DjTi—j + ow, (3.9)
7=0
with parameter®) = {po,...,pj,...,Pm-1, =, itr}, WhereZ is a scale invariant ratio of the whole

shape’s mean radius to the size of fluctuations about the avedn. is the mean radius of the boundary
section.

The Hidden Markov Model had/ 'states’, in this case given by the boundary sections. Aestat
sequencé of lengthT < M is a vecto{ sy, ..., st,...,sr—1} with s € {1,..., M}. The relationship

between states is modelled by\a x M transition probability matrixA, with elements

a;; = Pr(sip1 = jlse = 1), i,j=4{1...M}

~ N¢of occurrences db; € i}and{o; ;1 € j} (3.10)
N Ne of occurrences db; € i}
The model requires an initial probability vectdr of length M with elements
T, = PI‘(SQ = Z)
(3.11)

_ N?of occurrences dioy € i}
~ N° of training sequences’

The observation sequenEehas elements, given by the vecto€) for thet* segment, and an as-
sociated observation density vecB®mwith elementd;(o;) being thea posterioridensity of observation

o giveng, = j, approximated by
1 _
bj(o) x exp[—i(ot — )% Yor — )7, (3.12)

wherey; andy; are the mean vector and covariance matrix ofjtftestate calculated by clustering the
training vectors. Note that this unsupervised clusteriragedure determines the number and length of
the state vectors, i.e. the numbdrof boundary segments.

The machine learning task is to estimate paramet&rdI, B), by choosing those that maximise

the state optimised likelihood functigi R, S*|A,I1, B) = argmax p(R, S*|A,II, B). The authors
5
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use the segmental K-means algorithm in [167]. Note thatitivislves training the model on ground
truth shape data to populate the initial probability vedloand transition probability matriA by equa-
tions 3.11 and 3.11. Classification then assigns the lathelhich maximises the likelihood function
p(-|-), i.e.argmax p(O, S*|A,, I1,,, B,). The authors use the Viterbi algorithm in [168].

The mocfel is translation and scale invariant by virtue ofrtitial time series representation. How-
ever the need for all shapes in a class to be divided into seeations removes the rotational invariance
of the model. To account for this the authors attempt to ecgditshapes to a common orientation. This
alignment is based on global features of 'elongation axigl aninimum radius point’ which in turn
assumes a certain level of within-class similarity, in cichfvith the aims set out in the paper and shared
by the present research.

Friedland and Rosenfeld presented another example of higjhgevel shape information in a 1D-
CMRF [73]. The method uses an energy function in the Gibbmédation that combines low-level
and high-level processing. The low-level smoothness tegstiibed in section 2.1.4 is complemented
with high-level information based on a similarity measuetvieen the contour and the most similar
configurationr in a library. The so-called 'adaptive multi-level energyétion’ comprises a weighted
sum of the low- and high-level energies, where the functsoadaptive’ by varying the relative weights
during the optimisation. Arguably, the use of a library ie thigh-level process means that this shape
model is notstatistical A statistical model of the population should give a compagresentation of
the information in the training data rather than explicglpring that data. The authors demonstrated
acceptable results in segmenting objects such as vehidesihfrared remote sensing images, and
experiments showed the benefits of the high-level energy ssgmentations ran with this term set to
zero. However, the library matching process assumes aéwghadf similarity within the class of shapes,

making this approach unsuitable for the goals of this resear

3.3 Other Shape Models

This section reviews Fourier and other shape descriptat$ve a role in medical image analysis.

3.3.1 Fourier descriptors

One type of shape model treats a closed contour as a lineabication of sinusoidal func-

tions [169]. A model of orderK uniquely defines a given shape with the parameter vector

{{ao,c0},...,{ak,cr}, {an, car}} used in the equation
t - kt
x(t) _ |0 . Z ap ai| |cos(kt) | (3.13)
y(t) Co k=0 |ck cr| |sin(kt)

wherex andy are pixel dimensions ands an independent parameter related to arc-length.

The Fourier representation has the advantages of congadhie frequency of a shape by the choice
of model order, and naturally modelling a closed contourtditbe model’s periodicity. The model was
first used for object classification [170, 171] but also binitb a segmentation framework to provide
shape priors by Staib and Duncan in [116]. Their framewoldwadd for machine learning by decom-

posing training shapes from a given class into the parasagivn above and fitting multivariate Gaussian
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statistics to the parameters. The segmentation itselfaigss/esian approach to find the parametrised
shapeQ, which maximises the objective function

Pr(D|Q)Pr(Q)

(D) (3.14)

whereD is the observation model. In this caBeis a 2-dimensional map of a boundary measure (based
on image gradients) so the parametrised con®ig first made to conform by turning the 1-dimensional
boundary into a 2-dimensional binary image.

Staib and Duncan used the Fourier shape models to segmdrefthéentricle in echocardiogram
images and the corpus colossum in MR images. Results sesonadzle and the shape model is intuitive
but there were no quantitative conclusions drawn from tlieseonstrations.

A limitation of the model is the assumption of independeneémMeen the model parameters
{ak, cx }VEk. Staib and Duncan suggested extending the method by muglétie covariance of the
model parameters . This was later realised by Szededy. [172], who in turn used the shape priors as

regularisers in ACMs to segment the corpus callosum in braages.

3.3.2 Low-level shape descriptors

Dating back to Hu's 'moment invariants’ [173], global gedni@al properties such as diameter, aspect
ratio or area have been used as low-level shape descrigfoROIs in a training set are normalised
in terms of scale and orientation, these descriptors cansbd as features in shape recognition and
classification. Shape descriptors can be region-basedrdousbased whereby, as demonstrated in
[174], two shapes can be similar according to one and notttier type.

In a recent medical example, Wagagal. use shape descriptors to model the shape of ventricles in
MRI volumes [10]. Ventricular volume (area) is a well-knowmlicator of Alzheimer’s disease (AD).
After choosing the same axial slice from multiple MRI volwsnthese are co-registered and the ventricles
segmented to produce a binary image. The authors deriveypes tof novel shape descriptors from
a ventricular region and its boundary. The first set of nowelpe descriptors are region-based, and
designed specifically for ventricle shapes. The 'minimurokthess’ is the shortest distance between a
point on the left hand side of the region and a point on therighis always occurs near the centre of the
region. Next, the "axis shape descriptors’ rely on landnpaziats at the four 'corners’ of the ventricles.
Having identified these points, the authors form descrigfimm the two diagonal lengths along with the
four distances from the centroid to each corner. The secenadfsiovel shape descriptors are contour-
based and are not specific to ventricle shapes. These avedi&éom the shape’s 'signature’, which is
equivalent to a radial time series. The authors use the mvaaiance and higher order moments of the
signature as low-level shape descriptors.

The authors also extract standard region-based desaripitarea, circularity, eccentricity, elonga-
tion and rectangularity, and the contour-based perimEtgreriments compare the discriminatory power
of the novel descriptors with the standard ones, to receghid symptoms. Performance is evaluated
by the correlation of a shape descriptor with cognitive $estres (a continuous indicator of AD) as well

as binary classification experiments where AD diagnosisiges the ground truth. In correlation exper-
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iments the minimum thickness gave the best performanceaslehe mean signature value proved the
best discriminator in binary classification.

Shape descriptors are generally fast to compute. This nthlkes suitable for use in real-time
applications such as database querying, browsing or rétmymasks applied to video frames [174].
However, shape descriptors are compact and lose a lot ofnirafiton about global and local shape
making them unsuitable for capturing subtle differenceéwben shapes and unable to reconstruct shapes
similar to a training set. Also, shape descriptors are noieggive because, while values could in

principle be sampled at random from learned distributiarsgmple would not map to a unique shape.

3.4 Notes on Performance Evaluation

The performance of a shape model is evaluated in two main.weisere a shape model is used to
constrain segmentation, authors can quantify its benegfitbmparing the results of segmentation with
and without the shape prior (eg. [53]). Irrespective of g8 in a segmentation framework, the discrimi-
natory power of a shape model can be evaluated by technicuradffe fields of object recognition and
classification literature. Recognition aims to determirethier a shape belongs to a given class while
binary classification aims to assign a shape to one of twsetasin terms of performance evaluation
these aims are closely related as in the recognition cageetirg a test shape from the single, positive
class is equivalent to assigning that shape to an arbiteggtive class in binary classification.

The literature contains different approaches to the chofieenegative class. Where a shape model
is used for detection or retrieval, authors often use a dawlbf many shape classes, wherein all but
the positive class make up a pooled negative class (eg. [I7A}). In Wanget al. [10], a negative
class of shapes is inherent in the chosen application, adiskased ventricle shapes being modelled
are naturally paired with the negative class of healthynges. The binary classification experiments
of Mir et al. [162] sought to distinguish liver from kidney contours in Glices. This is not a realistic
task as, while these contours might be of similar shape amdisicertain axial slices of a tomographic
image, they are identified by their anatomical location. ldeer, the liver and kidney classes are a useful
complementary pair as the contours possess certain siiegarirst, both classes represent deformable
organs with similar surface properties. Second, the sanagéntontrast/noise properties govern the
quality of ground-truth in both cases.

In the object recognition literature, performance is eatdd by measures such as 'precision’ and

recall’. Adopting the convention that binary classificatiassigns a ’positive’ or a 'negative’ label,

precision is defined by the true-positive fractibi® = NTF]X[?VFN, where the number of 'true-positives’
N;p is the number of test cases correctly assigned to the pesiass, and so on. Similarly, recall’ is
given by the fraction of true positives relative to the sizéhe whole test set.

The work of Wanget al. [10] also demonstrates the use of application-specificoperdnce mea-
sures. Cognitive test scores provide a secondary measuhe @giresence or severity of Alzheimer’s
disease, known to correlate with the change in ventricydpearance captured by the shape models.
The test scores are used as a 'ground truth’ on a continuales aod correlation with the variation of

shape descriptors provides a quantitative performancsunea
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3.5 Discussion and Conclusions

This review suggests that the linearity of the classical PB&l not handle pathological variations,
which are the essence of variability in the classes of shapk as lesions and tumours. Also, the
assumption of correspondence makes PDMs inappropridiedse applications. However, by exploiting
its generative nature, the PDM forms the basis of a poputamsatation framework (ASM) and recent
improvements make ASMs more suitable for other medicaliegipbns.

Time series models have been used for shape modelling. Thenkthods can be divided into
autoregressive and Markov random field models. The mairerdiffce is that autoregressive models
characterise the whole of a shape boundary by a set of glabahpeters whereas the Markovian models
model the variation of local shape properties around theébary. The rest of this discussion highlights
the applicability of the radial time series representat@this project (section 3.5.1) and section points

out where current shape models that use the radial timesssgdacking for our purposes (section 3.5.2).

3.5.1 Radial time series representation

The radial time series allows us to represent multiple shapéhe same parameter space without the
need for correspondence between those shapes. The exdmplamparametrisatiofr, 6} is limited

to star-shaped regions, but medical imaging involves magions of interest that are star-shaped such
as those listed in section 2.1.4. Also, there is evidendedhasification is robust against the presence
of non star-shaped examples in a training or testing set. dale sets available to this project, of MS
lesions and liver tumour cross sections, are both arg0fidstar-shaped.

We propose that two of the problems associated with bourfddowing segmentation would be
alleviated by the use of radial time series. First, the podaametrisation can be used to aid loop closing,
as a boundary should be completely tracked ov@rraange. Second, because the model contains
an estimate of the region’s centre, divergence from the lauendary can be avoided by penalising a
monotonic increase in radial distance from the centre. Epeasentation may also help to balance the
requirements of increased user contié@uirementJland reduced user involvemeiRgquirement 2
The position of a region’s centre, along with an estimatéefrhean radius, provide much information

to the model while these can be estimated by observatiomsdroimage model and/or user interactions.

3.5.2 Radial time series shape models

Autoregressive models are an example of machine learninghfape. These are used for classification
but there are no attempts in the literature to develop thersifape regularisation for segmentation. The
CAR can be used to generate random perturbations of theeshgpe it was trained on, but no schemes
have been presented for training the CAR on multiple shapéf®agenerating contours representative
of a given class. The Autoregressive method extends to ameamimodel as seen in [165]. However, this
model is not generative and is only used for shape classificafartikeyan’s model is also complicated
to train, relying on inverse Fourier transforms and nordirieast squares fitting.

Markov Random Fields in 1-dimension are used for segmemtatit do not generally use machine

learning. The exceptions are the combined use of a Hiddekdwdviodel with the AR method [166] and
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the use of 'libraries’ in the potential function for 1D-CMRF3]. However, these assume a higher level
of similarity within a class of shapes and introduce the sproblems of correspondence associated with
a PDM. Also, the shape prior based on a library of trainingesas not strictly a SSM. The Markovian
approach extends to open-contour modelling, seen mainlgfioventricular regions, which do not have

closed boundaries as the region adjoins the aorta.

In conclusion, global, high-level shape priors benefit segtation frameworks but existing models
are over-constraining for the case of unpredictable, patfically variable ROIs without spatial cor-
respondence. We are motivated to develop novel shape pritiare the radial time series contour
parametrisation offers a promising starting point. Coetesls use of the PDM in active shape models
also shows that exploiting the generative nature of a SSKignway can have a huge impact on the field

of segmentation. This project will explore the time serippraach to develop SSMs that
e capture global shape information without correspondena@g
e are generative,
e model Markovian dynamics in common with boundary trackiragrfeworks,
e model periodic dynamics associated with closed boundaries
e are nonlinear,
e use machine learning for global shape information,
o offer discriminative models for shape regularisation,

e are probabilistic, whereby samples drawn from a distrdyutf likely shapes may form the basis

of probabilistic segmentation, and

e allow shape generation to be constrained by observations.



Chapter 4

Machine Learning Classification

'Machine learning’ is a general term applied to tasks ragdiom parameter estimation to modelling
cognitive processes [176]. In the context of a segmentdtenmework, machine learning is used to
provide prior knowledge about the expected sh@gdr observation model%). The previous chapter
stated that SSMs are examples of machine learning, as timusanodels estimate parameters from
training data. This chapter looks at machine learning tegles appropriate for an image model, which
fall into the category of 'supervised classification’. Thgervised approach is in line with the intention
to make efficient use of information provided by the user. sTinformation comprises ground truth
image data that are labelled by human observers. For exapnglegously labelled data can train the
classifier off-line and the results used to provide an impdbwebservation model by pre-processing.
Alternatively, an observation model could be trained omdi interactively, using data located in the
image during initialisation or run-time. In both cases tlaads in the form of feature vectoxs each
with an associated class labgle ). In the case of binary classification, two lab&ls= {1,—-1}
correspond to positive and negative classes such as 'fegidribackground’.

Machine learning classifiers can be divided into generatigediscriminative methods, also known
respectively as ’statistical’ and 'distribution-free’{Z]. In generative methods, feature vectors are re-
lated by an underlying joint probability. If we compute threnditional probabilitie®r(x|y),y € Y and
the class probabilitieBr(y), then we can obtain the probability that unseen ddtaelongs to clasg’

using Bayes rule
Pr(x|y’) Pr(y’)

Pr(y'|x') = P

(4.1)

wherePr(x) =3 .y,

classifier. In the binary case we assign lapet 1 if Pr(1|x’) > 0.5 andy = —1 otherwise.

Pr(x|y) Pr(y). Itis then straightforward to classify unseen data usiregBhyes

Generative methods are well principled and require redgtilittle computation, but are only appro-
priate for classification problems where we have some prionktedge about the underlying probability
modelsPr(x|y),y € Y. Conversely, discriminative methods are favoured when avaot assume the
form of the probability distributions, but can be compudaglly expensive. In this project, image models
will be based on regional texture, for which we have no privowledge of underlying processes giving
rise to the observed data. Also, we seek classification ndsttiat generalise between applications, and

in the presence of high within-class variability for a giveplication. For these purposes we choose
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discriminative methods. These methods, also called wisoant analysis’, separate data by discrimi-
nant functiong, (x) in the space of the feature vectors. Section 4.1 summarisesminant analysis
and introduces the principle behind nonlinear methodsti@ec4.2 gives a more in-depth review of
the 'support vector machine’, an example of nonlinear disicrant analysis favoured for its ability to
generalise. For example, SMVs can discriminate betweerctagses that might each give rise to mul-
tiple clusters in feature space. In the context of segmiemt#his applies to the classes of region’ and
'background’ textures whereby each class can possess henrehe distinct sub-class due to complex
textures or within-class variability. The review highliglother benefits of SVMs for use in textured

images.

4.1 Discriminant Analysis

Discriminant analysis is a distribution-free approach lassification, which separates data imo
classes by definingV — 1) discriminant functions. In the binary case whére= {1, —1} we seek
the single functiory, (x) whereby
y' = argmax g, (x). (4.2)
yey
Equation 4.2 gives rise to regions in feature sp&se= {x : g1(x) > g-1(x)} andR_; = {x :

g-1(x) > g1(x)} and these regions are separated lgeision boundarx : ¢; (x) = g—1(x).

Discriminant analysis can be divided into linear and nagdinmethods. Linear discriminant anal-
ysis (LDA) calculates a discriminant functigf{x) from a weighted sum of the components of the

d-dimensional feature vecter= {z¢...z4_1}7, i.€.

d—1
g(x) = > wi:. (4.3)
1=0

wherew = {wy...wq_1} is a vector of weights. A hyperplane is defined by constdry in the d-
dimensional feature space. The task of classification imtbtfie hyperplane that optimally separates
two classes. After training, unseen data are classified bghaide of this decision boundary they
lie and the perpendicular distance to the boundary givesasune of the posterior probability of class

affiliation.

Nonlinear discriminant analysis is a family of techniqueed when classes are not linearly sep-
arable. The general approach is to perform a nonlinear mgpgfithe data, so that linear techniques
can be performed in the new feature space. Hadted [178] introduced 'flexible discriminant analy-
sis’ (FDA), which uses an explicit mapping to a higher dimenal feature space and then uses linear
regression to fit a discriminant function in the new spacerévtecent nonlinear discriminant analysis
[179, 180, 181]is based amplicit mappings achieved by the kernel method. In these casa®placed
by a kernel functior (u, v) whereu andv are any two vectors in the original space. Kernel methods

are further extended by the kernel perceptron [182] anduppat vector machines described next.
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4.2 Support Vector Machines

A Support vector machine (SVM) [183, 184] is a universal sifisr that can handle input patterns of
high dimensions, and from classes that are not linearlyraf@a SVMs are characterised by the 'kernel
trick’ introduced above and the assignment of margins taltesion boundary. A SVM seeks a linear
discriminant function in a feature space definedKyu,v) =< ¢(u),$(v) >, whereu andv are
any two vectors in the original space ands a nonlinear kernel function. The kernel maps the data
into a higher dimensional feature spalde Popular choices for the kernel function are polynomial and
radial basis functions (RBF). The second characteristi§\éi#ls is the assignment of margins to the
hyperplane. The optimisation maximises the separatioraddlfel margins that lie either side of the
hyperplane.

Support vector machines are trained by casting the probdeanlaagrangian optimisation. A stan-
dard result is the 'dual form’ of the SVM problem where, foraining set of N examples, optimisation

is equivalent to maximising

N-1 | NZIN-
arg max 2 @i =g Z ZO ooy K(ug, ug) | (4.4)
= i=0 j=
subject to the constraints
N-1
Z a;y; =0 and 0<aq;<c Vi, (4.5)
i=0

whereu are the training vectorsy is the number of training vectorg, € {—1, 1} are the class labels,
«; > 0 are Lagrange multipliers andis a constant revisited later. Solution of equation 4.4 istlgp
as the size oK is equal to the square of the number of training examplesngly, this is a Quadratic
Programming (QP) problem to optimise a convex quadratieaibje. There are different algorithms
available for solving this type of problem [185, 186, 1878[L8vhich all involve breaking them into
smaller QP problems.

After optimisation, any input vectos; for which the corresponding Lagrange multipliey is
greater than zero, is a support vector and will be denStedThese vectors lie on the maximal mar-
gins, parallel to the hyperplane. The margin maximisatiay rallow some vectors to libetweerthe
margins, having a closer distance to the hyperplane thasughyort vectors. These so called 'slack vari-
ables’ are assigned a cost governed by their distance frermytperplane and weighted by the constant
c. This constant therefore controls a trade-off betweenrsdipg the margins and keeping all training
data outside them.

A trained SVM is defined by the support vect&;sa vector of signed Lagrange multipliexy and
a ’'bias’ b which gives the perpendicular distance from the hyperptartee origin of H. This offset
enables hyperplane margins to reside in positive and negstibspaces. A new observation has an

associated feature vectar and is classified by evaluating

Ng—1

dsvm= Y ay;K(u,S;) +b, (4.6)
=0
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where N, is the number of support vectors argym is the distance to the hyperplane, or 'decision
value’. The sign ofdsym gives the label of the predicted class and magnitudésgf is a relative
measure of the certainty of class membership.

One intuition behind SVMs is that by maximising the hypenglanargins we obtain good gener-
alisation. It may be the case, however, that the dimensigradithe input feature space is high enough
to compromise generality. Yagt al [189] address this problem by splitting the feature vecitaties sub
vectors, each the subject of a separate SVM. A 'voting coteelibf SVMs is then defined and can be
optimised for the particular configuration of how the featiare split up.

Due to the construction of a single decision plane in feaspace, SVMs are naturally a binary
classifier. However, their generality and computation@tiehcy has motivated the development of new
SVMs for classifying arbitrary numbers of mutually exclieesclasses (see e.g. [190, 191, 192, 193, 194,
195]).

One limitation of SVMs is that the output is an un-calibratedbounded valués,, € (—oo, o).
This limits the generality of the distance measure. |deattywould like to calibrate decision values to
give estimates of the posterior probability of belonging#zh class. Calibrating SVM outputs is non-
trivial because typical distributions of decision valdesandd_ are badly behaved. Platt [196] showed
that bounded probabilities can be approximated by fittingrametric sigmoid functionPSig between
the limitsd,,;,; anddmax. After obtaining a decision functiofi(u; ), the probability that a new feature
vectoru; has label; = 1 is approximated by

1
1+ exp[Af((u);) + B]

Pr(yi = 1[(u):) ~ Fgig((u):) = (4.7)

where A and B are the parameters sought in fitting. To obtdirand B the training data must be
partitioned and used in an iterative training and testigg@thm, which is computationally demanding.
Another drawback of SVMs is that parameters must often bienigetd for the kernel function. Hsu
and Lin [197] point out that in particular, the influence of RBarameters andc are inter-dependent
so we seek an optimglair of these parameters. The authors use a grid-search whema@t@rs are
varied exponentially and the 'fithess’ observed at disdregzvals. The fitness is related to the accuracy
of the corresponding SVM, which must be estimated. We dsmethods of performance evaluation in

section 4.3.

4.2.1 Featureless classification for texture

This section reviews the use of SVMs for featureless textlagsification. These methods exploit the fact
that a single texture in an image is completely describethbyr¢lative intensity and relative positions
of pixels. These two pieces of information are encoded invatyor of two or more pixel values taken
from known relative locations. The methods described heessuich vectors as inputs in a SVM. The
kernel trick then implicitly extracts the features thattdiscriminate the classes.

The earliest example is found in the work by Kiet al for the classification of text regions in
video frames [198, 199]. The authors use vectors of imagmsity taken from a sampling window, to

form patterns associated with the pixel at the centre of timelew. The sampling window is a star-like



4.2. Support Vector Machines 62

configuration of pixel locations. This window shape wasadtrced by Mao and Jain [200] in their
'simultaneous auto-regressive’ (SAR) texture model, whaulti-scale texture features are captured by
associating different model parameters with differenghbburhood sets at increasing radial distances
from the central pixel. The resulting SVM is compared with eural Network (NN) classifier in [201].
With the same input patterns, the SVM out-performs the NNhoet having a@91.2% success rate
compared witt86.3%. This suggests that the combination of an autoregressiwplszy window and the
SVM'’s kernel trick provides a powerful texture classifiethgut explicit feature classification. However,
the SVM required twice as much processing time as the NNifilsin this experiment.

The featureless SVM texture classifier is virtually invatio rotation, if the training set is large
enough to involve a given texture at all practical (discreteentations. Scale invariance cannot be
expected with a finite window size. However, larger scaléutes are captured in part by any given
window, so by the same reasoning as for rotation invariaat¢age enough training sample could lead
to virtual scale invariance. Campanigi al [202] have developed a scale invariant method for SVM
texture classification without features by using multijenpling windows of different dimensions. In
order to keep the dimensions of the input patterns condtamiarger scale windows are sub-sampled.
Campanini’'s method is used to classify the whole of a mamarmdmage as 'suspect’ or 'not’ based on
the likelihood of lesions at any of the feasible scales.

Our research group have previously used raw pixel valuesmsg dimensions for 2-dimensional
texture classification in medical images [203, 204] and deresion to 3-dimensions was investigated
during the early stages of this project [205].

The technique is further extended to classify 4D functioviill data by Mourao-Mirandat. al
[206]. The authors are concerned with the task of clasgfyiD datasets, comprising time sequences
of 3-dimensional brain volumes. Patients perform tasksnduimage acquisition, so that functional
information can be derived from the correlation betweerttlations in a blood-oxygen level dependent
signal (BOLD response) and the temporal windows in the sagdksign. Datasets can then be divided
according to which task is performed or, in the case of Alztegs studies, whether the participant has the
disease or not. At the time of their study, Mourao-Miraetlaal note that machine learning techniques
had only been applied to such tasks by two previous studig®@3. In both cases, fMRI sequences
were characterised using feature selection methods. TWedtpan [206] comes from their use of voxel
indices as input dimensions in a hyperspace classifier, ichnthe same way as described for texture
above. The whole of a 3-dimensional volume defines an in@ttife space of hundreds of thousands of

dimensions, (in practice the authors reduce this to husdsédimensions by PCA).

4.2.2 On-line algorithms and incremental learning

The classical SVM algorithms mentioned above are example§-tine or 'batch’ algorithms, requir-
ing all of the training data upon initialisation. On-linggalithms on the other hand inspect the training
examples sequentially. Consider the general on-line cea@iscriminant algorithm that iteratively up-
dates a decision boundary at tim@pon inspection of training data U u; ;. This could be at one

iteration during the inspection of a fixed set of trainingajair upon revision of a pre-trained classi-
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fier using new training data. The second case refers to higrerfiracking’ or ’incremental learning’

necessary in cases where training data varies over time.

Recently, on-line algorithms have been proposed for tngityperplane classifiers of the SVM
type, having maximal-margins and kernel space mappindndsd cases, support vectors are sequentially
added to the set defining the hyperplane margins. When neposinectors are added it is desirable for
some 'old’ ones to be removed for three main reasons. Fostesof the existing support vectors may
have been erroneously included due to the lack of trainig peeviously available. Second, in some
scenarios, the newer data may be expected to better reptheeset to be classified, as it is part of the
same local or temporal subset. Finally, the removal of sttpg@rtors becomes necessary to avoid an

unbounded increase in memory storage and classificatianassociated with a trained machine.

Crammetet al[207] introduce a 'fixed budget perceptron’ algorithm thetlss to remove the most
redundant support vectors as more are added. The methothgmthe removal of each support vector
to identify that which, when removed, remains correctlyssified with the largest margin. Removing
this vector fixes the number of support vectors and leavehyperplanew, no more complex than at
timet¢ — 1. The method is shown in [208] to perform well on relativelyisaess problems but degrade
quickly with increasing noise. Westat al[208] introduce the 'tighter budget perceptron’, whichsise
a new method for selecting which vectors to remove. The astlteplace Crammer’s simulation with a
direct evaluation of the misclassification rate. The tightelget perceptron is shown to give significantly
better classification rates than Crammer’s algorithm asthuget of support vectors increases, until a
limit is reached above which they appear to perform equallgre recent refinements to fixed budget
on-line learning involve removing the least recently imt#d support vectors, as in the 'Forgetron’ of

Dekelet al. [209] and even removing support vectors at random [210].

There is strong motivation for on-line algorithms, as bat@ining will fail in the case where
training data are either non-stationary [211, 212] or Id&fE8, 214]. However, while there are well
accepted implementationsloétchlearning ([215, 216, 187]), implementations of on-linealthms are
scarce and hardly used in the machine learning communitg. rfEfects practical difficulties regarding

memory allocation and data types [217].

4.3 Performance evaluation

Methods of performance evaluation are affected by the tyméassification task and in some cases the
classifier itself. In an example of the latter, it was oridin#hought [184] that the number of support
vectorsN,, as a proportion of the number of training data, is an uppantdmn the classification accu-
racy that a trained SVM can achieve. However, Barzilay arall®rsky [218] show that a performance
measure based aN; is not always applicable. Instead, an empirical perforreaneasure can be used
to assess classification accuracy. These use labelledgeatdia and return a measure based on the

proportion of correct classifications and/or misclassiitra
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4.3.1 Receiver Operating Characteristics

A method of classifier evaluation popular in the medical imagalysis community is receiver operating
characteristic (ROC) analysis (see eg. [219] and Appendix [220] for an overview). ROC analysis
extends the measure of 'precision’ described in sectiojf@r4ases where a classifier gives a continuous
measure of class membership, such as the probability eduny L DA or the decision value returned by
a SVM. After assigning values to all test data, a unique lyicéassification is defined by thresholding
this value. Each classification (threshold) has associatedpositive fractiorii’ P and false positive
fraction F'P given by

_ Nie
Nip + Ney

Nee

and FP=-_-7"__
Nee + Ny

TP (4.8)
whereN;; is the number of true positives etc. as introduced in se&idn Varying the threshold from
the minimum (negative) decision value to the maximum (jpasityields pairs off’' P and F'P. The final

stage is to construct a ROC curve by plottidy? againstl’P.

The area under a ROC curve (AUC) has a value between 0 and fle Wiredicates perfect classifi-
cation, 0 would mean that all data are wrongly classified ab@@rresponds to discrimination capability
no better than random label assignment. Swets [221] shdveggdit the distance value assigned to each
classa andb follows a normal distributions with means,, i1, and standard deviations,, o, respec-
tively, then the AUC is related to the separation of thesgidigions by the inverse cumulative normal

distribution function.

4.3.2 Cross-validation

Cross-validation is a general term for methods that evalokssifier performance, which are different

for 'one-class’ and binary classification.

In the case of one-class classification, a trained classsfigasted by assigning scores or labels to
datain the test set. As the test set is known to belong to &ss chigh scores, or an abundance of positive
labels, indicates a successful classifier. However, aeipair of training and testing data sets can give
biased results. Cross-validation partitions the datanmidtiple training and testing sets, and repeats the
train/test procedure, then the mean of the chosen perfaemaeasure (eg. AUC) is less prone to bias.
However, the choice of data partition is not always obvidus size of the test set introduces a trade-off
between bias and the variance in performance measures. ffina & to omit each feature vector in
turn from the training set. Thieave-one-ouprocedure must be repeatadtimes whereV is the size
of the ground truth set. Another option is to uséold cross-validation, which is flexible in terms of the
numberk of training/testing sets and how they are combined in a sinlgissification. Medical imaging
studies may present natural sub-sets, which give meanipaftitions. For example, data can be divided
by patient or time point in a longitudinal study. This appli® both one-class classification and the
binary case, where a classifier trained on positive and ivegddita from one or more patients is used to

classify data from another.
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4.4 Discussion and Conclusions

SVM classifiers are relevant to the present research foethrain reasons. First, SVMs are able to
handle input feature spaces of high dimensions, which niighitecessary when classes such as textures
can not be discriminated by low-dimensional informatioac&nd, the maximal margin method leads to
good generalisation capacity ([202, 222]), which is impottfor applications suffering inter-class vari-
ability. Third, the kernel trick allows a simple method oftiere classification discussed in section 4.2.1,
which extracts features implicitly from the relative loicat and intensity of neighbourhood pixels. This
approach is attractive to the present research for its gétyer

Support vector machines offer a powerful classificatiorl teloich, when tuned for a certain ap-
plication, should generalise well in the presence of wittlass variability. There is evidence that the
kernel trick, along with a well chosen sampling window, dealimage texture to be classified well
without explicit feature classification. This kind of unigal texture classifier is attractive to a medical
image analysis package because (i) texture is a key viseahdow contrast monochromatic data, (ii)
regions of interest such as those associated with disetse\@ry in appearance for different patients,
time points or image acquisitions, and (iii) the same mettoalild generalise well across different ap-
plications in a common package, since the kernel trick iaihfi extracts texture features from raw data
without application-specific pre-processing.

A common criticism of SVMs is that they are limited to binatgssification. This is not considered
a limitation for the present research, where a single (pe$itlass represents the region of interest.

There is motivation for the implementation of incremenéarhing algorithms, both to overcome
large demands on processing and memory storage, and teatadsifiers to evolve according to chang-
ing or growing sets of training data. The idea of improvindamalising a classifier in the light of new
ground truth is attractive to a supervised image analysikaige where many regions belonging to a cer-
tain class might be segmented in turn. In the case of mediwjé segmentation, this extends to cases
where (i) ROIs (or their cross section) are segmented onessa® slices in a 3-dimensional dataset,
and (ii) many examples of ground truth from numerous imagiegtres may become available, given
the increasing acceptance of medical image databasesantthstisation of image archiving.

In conclusion, this project will draw from the machine leiamclassification literature in order to
e create image models based on supervised binary classificatregional texture,

e use featureless texture classification, in order to geiserdr applications with large within-class

variation and for different applications,

e use these image models to disambiguate region boundariéstéoactive deformable contour

models, with the aim of reducing demand on the user, and

e design the classifiers so that they can exploit new trainmif@rimation provided interactively, with

the aim of making efficient use of interactions.



Chapter 5

Nonlinear Time Series Models

In chapter 2 we saw deformable contour models that use a &érdiimnaradial time seriesas a contour
parametrisationd;). Section 3.2 further described the ways in which time semthods have been
used along with the 1-dimensional paramerisation to crsiaistical shape models for use in object
recognition and classification, and where these are in tsed @s shape regularisers for segmentation
(C3). This motivates us to look further into the field of nonlinelgnamics, in order to extend the idea
of time series modelling for shape. Dynamical models carriltes any data that is represented as an
ordered series. Examples include physiological time s¢g23], spatial data including surface models
in microscopy [224] and texture features derived from shand time series [225]. We review time
series analysis in the proposed context of shape modetingementation frameworks.

Section 5.1 describes Langevin models, which are used tehharkovian dynamics. We view
Langevin models as an extension to the 1D-CMRF model anddateslop them for shape modelling and
segmentation in chapters 7 and 8. Section 5.2 describesi@aysocesses, of which the 1-dimensional
case is an example of non-Markovian time series modellingyvliv Gaussian processes as an extension
to the CAR model and also develop them in chapters 7 and 8.t&hapvill introduce key elements of
new shape models and devise methods of training a model emdlig’ unseen shapes, while chapter 8
builds the models into segmentation frameworks, includiogel use of generative models. Throughout

this chapter we are looking for where Langevin and Gaussiaogss models might enable us to

e learn from a set of contours, prior shape information at aéigevel’ than local energies,
e work without the assumption of spatial correspondence éetvshapes in a class,

e derive a 'score’ for use in shape regularisation, whichnestées the probability that an unseen

shape belongs to the same class of shapes as the training set,
e exploit generative models in a probabilistic segmentafiiamework, and

e adapt generative models to incorporate observations, frdanmation available in the image

and/or from user interactions.
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5.1 Langevin Models

A Langevin model describes the dynamics of a time dependatet gectory (¢) as a stochastic process.
Langevin models are characterised by a deterministic téit)) and a stochastic teri(x(¢)) in the
generalised Langevin equation

O — (e + b)), 5.1)
wherew(t) is uncorrelated, time dependent noise with zero expectatbue.

Langevin models assume a Markov property defined by

x(t) = f(x(t — At)) (5.2)

wheref denotes any function anti¢ is a constant delay parameter for which the Markov propestgs
The transition densitPr(x(t)|x(t — At)) evolves according to the Kolmogorov forward equation (an

example of a Fokker-Planck equation) of the form
2

2 Prix(tlx(-a0) = - Zax (D (x Zaxl% DO (x(t), )| Prix(t) x(t—At)),
(5.3)

where thedrift functionD() corresponds to the deterministic term and difeusion matrixD(®) cor-

responds to the stochastic term. These are equivalent tbntieestationary conditional moments at

positiony in state space given by

1
D™ (x) = Jim —=([x(t + At) = x(B)]"[x(t) = X)- (5.4)
Let us treat a series = {xg,...,2;,...,2n_1} as the time evolution of a 1-dimensional state
variablex(t). Let us also define corresponding time intervials: {to,...,¢;,...,tx—1} and assume

that the delay parameter can be quantizedas- n x dt, wheren is a positive integer and:ds constant.
In the following derivations:(¢) corresponds ta:; andz(t + At) correspond ta;1,, andz;+, is the
special case wher&t is chosen so that the Markov property holds between sueeetasie points int.
Langevin models approximate the evolutionxdf) as a difference equation by adopting Itd'’s in-
terpretation [226, 227] of a stochastic differential equa{SDE). The time evolution, derived from the

Kolmogorov forward equation 5.3, has the form
dz(t) = a(z(t))dt + b(x(t))w(t). (5.5)

Assuming stationary dynamics, the deterministic and ststitbiterms are not explicitly time dependent,
and are given by functions of the state variable) andb(x). These are related to the drift function

DWW (z) and diffusion functionD(?) (z) in the underlying Fokker-Planck equation by [228]

B DM (z)
ale(t) =~ .
ba(t)) = D® (x) '
VAL

In the context of radial time series modelling for shape, vighwo 'score’ unseen shapes according

to their agreement with a model. We also stated that prolstibiscores are preferable, for use in
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probabilistic optimisation schemes. In section 7.2.3 wi seie that shape scoring can take advantage
of the conditional probabilities (transition densitieghtral to Langevin models. For this we notice that
the joint probability of a series a¥ points under a Langevin model is given by

N—-1
Pr(x) = Pr(xo) [[ Pr(x(t+ At)|x;1 = x(t)) (5.7)
=0

and use equation 5.7 in an objective function)(

5.1.1 Parameter estimation
Given a (1-dimensional) time series, fitting a Langevin madelves estimating the form and param-
eters of the functiona(z) andb(z). This means learnin@® ") (z) and D® () in equation 5.4, for a
chosen delay parametar, from observed data.

Friedrich and Peinke [229] introduced the 'direct estimatimethod to extract drift and diffu-
sion functions from observed series. The method assumess@atstatistics for the transition density
Pr(z(t + At)|z(t)). The authors approximaier(z(t + At)|z(t)) as a function of the state variable in

the following steps.
Step 1 Divide the state space into bins of equal widtl, centred on discrete values .
; ; : i Az
Step 2 For a given bin, note all observation§) that fall in the range:(t) € =, £ 5*.

Step 3 Starting from these observations, follow the time serlesga trajectory of lengti\¢

and form a histogram of the future position of the state Vdeia

Step 4 Use this histogram to approximate the transition densstPs, (x(t + At)|z(t) €

xni%)

Step 5 Estimate the Gaussian meap and standard deviation, from the distributiorPr(x(t +
At)|2(t) € zp £ 5E) = N (ptn, 0n).

Finally, the drift function and diffusion function at,, for a given delay parametéxt, are related to the

first and second order statistics of the transition density b

DW (z,, At) = (un, — 2n)At  and

Dg)(xn,At) = o, VAL T, € {xmin,...,xn,...,xmax}. (5.8)

Repeating for alk:,, within the state space occupied by the series, and evafuatt) yields discrete
approximations ofi(x(t)) andb(x(t)) in equation 5.5. The remaining task is to fit functions to ¢hag-
proximations. It is common to assume a simple parametrictfan and use a standard fitting procedure
to estimate the parameters. Function types are chosen jpgditisn and might call upon some intuition
regarding the physical process underlying the series data.

The choice ofAt¢ depends on the nature of the continuous time process andheodata are dis-

cretised. The Markov property is implicit in the two-stemddional probabilityPr(x(t + At)|x(t)),
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but for this property to hold, the delay parametgrmust correspond to that in equation 5.2. This is the
characteristic time scale of the Markov process, which dm¢secessarily correspond to a single time
interval separating observations and must be estimateer-Sampled data may necessitate a trajectory
length At of multiple data points to satisfy the model. Converselg, $parse data might never capture
the Markovian property of the underlying stochastic precétss common to find a delay parameter em-
pirically at the same time as extractingr) andb(z) [230, 231, 232, 223]. Other methods for choosing
the best delay parameter are given in [233, 224]. Friedetcl. [233] define the optimal\¢ as that for
which the multiple conditional probability densiBr(x(t + At)|z(t), x(t — At), z(t — 2At)...) and

the one-step densifyr(z(t + At)|x(t)) agrees for alk:(t + At) . However, the authors do not elaborate
on how these should be evaluated or their agreement defined.

The direct estimation method is a generalised and intuitiag of training Langevin models from
series data. Moreover, the method can be extended to leanmfiultiple time series comprising different
realisations of the same underlying dynamical system. éncdise of radial time series we show in
section 7.2.2 that this is equivalent to training a stat#dtshape model on multiple shapes of the same
class.

Alternative methods of training Langevin models from seu@&ta combine maximum likelihood
estimation with simulation techniques [234, 235, 236]. Beaeral idea uses the joint log likelihood

derived from equation 5.7, given by

2
L

L{zo,. .. x4y ...xy_1}a) ~ Pr(z(t + At)|z; = z(t),a)

e

(5.9)

i

~ log Pr(z(t + At)|z; = xz(t),a),

%

Il
=)

wherea is the vector of parameters of the Langevin equation. Thienatibn uses an iterative opti-
misation strategy to find the parametarthat maximizeZ({zo, ..., z;,...2zx_1}|a). The conditional
probabilitiesPr(z;41|z;,a) in equation 5.7 must be estimated for each intefxal+ 1]. All examples

in [234, 235, 236] extract these estimates from simulated, dgenerated using the current estimata of
and simulation techniques described in the next sectioristddgramming procedure similar to steps 2-5
above then yields estimates of the conditional probaliiéysity. However, these estimates are likely to
be biased and as such the benefits of these maximum likelimatldods is not clear [235, 237]. One
variant uses an auxiliary model to approximate the trudilibed [238]. However, the algorithm is

complex and a suitable auxiliary model may not be availabklicases.

5.1.2 Simulation

Simulation plays several roles in time series modelling.éx@mple, section 5.1.1 noted that a simulated
series can be re-analysed to evaluatér; 1 |z;,a) during maximum likelihood parameter estimation.
Also, all the examples of using Langevin models given latesdction 5.1.4 simulated the dynamics
learned from data for validation purposes. Similarly, irr case, simulation allows us to overcome
problems associated with the dynamic degradation of rdited series sampled on a pixel grid (sec-

tion 8.4.1.2). Moreover in section 8.4, we realise novehsegtation frameworks by simulating radial



5.1. Langevin Models 70

time series. This follows the intuition that simulation iguévalent to generating hypotheses in shape
space, which forms the basis of a stochastic optimisatibarse ().

Following Itd’s interpretation [226], a Langevin serieansiders a stochastic differential to be the
limit of a discrete time process. It follows that an instammdéea Langevin time series can be gener-
ated by the solution of the SDE in equation 5.5. Exampleautiinout the literature perform numerical

integration using the Euler-Maruyama representation

z(t 4 dt) = x(t) + dt x a(x(t)) + Vit x blz(t))w(t), (5.10)

where d is an integration time step.

There are three points to note from equation 5.10. Firstdifiasion term scales as the square
root of dt. This is necessary to obtain the limit of the diffusion prese the underlying Fokker-Planck
equation [239]. Second, for any choice of integration tirepst, the Markovian property 5.2 holds,
where d is equivalent to the delay paramet®t. Third, the integration time steg thas arbitrary units.
When simulated data represents a real time series the atderan be re-scaled to the characteristic time
scale. In practice, large values of dsed in equation 5.10 cause the simulated series to divénge.
general d should be just small enough that the conditional densitynegés do not change for smaller

values [234]. However, there is no single optimal choice dpglies to all drift and diffusion functions.

5.1.3 Incorporating observations

We wish to constrain the simulation scheme so that an instéime series) agrees with both the dynam-
ics encoded in the SDE and observations in state space. &qutipose of this project, 'observation’
refers to information from an image model and/or informatmovided by the user of an interactive
segmentation algorithm. In particular, in chapter 8, we ggke how Langevin simulations can be con-
strained so that shapes generated as radial time series\aigineboth the global dynamical model and
evidence of region boundaries in an image.

The goal of constraining generative Langevin models inway is the subject of ongoing research,
particularly in the meteorological literature, where ikisown asdata assimilatiorj240, 241]. The state
of the art generally employs the SDE as a sampling mechardamined with another inference scheme
such as Bayesian MCMC [240, 241] or Gaussian process [242p\dpose that, in the context of radial
time series modelling for shape, techniques based on dsitaikion can constrain the SDE simulation

method above by observations in the form of an image madglqr interactions@r).

5.1.4 Applications

Langevin models are particularly suited to systems withrastenlying physical model, as these relate to
the deterministic function. Examples are coupled oscitiatanalogue electrical circuits and potential
wells. Langevin models are also suited to describing a stetchprocess on a macroscopic scale, where
this results from many microscopic subsystems that arensgénising [243, 244, 236]. Langevin models
have gained recent popularity for their ability to descdla¢a in a wide range of applications. Examples
include meteorological systems [231], physiological syst [232, 223], financial markets [245], traffic

flow [230] and measurement of rough surfaces [224].
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In one example of physiological data analysis, Kuusglal. [232] found that the Langevin model
describes heart rate fluctuations over characteristic $icaées of tens of minutes. Since this discovery
the Langevin model for heart rate fluctuations has been usethfa classification and proved successful
at distinguishing between healthy and diseased patie@®.[2n an example of spatial data analysis,
Jafariet al. [224] demonstrated that the undulations on metallic sedagithin microscopic data are
well described by a Langevin process. The authors demaedtthe simulation of realistic surfaces

using the Euler-Mayarama scheme with a trained model.

5.2 Gaussian Process Models

Gaussian processes (GPs) are a general method for modékirgior distribution and estimating the
posterior distribution over discrete functions. Gausgiestesses are naturally suited to tasks involving
observations in state space. As a result the models are s#tamas a regression tool [246]. Gaussian
processes are also gaining popularity in the field of timesemalysis. In chapter 7 we extend this idea
for the case of radial time series, to create a global shagkeh{@;). In the context of a segmentation
framework the ‘regression’ view also extends to incorpiagabbservations from the image modé)
and interactions{;) in chapter 8.

The model treats a time series as a random vector of outputs{zo,...,2;,...,xNy_1} COI-
responding to inputs at discrete time points= {to,...,%;,...,tx—1}. The output at each has an
associated probabilifyr(z;|¢;), which we assume to follow a normal distribution. As a rethtvector

of outputs has a multivariate normal distribution
xNNN(HaE(XaX)) (511)

wherep is the discretised mean function given by the vector of etgien valuesZ(z;) andX(x, x) is

the NV x N matrix of covariances between pairs of outpluts, =, }Vi, j € {0,..., N — 1}, written as

60,0(500,500) 60,1(500,501) 50,N71(I05$N71)
1,0(®1,x0) e1,1(w1, 1) ei,N—1(z1,2N-1)
(x,x) = B h b . (5.12)
€N71,0($N—1,I0) €N71,1($N71,I1) €N71,N71(IN—1,IN71)

The covariance between each pair of outputs is taken as didanof the corresponding inputs
e(zs,x;) = f(ti,t;) where f is also known as a kernel function. The mean functioand the co-
variance functiorz(z;, x;) completely define the prior model of a GP.

As in the Langevin case, we wish to 'score’ unseen radial semges according to the probability
that they belong to a shape model. In section 7.3.3 we wiltlsaea probabilistic shape score can take

advantage of the fact that GPs are based on multivariateaidalistributions.

5.2.1 Parameter estimation

Williams and Rasmussen [247] view GP regression as a madhameing tool where the task is to

fit a discrete functionu and a parametric kernel functiar(z;, z;,a) to training data, whera =
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{ap...ap,...ap_1} is a vector ofp parameters. In the context of shape modelling, estimatiodah
parameters from multiple radial time series amounts taiegrtheir common dynamical properties.

A full analysis requires that the functions and parametegseatimated simultaneously, with an
optimisation scheme such as by Bayesian model selecti@j.[2dr our purposes we assume knowledge
of the functional forms oft ande(z;, x;, a), and consider the task of estimating paramedersed in the
covariance matrix(x, a) that best describes an observed series. This is the appaazhby several
authors [247, 248, 249]. Recall thatz;, z;,a) is actually evaluated in terms of input sitgsandt;,
which are known. This means that the only unknowns, wherdimglthe covariance matrix, are the
parametera, so we writeX(a) for convenience.

The most common method of parameter estimation follows pipecach usually accredited to Mar-
dia and Marshall [250], but presented earlier by Kitani@&s1]. The approach is to express the likelihood
of observed data in terms of the parametric covariance ifumcand find the parameters that maximise
this likelihood. The probability of an observed series= {zq,...,z;,...,zx_1} follows the multi-

variate normal distribution
1 _
Pr(xfa) = —r——— exp[~5(x — ) T~ (@) (x - w)] (5.13)

where vectop is the known discrete mean function @Bda) is the covariance matrix as in equation 5.2.
Taking the negative log of equation 5.13 yields the costtionc
L = —log(Pr(x|a))
N 1 1 e (5.14)
= 5 log(2m) + S log(IS(a)]) + 5 ((x — W=7 (a) (x - )
which is to be minimised to find the most likely parametarsThe authors in [250] and [251] use

iterative gradient descent methods of the general form

oL
Ap+1 = A — 6Rk8—ak’ (5.15)

wherek is the iteration numbep, is a step length which, in the case of the Levenberg-Mardzdgad-
rithm, is made adaptived{) to ensure a decrease in the cost function at each iteramhthe matrices
R, andg—aLk are discussed next.

The matrixRy governs the type of gradient descent algorithmR}f is the unit matrix, then 5.15
is the method of 'steepest descent’ Rf, is (an approximation of) the inverse of the second derieativ
g%, then 5.15 is the (quasi-)Newton method. More commonhhenstuse the Gauss-Newton method
wherebyR is the inverse of thé x P Fisher information matri¥ evaluated for the current parameters

a = ay, having elements

1 ., 0%(a)_,, 0%
Fon= 5 Tr(E (a) 0. X" (a) 90, )’ (5.16)
where 682(1(;) is the matrix of element-wise partial derivatives of the axdance matrix with respect to

themth parameter.
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The matrixa% is the P x 1 vector of partial derivatives of the likelihood with resp&zthe current

parametera = a;. It follows from the product rule and properties of the traa matrix, that

().~ (3.

0L 0%(a)
2 o (5.17)
-3 (e RY) - (T R )

Mardia and Marshall’'s gradient descent method is prone tveging on local minima [252].
Also, the calculation oR; and the matrices of partial derivatives limits the suitépibf the gradient
descent method in the context of learning from radial timéeseor shape modelling. This is because
equation 5.17 assumes that all training data belongs tagéesseries. While data from multiple training
shapes could be concatenated, this would lead to imprégtiaege matrices.

Markov Chain Monte Carlo (MCMC) methods offer an alternatapproach as used in [247].
MCMC is a general machine learning technique, already dissadi in chapter 2 for optimising de-
formable contours. In the context of parameter estimati@nalgorithm uses Monte Carlo sampling
to draw parameters from the stable distribution that masésihe log likelihoodbg(Pr(x|a)), i.e. the
negative of equation 5.14. Neal [248] states that MCMC mashare the only feasible approach to
parameter estimation, especially for larger numbers cipaters.

The MCMC method is particularly suited to our purposes, afténg common dynamical proper-
ties from multiple shapes (radial time series) in a clasds Type of machine learning is referred to as
'multitasking’ [253, 246]. In section 7.3.2 we exploit thant probabilityPr(x™=% - |a) of observ-
ing the set ofM series denotest™="-M~1_The joint log probabilityL’, i.e. the thing to maximize,

becomes a summation

M—1
= M dog(on) — 4 los(S(@))) — 3 3 (6"~ WS @) (" — ),
m=0

(5.18)
and an MCMC algorithm is set up to draw samples from the s@ibteibution(a) having expectation
value equal to the maximumposterioriprobability (MAP) estimate o4.

5.2.2 Generative model

This section defines standard procedures for generatingZ3B%s Generating a series from the model
is equivalent to drawing a random vector of outpxits: {zg, ..., z;,...,xy—1} from the prior distri-

bution. After developing GPs for shape modelling the getineranodels form the basis of probabilistic
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segmentation frameworks in section 8.5.
If z is a N-dimensional vector of independent variables, each drawam \'(0, 1) then we can

write

z ~ Ny(0,1) (5.19)

where0 is a vector of zeros anHlis the N x N identity matrix. If the covariance matriX(x, x) is

positive semidefinite, it follows that
X =+ Az~ pn+ Ny(n, AAT), (5.20)

where A is the Cholesky decomposition &(x,x). Calculatingx from equation 5.20 requires the

following steps:
Step 1 Form a vector ofV discrete inputs = {to,...,t;,...,tn—1}

Step 2 Construct the covariance mati3X(x, x) by evaluating elements in equation 5.2 using the

kernel functiore(z;, ;) = f(t;,t;).

Step 3 Take the Cholesky decomposition¥fto give A.

Step 4 Constructz by generatingV random variables; from the normal distributiov'(0, 1).
Step 5 Calculatex = p + Az.

This procedure generates a whole series simultaneousbyding to the prior dynamical model defined
by the mean function and covariance kernel. The next sed@soribes extensions to draw samples from

the posterior model in the light of observed data.

5.2.3 Incorporating observations

As proposed above, in the context of radial time series niodeéh segmentation, the image modéb)

and interactions(;) can play the role of observations. It is desirable for a gateel series to combine
these observations with the dynamics defined by the meanadiance functions. In the GP model
this type of constraint amounts to conditioning the prioeiofunction space. Generating series in turn
amounts to drawing samples from the posterior. Here we ilestite procedures for conditioning the
prior in the light of observations with and without assoedhhoise. The noisy and noise free observations

are represented by image models in section 8.5.1 and ititemaén section 8.5.2.1.

5.2.3.1 Noise free observations

GP regression is based on conditioning the prior model orrghionsz; at corresponding inputs.
We re-write the vector of inputs above tis= {t{,...,tf, ..., t%-_, }, wherex denotes that the cor-

RSB

responding outputs are unknown. These outputs are derdted{zj,...,z},...,zy._, } and could
be predicted by the GP using the generative model above NFobservations we have the vector of
known outputx = {xzg,...,2;,...,xy_1} atinputst = {¢o,...,t;,...,tx—_1}. Consider a new vec-

torv = {t,t*}7, which is constructed by concatenating input vectors ferXhobservations andv*
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unknown outputs. This vector has length = N + N* and covariance matrix

6070(.%'0,1'0) 807N(.%'0,.”L'*N/,1)
Y(v,v) =
eno(@i/_1,m0) ... eNN(TN/ 1, Th_y) (5.21)
. 2x,x Ex,x*
- 3
Z:x*.,x Z:x*,x*

whereXy » denotes av x N sub matrix,3x - is a/N x N* sub matrix and so on. These sub-matrices
are used to draw samples from the posterior as follows.

The posterior has a multivariate normal distribution of diteion/N*, written as
Pr(x*[t", t,x) = Nn-(1post Zpost), (5.22)

whereppostis the N* x 1 posterior mean function anBipostis the N* x N* posterior covariance
matrix.

Calculation of the posterior mean functingostinvolves accounting for known observatiao®y

Hpost= M+ Ex*,xz;i(x — Ha). (5.23)

whereyp, is the prior mean function evaluated at the same input si¢iseaobservations.
Calculation of the posterior covariance matiyostinvolves all pairs of inputs with both known
and unknown outputs, by

Spost= Sx- x- — S 1Ty L S(x, x7). (5.24)

Finally, equation 5.20 is replaced by

x" = Hpost+ Apost ~ Hpost+ N+ (Hpost ApostApost (5.25)

wherez ~ N(0,1%) with I* being a(N* x N*) identity matrix, andA postis the Cholesky decompo-
sition ofzpost. Samples drawn from the posterior in equation 5.25 are tionéid to pass through the
observed points. When working with radial time series medet segmentation in chapter 8, we will
adapt the constraint of noise-free observations in ordeotalition shape models in response to user

interactions ().

5.2.3.2 Noisy observations

In many practical cases, an observation at a given tiyrie represented by a mean and variance
o?. GP models have also been developed to condition the pridhese 'noisy’ observations. The
method stores observation means and variances in a v@aod a matrixo2I respectively, wherd
isaN x N identity matrix ando? = {09,...,0n_1} are the independent variances of each\of
noisy observations. Because of the independence assumyioan add the variance matt£1 to the

covariance matrix of the joint distribution given in equaits.21 to give

nyx + 0'21 Ex,x*
Y(v,v) = 5 5 , (5.26)
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where, as in section 5.2.3.1, the covariance maix, v) divided into four sub-matrices used in the

predictive equation

Pr(x*[t*,t,%,0%) = Nn-(post Spost); (5.27)
where
Bpost= B+ Zx- x[Zwx + 2T H (R — ). (5.28)
and
post= Zxrxr — Txer x[Bax + 02 T T e (5.29)

Samples drawn from the posterior in equation 5.27 are &ttlabe the observation means, more so for
those having smaller variance. In the context of radial tseges models in segmentation, chapter 8

adapts these ideas to derive noisy observations from boysdsed image model€y).

5.2.4 Applications

GP models are mainly used for regression and classificatiskst The role of GPs as a regression
tool, fitting functions to sparse and noisy data, makes thidetiing technique suited to the contouring
problem where the observation series (boundary measun®jsy and may contain gaps. The role of
GPs as a classification tool extends to the use of a GP pri@gimentation by regularisation.

The use of GP models for time series modelling is well establi. Recent examples in computer
vision use the dynamical priors to improve object trackigg4, 255]. In these cases the approach is
viewed as a nonlinear extension to methods using linearegressive models, such as that in [256].
Wanget al. [254] introduced a GP framework to model higher dimensidimaé series for tracking
human motion over video sequences. Urtastial. [255] later showed that this framework can learn
complex dynamics with modest amounts of training data, sttiandling occlusion in the observation

series and low image quality.

5.3 Discussion and Conclusions

This chapter reviewed two time series models, chosen assates to those used for shape modelling
and segmentation in the vision literature. Langevin modalre the Markov property with the 1D-
CMRF used in shape classification and segmentation. We viéwdimmensional GP as a nonlinear
extension of the autoregressive time series model [254, 255

The wider field of time series analysis involves other typledymamical model, including chaotic
and purely statistical models, which are also used biona¢diata analysis. Our choice of model is
governed by two main questions. The first is what we can assibuat the data. For example, we
make noa priori assumptions as to whether boundary fluctuations for tunsoregions of interest are
Markovian. As such we have chosen two models, Langevin andvBieh respectively do and do not
assume this property. We make agriori assumptions as to whether radial time series exhibit chaoti
behaviour. We learn from the example of heart rate fluctuatithat the same physiological time series
can be described by both chaotic [257, 258] and stochasiig] [dodels. The second question is what

we want the model to do. As we have already justified, we desimodel that provides hypotheses, in
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other words generate shapes with model dynamics for us@mesgtation algorithms. Purely statistical
models such as those based on fractal analysis [259] or diardmmplexity [260] or other entropy
measures [261, 262, 263] do not readily offer this functiipa

In discussing the relevance of Langevin and GP models fgreshaodelling we note the key sim-
ilarities and differences between the two approaches. Toaets are similar in that they both offer
discriminative and generative methods that, if combinetth Wie radial time series boundary represen-
tation, lend themselves to statistical shape modellinghBaodels represent a series by a deterministic
function and an independent stochastic sequence, and Eblmoused in frameworks with a stochastic
deformation mechanism and optimisation scheme. In theafdsangevin models, the delay parameter
At is the characteristic timescale at which fluctuations cawcdresidered Markovian. This is analo-
gous to the width parameter of a GP kernel. These parametéusn play the role of the numben
of 'lag terms’ in an autoregressive (AR) model. Finally, gamin and GP models are both nonlinear
and as such, following the conclusions made in [165], exqubtti model complex shapes having high

within-class variability. We discuss differences betwd@models in the next subsection.

5.3.1 Differences between Langevin and GP models

The Langevin approach models Markovian dynamics, basedstatianary function of the local clique
{z;,z;—n}. As aresult, the machine learning methods in a Langevin irzzalemake use of incomplete
training contours, or the method adapted for open contoutetso Conversely, GPs are based on a
continuous correlation function over afland must be trained on complete series.

As a result of their Markovian nature, Langevin models doreadily represent cyclic series. GP
models on the other hand can model cyclic series by the clubiagperiodic kernel function. This is
relevant to radial time series that exists over a periodigesof2 radians.

In the case of Langevin models, observations are not eagilyded by current methods, as so-
called 'data assimilation’ is the subject of ongoing reshaConversely, GP models naturally use obser-
vations to condition the prior model, as this constitutesréggression task for which GPs were primarily
developed.

Another difference lies in the generative methods for sating a series from each case. The SDE
method of Langevin models generates a series in succetspge n the context of deformable contours,
this is analogous to the deformation mechanisms specificsuadary tracking. The GP generative model
on the other hand draws the whole of a series from the prioretin@ne-shaot

Finally, unlike Gaussian processes, Langevin-type sagsgme an underlying physical model. Ex-
amples in the literature suggest that these assumptiodsmabany real world applications, including
physiological processes and one example of a series ofspnirthe spatial domain. Kleinharmes al.
highlights the suitability of Langevin methods for modetlicomplex systems of physics, chemistry and
biology [236], where macroscopic series are the result ofidex interactions between microscopic sub-
systems. This applies to the complex physiological medmasihat give rise to regions such as tumours
and lesions in medical images, as backed up by simulatiossdoan physical models of constrained

diffusion in biomechanical literature (eg. [264]).
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This is also in line with other ways in which physical modedsé been used to constrain segmen-
tation and the related field of image registration. In theea#ssegmentation, biomechanical knowledge
allows tailored definitions of internal energy. In [265] fexample, the authors segment cellular re-
gions in single plane illumination microscopy (SPIM) imagesing a smoothness constraint based on
analytical expressions for the ’lipid bilayer bending egeiin cell membranes. In the case of registra-
tion, biomechanical models have been used to constraingfgrdation field that aligns two images,
by incorporating knowledge of the physical processes uyidgrregional differences in the two images
[75, 266].

In conclusion, the field of time series analysis outside #grgentation literature is vast and has
seen rapid development since the use of CAR and 1D-CMRF &pesblassification. We have chosen to
review GP and Langevin models, both of which are nonlineaxilile and capable of modelling natural
phenomena in an intuitive way. Both models also introdutasbschemes for machine learning, series
simulation/generation and, in the GP case, the incorporaif an observation model. We are there-
fore motivated to develop these approaches for statistiegbe modelling and supervised segmentation.
With a radial time series representation, the Langevin aRda@proaches can be seen as extensions
to the linear CAR and 1D-CMRF models respectively. The esitars also introduce nonlinearity and
higher-level information known to benefit a segmentati@mfework and reduce the amount of on-line
information neededRequirement 2 We identify the following requirements to enable novehsé

priors based on Langevin and GP models:
e Developing 'shape scoring’ methods for use in (classificatind) an objective function.

e Adapting GP data assimilation procedures to incorporaseiations from an image model and

interactions.

e Devising Langevin data assimilation procedures to incrafgoobservations from an image model

and interactions.

e Choosing deterministic functions and machine learning@dares appropriate for the training

data available.
e Devising methods of generating periodic series in the Laimgease.

e Building generalised DCM frameworks driven by generati@/s, capable of incorporating these

or other models.



Chapter 6

Tracking Ambiguous Boundaries

This chapter seeks to improve supervised segmentatiomtimdiicing prior knowledge driven by effi-

cient run-time interaction€£¢) and novel image model§{). Chapter 2 concluded that the most efficient
modes of interaction work closely with other componentdief¢egmentation framework, and proposed
that boundary tracking approaches offer the optimal ba&dmstween a user’s control and involvement.
Chapter 4 concluded that the SVM ’kernel trick’ leads to imatassification methods that generalise
across applications and maximise the information gaineeh fmonospectral data. This chapter devel-
ops these two key ideas by combining interactive boundaigkars and texture classification in novel

segmentation frameworks.

Section 6.1 develops algorithms for boundary tracking articbduces an interactive framework.
Experiments in section 6.1.5 evaluate the useability ofitleractive framework in user trials. Sec-
tion 6.2 investigates the use of SVMs for texture classificeiind boundary extraction in low contrast
images. Experiments in section 6.2.5 test the efficacy oStikls for the boundary ambiguity prob-
lem in synthetic and medical images. Section 6.3 shows hevbtlundary trackers can be driven by
the output of SVM classifiers to reduce problems associatddhwundary ambiguity. Experiments in
section 6.3.2 and 6.3.3 evaluate the benefits of the SVM iarsiged segmentation of synthetic and MS

lesion images respectively.

6.1 Interactive Boundary Tracking

This section develops an interactive boundary trackingtiesed on the jetstream algorithm of Pee¢z

al [43], with novel modes of interactior€f) designed to increase the amount of user coniReluire-
ment ). Sections 6.1.1 and 6.1.2 present adaptions made to thiearjetstream algorithm and other
interactive methods built into the framework. Section Bihtroduces two new algorithms, constrained
to terminate the open contour at a fixed point provided itéraly. These algorithms are intended as
methods for completing a closed contour during segmemtatial we choose from the two on the basis
of qualitative evaluations. Sections 6.1.4 and 6.1.5 dest¢row we evaluate the interactive software and

present experiments that test the novel interactions agdimsing.
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(d) (e) (f)

Figure 6.1: Schematic diagram of boundary tracking by plarfiiltering. Grey-levels represent any

image model/, such as gradient magnitude, or SVM decision value, reddal¢he rang€0,...,1}.

(a) The current 'step’ comprising boundary points (bluggipolated with a straight line (green). (b)
Thepredictionstage, makind/ = 6 proposals for the point; 1 by drawing from the prior distribution

of anglesy. (c) Theweightingstage, forming a discrete estimation of the posterior byghisiw. (d)
Theimportance samplingtage causes some predictions to be duplicated and somedtscdaeded. In
this example two predictions have survived and are eachaitet! three times. (e) Several steps create
several tracking paths that share many points. Arrows shberevparticles have differest. (f) The

path with highest overall weight gives the desired estinéthe contour section.

6.1.1 A patrticle filtering algorithm
Recall from section 2.2.1, the 'jetstream’ algorithm wowkigh a set of M contours(xg}___7i)m:0,,,,,M_1
wherex; = {x,y} is a position vector in the image frame. The algorithm traaksoundary section

Xo,...,; by making iterative estimates of the posterior densities

Pit1(Xo,....i+1|D) o pi(Xo,....i| P) X ¢(Xit1|Xi-1,....i;) X L (D(Xi+1)), (6.1)

whereD denotes information in the image apdand( are the smoothness prior and data likelihood
respectively, given as functions of the angle made by a gstep’ fromx; to x;;.1 and the local image
properties. Section 2.2.1 gave a full description of thesetions and the particle filtering algorithm,
comprising stages qdrediction weightingandimportance samplingFigure 6.1 illustrates these stages.
We make three technical adaptations to the jetstream #igofhased on intuition. First, we re-

place the normal prior angular distribution,= AN (¢, 0,0,), with the Von-Mises distribution[267]
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g =V(p,0,k,) x exp(k,cos(e — 0)), which is periodic with perio@r and spread controlled by,,.
This distribution is better suited to model the prior overesipdic variable likep. Second, we constrain
boundary tracking to avoid self-intersection. This is dbge&eeping a map of the contour sections ac-
cepted from previous runs. For any proposal step that lands ¢raverses the pixels in this map, we
repeat the prediction stage of drawing samples fid, 0, x.,), with increasing variance,,, until M/
proposals do not intersect the contour. The algorithm thhengeds by weighting these proposals and
resampling from them as usual. Third, we define a jetstreatheaparticle set that, after importance
sampling, has the maximum total weight, i.e. the higheste/alf Zf;‘ol w. The authors in [43] ar-
gue that the mean path, rather than the path of maximum weggatmore stable’ solution. However,
the averaging process can smooth out desired boundary dethcould create false paths where the
posterior is multi-modal such as at forks in the true boupd@he arrows in figure 6.1 (e) show parts
of a boundary where taking the mean over particles wouldeansecessary deviation from the true

boundary, caused by nearby clutter giving high weights.

6.1.2 An interactive framework

We extend the initialisation and run-time interactionsgegjed in [43] to make more efficient use of
the information provided. Figure 6.2 demonstrates the éwaark, used for the application of MS lesion
contouring. Rather than a single anchor, we initialise \aigmall straight-line (2 or more pixels). This
provides bothx, and the initial directionyq in figure 6.2 (b) without placing much additional demand
on the user. This mode of initialisation can also increagzdmnd user-control if the jetstream can
be initialised at a long, straight section of a boundary. Wputialisation, the software displays the
contour section resulting from a single reg . v 1, with pointsz; interpolated using Bresenham'’s line
algorithm [268]. Contouring continues by making efficiesewf anchors placed around the boundary.
In [43], as with live wires in [90], the anchor simply fixes tbentour model at the last accepted point
on the boundary. The methods described next, (section.®)tovide a fullyuser steeredramework
with increased control. This type of steering is shown tokwnra real-world segmentation in figure 6.2,
and replaces extra measures used in [43] for handling slbaneis in a boundary. The final run of the
jetstream is constrained to terminate at the starting @nh figure 6.2(d). Loop closing methods are

revisited in section 6.1.3.

6.1.2.1 User guided contours
Figure 6.3 illustrates the modes of interaction that a uaeruse to guide a jetstream contour along a
boundary. At any time the contour is made up of acceptedmecfrom successive runs. Between runs,
the user selects an anchor point, from where the next rumbedin anchor placed at thg of the
jetstream causes the tracking to continue as normal (fig8rgdp row). If an anchor is placdzbyond
the tip, the Bresenham algorithm interpolates a straigiet fiom the tip to the anchor and the next run
begins from the anchor, with initial direction given by tiiarpolation (figure 6.3, second row).

If the user wishes to discard some of a jetstream, i.e. tcecbfor a divergence from the true
boundary, an anchor is placed at the last accepted pigafthe contour (figure 6.3, third row). This

anchor becomes part of the contour model and all points fr@reton-wards are removed. A new run
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(b)

(d)

Figure 6.2: Annotated screenshots from a jetstream dudgmentation. (a) A white matter lesion in a

mid-axial MR image of the brain. (b) The first jetstream rumguising a straight user-defined section
from x( to x; and N subsequent steps. Pixels selected by the user are showd) poiatsx that make
up the parametric contour in blue and their interpolatiogrieen. (c) Second user interaction to steer
the contour followed byV steps. (d) Final interaction that both steers the contodreariorces loop
closure. Each arrow in (c) and (d) points to a pair of anchamtgo Contour sections discarded by each

interaction are shown as black lines in (c) and (d).

begins from the anchor, with initial direction given by thepeding step of the contour.

If an anchor is placed anywhere along, but slightiyone sideof the current contour (figure 6.3,
bottom row), subsequent points are removed as before blashaccepted point on the contour is not
immediately obvious. To identify the last accepted pails; we step through the pointsand find the
point that is closest to, but not beyond the anchor. We thtampolate from here to the anchor, which
becomes the point|5st, , and the next run continues from there. The subsequent ruarhastial
direction governed by the interpolation frag, g to the anchor. This in turn is ultimately governed by
the user upon placing the anchor. When a user is familiar thigttool, and aided by the visualisation
of pointsx in their own colour (blue), this method of steering a contoetiveen runs provides the main

form of run-time supervision.
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(b)

@)

Figure 6.3: Schematic diagram illustrating four differesies of interactive 'anchoring’ in a user-steered

(©

framework. Contour pointg; are shown in blue and their straight-line interpolationight green.
Dashed, dark green lines show where an interpolation ja@parsite runs rather than steps within a
run. Columns show (@) the 'current’ jetstream, (b) an anched square) placed by the user and (c)
subsequent steps of the jetstream in response to the arlelsenpent.Top row the anchor is placed at
the tip of the current jetstreansecond rowthe anchor is placed beyond the tifhird row: the anchor

is placed at the last accepted point, along the contour thaates from the desired patBottom row

the anchor is placed to one side of the contour, around the pbdivergence.

6.1.2.2 Extrainteractions

The software includes a panel of 'slidebars’ for changingpeeters of the contour model during run-
time. The user can adjust the smoothnes3,(detail (step length) and lengtiV{) of subsequent runs
using slide-bars. We also provide two extra methods of endiapervision. The first is based on the
'"damming’ method in the original jetstream paper [43]. Théhars allow false paths, such as at a fork
in the boundary, to be blocked by drawing a small line on thegen We allow the user to draw a whole
area, that the jetstream will subsequently avoid. We cal¢rareas 'no-go’ areas. By choosing an area
rather than a line, nearby clutter (erroneous edges or falsitive classifications) can be eliminated in
the same interaction with little extra effort. A map of curt@ogo-areas is recorded in the same binary

map as that used to avoid self-intersection. Figure 6.4 slaowexample of the no-go area in use, during
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a delineation of the cerebellum in a sagittal MRI slice of tinain. The user-defined area is dimmed in
the image so that the user remembers where it is (and can itdfeteed be). The false path taken by
the jetstream in (a), without the no-go area, is avoided wherinteraction is repeated with the no-go

area (b).

(a) (b)

Figure 6.4: Segmenting the cerebellum in a sagittal MR imafgae author’s brain. (a) A jetstream

run is first performed without a 'no-go’ area. (b) Repeatinthva 'no-go’ area, indicated by darkened

pixels, excludes nearby clutter and avoids a false path.

We also introduce a novel interactive procedure that etgptbe probabilistic nature of the under-
lying algorithm. At any one time the jetstream algorithaies a set of\/ particlesx" "' 1", of
which only one gives the contour. The chosen path is that thgthighest cumulative weighting along
the N steps, but one of thenseerpaths might better represent the desired boundary. Thikely When
a boundary is close to false edges, causing the postertobdison of proposal steps to be bimodal. We
allow the user to manually select particles after eachrfsst run, from the set/" ;3 *. To do this
we must display some of the unseen particles. In practispdhticles are very similar for most of the
run, but might differ for the last few steps. The method, kea by the user, displays a small number
of particles chosen for their distinction from the curreabtour. The particles are shown in different
colours and the user simply selects one with the mouse. &&6rshows two examples of this procedure
in use. In (a) the jetstream reaches a fork in the boundarylarige region (brain hemisphere) and the
displayed particles follow left- and right-hand paths. b, Gome particles are attracted to a strong, false

edge (skull). The red particle, however, successfullykisdabe brain boundary.

6.1.3 Loop closing

Section 2.2 revealed that one of the problems facing boyrtdacking algorithms is the lack of con-
straint to terminate at a fixed point. Such a constraint wallilolv easy closing of an open contour in
the framework above, where the termination point is giverihyfirst contour poink,. This method

presents two methods and chooses one based on empiricstigatmons.
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@) (b)

Figure 6.5: Segmenting the brain making use of manual padelection to correct for ambiguity in (a)

path direction at a fork in the boundary, and (b) the true edgen a nearby erroneous edge is strong.

6.1.3.1 A method from tractography

Tractography aims to track white matter fibers in diffusiengor imaging (DTI). Each voxelin DTI data
gives information regarding the likelihood that a voxel&tmf a fiber and the local direction of the fiber
at that point. Knowledge of brain anatomy and function méawe know approximately where a tract
should originate and terminate. This knowledge can be midta tractography algorithm to constrain
fiber tracking. We propose that similar methods can comsbaiindary tracking algorithms to terminate

at a pre-defined point, hence close a contour.

Friman and Westin [269] use a tractography algorithm sintdgparticle filtering. The origiM of a
fiber can be marked manually or automated using anatomicallienlge. During the process of growing
a fiber tract, the dynamics of the model are not affected bpdisition of the targeB. However, if there
is a true path fromA to B then tracts are likely to reach the target. The algorithriesedn this fact
and repeats the tracking, from the same origin, until maagt$rhave terminated & by chance. Those
particles that do not reach the target within a sensibletleage discarded. Finally a single path (or
a population with associated probability) is extracted lapadrtance sampling from the remaining set.
This Monte Carlo approach is intuitive but computationdiéymanding, depending on the consistency of
the path fromA to B. Recently, Jbabdit al. [270] take a similar approach wherein the likelihood of a
growing tract terminating at a given point is driven by a mépftective connectivity between all points,
measured separately by functional MRI. The constraintsoth [269] and [270] can be referred to as
'soft’ constraints, as the start and end points can be angauluighin small regions rather than asserting
unique voxelsA and B. This is where the tractography analogy to open contour setgtion breaks

down.

We introduce an adaptation to the jetstream algorithm thases the final run to terminate at the
start of the contour to close the loop. The software assunats$tte user anticipates when a run can close
the loop and invokes the loop closing algorithm by pressikgyaon the keyboard (similar to [42]). The
method borrows from the tractography literature above. trgerlying assumption is that a run is likely
to reach the target point by chance. The loop closing run ngdohas a fixed number of steps, but
proceeds until enough particles are within one step-lenfjthe first pointxy. When this is true, it is

likely that nearly all of the proposal stegs ... ;1 arrive near the target pixel at the same time, as all

.....
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particlesxg i—1. The algorithm then uses importance sampling to select

,,,,,,,,,,

from these particles only.

With no fixed number of stepd, it is possible that particles diverge from the desired lotaump,
visiting clutter in the image before hitting the target gdig chance. To avoid this we direct the particles
towardx, by the addition of an extra prior term in the weighting statiee new weightsuatt incorporate

anattractionforce by the definition

qxl . D . .
Watt = ( +(i+1) exp(—;) i €4{0,1,... it} (6.2)

1+1)
whereD is the straight line distance fromy; to xo. The attraction force is given a relative weighting
that increases with the step indeto help 'pull’ a diverging contour model towaed,. Finally, note that
after this run the selected patrticle is that with the highesighting according to the image and shape
priors only, ie. calculated without the attraction force.

In practise, even with the attraction force, the loop clgsiim may give undesired results if invoked
too early, or if the contour was initialised near to a cormethie true boundary. We test the algorithm
on extreme cases using a synthetic image (figure 6.6). Thgameferred to as the 'heart’ image, is an
8-bit grey scale image created by placing a symmetricakisbape of grey level 128 on a background of
grey level 192. The image is then given Gaussian noise vattdstrd deviation 10 and finally smoothed

using a3 x 3 pixel averaging window.

(¢)

Figure 6.6: A loop closing algorithm used on a synthetic imgdemonstrate two failing scenarios. (a)
The loop is successfully closed by tracking frofrto B = xq. (b) The algorithm is invoked too early
and the loop closing run diverges (inset) before re-joirthigytrue boundary. (c) is close to a sharp

corner (inset), which is overshot by the loop closing run.

In figure 6.6 (a) the loop closing algorithm successfullycksa large boundary section frorm
to B. In (b) the contour diverges from the true boundary shoffigrahe start of the loop closing run
(inset). The contour eventually heads toward the targetioldiee attractive force and re-joins the true
boundary. In (c) there is a relatively short boundary secbetween pointsi and B. However, the
section to be tracked is not straight, involving a sharp epemd the contour overshoots the boundary

due to the smoothness constraint.
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In summary, the loop closing algorithm must be invoked whengubsequent run can realistically
hit the targetx,, by tracking a relatively short and straight section of theetboundary. This assumes
some common sense on the part of the user, as well as the adbilititialise the contour in a sensible

place. In our experience a user gains these intuitions aftendest amount of practice.

6.1.3.2 A method from molecular dynamics

The loop closing algorithm above demonstrates one apprtafiking the end point of a boundary

tracker. We now introduce an alternative method inspirethbiecular dynamics simulations.

Molecules can be modelled as a chain of atoms (nodes), vgtti bionds (links) of known but
variable length. To simulate the dynamics of polymers in @ticmum it is often required to generate a
large set of random perturbations of a molecular chain. Bsdo and Pablo [271] perturb a molecular
chain by removing and 're-growing’ a section of the chainimsn 2 sites that are the origin and target
of a random walk. The random walk is constrained so that tted §itep is bound to reach the target.
The number, order, and separation of points between fixed aite conserved but a new configuration
achieved by sequential positioning of nodes after randaentation of the adjoining link (see figures
2-4in [271]). Angles are selected from a prior distributibat is adapted after each step. Limits are
placed on the possible angles to ensure that the distancetfre proposed position to the target site
does not exceed that of the extreme case given by aligningethaining nodes in a straight line. The
algorithm continues with new limits placed on the prior alagdistribution each time. It results that the
final step can only take one angle (in fact any angle from decwa the sphere of 3D angles) so that
a step in that direction places the penultimate node exacitystep length away from the target site.
The constrained random walk achieves a new configuratiodéres homogeneous continuum, i.e. no
external energy to influence the final shape. For the purpiseumdary tracking we need to introduce

this external energy from image priors.

We have realised boundary tracking with targets, based @miblecular dynamics simulation in
[271]. The method is made possible by an inherent flexibditparticle filtering, being that the predic-
tion and weighting stages are independent, so treat idtdynamics and boundary alignment separately.
We have designed an adaptive prior angular distributiondbiastrain 2D random walks, originating at
a pointA, to reach a known poinB. The adaptive prior angular distribution replages the prediction
stage of the classical jetstream algorithm. This createacker that is bound to traverse user-defined

start and end points whilst still capable of adhering to éomgoundary.

At any step of a growing contour, the adaptive angular distion is constrained to have limits
Omin @ndfmaxwhered is the 'global” angle made with respect to the positivaxis. Figure 6.7 shows
a schematic diagram of the algorithm at an intermediatetpl®noted{x, v, } between pointsi and
B, to help define variables, 8, D, d andn. The algorithm selects angle equivalent to thehangein

global angleAd, which must be between the limig,i, andfmax given by.

Qmin =2r—(f—a) and Omax = Gmin + 243 (6.3)
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Figure 6.7: Schematic diagram introducing the variabléb®tracking algorithm inspired by molecular
dynamics. Solid blue dots show previous steps while holllwe dots represent the steps yet to be taken.
There are a fixed numberof steps available after the current step. The dashed lioe@sthe straight

line between the current point and the target

where
a=tan! (u) (6.4)
Y2~
by Pythagoras and
1, D?*+ d? — (min(D + d,nd))?
_ 1 )
B =cos'( 5D ) (6.5)
by the cosine rule, where
D = /(xz2 — 21)% + (y2 — 11)? (6.6)

is the straight line distance from A to B. In this formulatjdhe prior angular distributions are centred
on the direction to the target, not the previous step divecti his means thaty no longer constrains the
smoothness of the contour. However, the anlgleis known for any given proposal step, so we retrieve
smoothness by weighting the proposal steps;by [ in the familiar way, but have separate angular
distributions for predictiony, () = V(0, kg) and weightingg,,(A0) = V(0, kas), Wherery andrag

are separate parameters relating to prediction and wagyhti

One problem with this model is that we need to know the futummiber of steps. between the
current proposal step and the target. To overcome this, e &r anexces®of available steps, giving
rise to the term mifD + d, nd) in equation 6.5, which returns the smaller of two lengththegin x d,
orD +d.

To initialise the algorithm we set the maximum length of thie to bes x D, wheres is aslackness
term, controlling how much longer the contour can be, tharsthaight line fromA to B. To demonstrate
the dependence onwe test the algorithm on extreme cases using a syntheticartfagire 6.8). The
image, is an 8-bit grey scale image where the greylevelseofrtanglular region are graded to remove
any discernible edge along the bottom. The image is themd@Baussian noise with standard deviation
10 and finally smoothed using3ax 3 pixel averaging window. The path over the top two sides (ddsh
greenline in 6.8 (a)) has Iengﬁ@ x D whereD is the shortest distance frorto B.

Whens = 1 so that the only possible contour covers the straight lis¢adce to the target, the

algorithm produces a straight line frorh to B, even though there is no evidence of an edge there in
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Figure 6.8: (a) Graded greyscale triangle image with lemgtiown (units of 100 pixels). The remaining

panels show in red the results of three jetstreams trackamg pixel A to B, with (b) s =1, (¢) s = §

and (d)s = 3.

the image (figure 6.8 (b)). When = @ being the ratio of the true boundary length to the straight
line distance fromA to B, the whole of the top edge can be extracted in theory. Howefetr the
slightest deviation from the true boundary there are noughaemaining steps to return to the true
boundary (figure 6.8 (c)). lf is greater than the ratio between the true boundary lengthhanstraight
line distance fron¥ to B, the algorithm assumes more steps than are necessary taitytrack the
boundary (figure 6.8 (c)). This regime successfully tratkesltoundary, and surplus steps are simply

discarded when the tracket reacligs

The balance betweety andxag leads to a directional asymmetry of the tracker, for a givain qf
parametersy andsag. Figure 6.9 shows the results of two runs of the algorithnmftabelled pixelA to
B onthe heartimage. In both cases the parametersaverg, kg = 1.0 andsag = 5.0. In case (a), the
angle between the boundary direction and the straighttora the boundary t@ is nearly constant and
always acute (inset). In case (b) however, these anglesatarge for early steps of the tracker (inset).
Despite the asymmetry problem, the algorithm can extragelaoundary sections between fixed points,
as demonstrated in figures 6.8 (d) and 6.9 (a). It is not clématier the previous algorithm, designed
for loop closing, would track such large sections as in therthexample, or handle the corner as in the

triangle example.

In summary, the second constrained boundary tracking ighgorinspired by molecular dynamics
simulations, works well in some situations. However, ttgpathm uses extra parameters (slackness
and two smoothness parametegsandrxag), which must be optimised. The tracker also has an inherent
asymmetry which leads to the artefact demonstrated in figy®e-or subsequent experiments we choose

the first loop closing method, and allow a user to repeat tbp tdosing run if necessary.
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Figure 6.9: The 'heart’ image showing two jetstream rungTimxel A to B, oriented (a) from bottom

Al

to top and (b) from top to bottormnset diagrams showing how the angle, between boundary directio

and a straight line to the target, changes as a tracker msegdérom A to B.

6.1.4 Data and performance evaluation

We test the interactive framework to evaluate the main adimpis made to the original jetstream algo-
rithm, ie. the novel interactions of section 6.1.2 and theseim loop closing algorithm of section 6.1.3.1.
We evaluate these adaptations by recording user behavimingdmultiple use of the tool to delineate
different regions in medical images. This section does natuate segmentation quality, which we
revisit to compare jetstreams driven by differentimage et®th section 6.1.5.

We test the interactive framework for the chosen applicediomultiple sclerosis lesion contouring.
We choose 3 slices from MR images of different MS patientd,cdose 2 lesions in each of these slices.
Figure 6.10 shows the 6 regions of interest along with thirie’ boundaries delineated manually by an

expert.

6.1.5 Experiments

We asked four experts in MS radiography at London’s IngiaftNeurology (IoN) to use our interactive
jetstream framework for MS lesion segmentation. Each éxper followed a randomised sequence of
6 lesions, repeated three times for each PD image in figuf® &rid again for T2 images of the same
lesions. In this way, raters completed a total of 36 contaamd repeated this sequence on two separate
occasions, making a total of 72 contours.

First, we hypothesise that:

'H6.1.5.1: The loop closing algorithm is
(a) successful, and

(b) favoured over a simple, more manual method of completiogntour.

To test this hypothesis we record the acceptance rates ahdd@ completion of all jetstream contours,



6.1. Interactive Boundary Tracking 91

Figure 6.10:Top row PD images of the three chosen axial sliddsttom row expert delineation of two

chosen lesions in each slice.

created by the four raters. We incorporate an 'accepttfeption such that a user can repeat the final
run of the contour if results are undesirable. This revedisther a loop closing run is considered
successful by the expert user. In addition, the user camideghe jetstream algorithm and simply close
the loop with a straight line. A user might prefer this metludatlosing the contour, but must already
have an almost complete contour so that a short, straigtibeeill lie on the true boundary.

Table 6.1 shows the percentages of loop closing methodsgtantce over all jetstream contours.

Percentage. . User 1| User2| User 3| User4
... finished using loop closer 9.7 95.8 41.7 18.1
... of these that only took one attempt 100.0 | 82.6 46.7 61.5
... closed after one attempt using loop closer 9.7 79.2 19.5 11.1

Table 6.1: Level of preference for the loop closing algaritbver a manual method.

When users chose to use the loop closing algorithm, one pttesas usually sufficient (between
46.7% and 100% of the time). As a result we accept hypotheki6.1.5.1 (a). However, table 6.1
reveals large variability in user behaviour. Rater 2 seenpsdfer the loop closing algorithm and uses it
with a high success rate, while rater 1 usually closed théotmga with straight interpolation. We accept
hypothesigi6.1.5.1 (b) for rater 2 only. The idiosyncrasy of user bebawhighlights the importance of

maximaising user control, not only in terms of steering buthoosing alternative modes of interaction.

Next, we hypothesise that:

'H6.1.5.2: The extra interactions of no-go areas, manuatpaselection and parameter

adjustment are useful in MS lesion contouring.
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To test this hypothesis we record the use of extra intenagtiluring segmentation of the 72 lesions. All
users had been shown the use of these extra interactionkadndsed them at least once before during

a practise session.

Apart from a single contour, (drawn on one occasion by a oee)uall lesions were segmented
without use of the no-go area or manually choosing from mdtéve paths. In the exceptional case, rater
2 made use of the no-go araad three uses of the manual particle selection on the samenle¥ie
reject6.1.5.2 in the case of no-go areas and manual particle gled@the rejection 0f{6.1.5.2 could
be due to relative unfamiliarity with the extra image-basgéractions. Also, given that any contouring
error can be corrected by the anchoring method (figure 6.2jea could consider the extra modes of

interaction not 'worth’ the extra requirement of invokirgem.

Parameter adjustment proved to be more useful. Ratersajlyrfeund a desirable combination of
smoothness, detail and length of a jetstream run, by tridlearor at the start of a contouring session.
Having settled on these parameters, users made adjustneeatsonally, such as when they encountered

particularly sharp corners. We accépb.1.5.2 in the case of parameter adjustment.

Next, we hypothesise that:

H6.1.5.3: Operator time for jetstreams
(a) is less than freehand drawing, and

(b) reduces with user experience.

To test these hypotheses we record the number of runs andsbkite time taken to complete a contour.
Note that a single run of the jetstream algorithm is completed displayed in real-time, but segmen-
tation involves successive runs, so the absolute time tak@omplete a contour is governed by the
number of runs and the length of any pauses between runsctlrafasolute times are generally longer
for jetstreams, so we can not accé$.1.5.3(a). There are three likely causes of this limitatiBirst,

the raters are still relatively unfamiliar with the tool, fasehand delineation is in common use. Second,
raters can, and are known to pause contouring between rumgetdétream, whereas the freehand tool
demands a continuous interaction from start to finish. THire application of MS lesion segmentation
involves ROIs that are small and jagged, so long boundatiosecare unlikely to be tracked by a single
run. We suspect that another application, where ROIs agefdand with longer smooth sections of the

boundary, would benefit more from the boundary tracker imgeof operator time.

For hypothesig{6.1.5.3(b) we compare operator times on two occasionsoaong the same
lesions. We consider that a rater’s level of experienceéstgr during the second contouring session,
and perform paired-samples t-tests on the duration of tgmsatations of each region, on the first and
second occasion. We measure the duration in terms of botiuddsime, and the number of jetstream
runsNruns equivalent to the number of anchors placed around a siegiier. Table 6.2 shows the mean
durations and p-values indicating significant reductiongser time. We accept hypothei$.1.5.3(b)

due to the high levels of significance of the reduction in apmrtime andVryns
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Occasion Mean time (sec) MeanNruns
first 27.60 18.17

User 1l
second 19.07 (p<0.001) 14.89 (p=0.01)
first 40.17 41.28

User 2
second 28.91 (p=0.025) 34.53 (p=0.1)
first 44.54 36.75

User 3
second 23.14 (p=0.01) 23.34 (p=0.025)
first 30.76 31.67

User 4
second 30.76 (p=0.05) 22.39 (p=0.05)

Table 6.2: Mean time and number of runs necessary to comalgieen contour on two occasions.

P-values indicate the significance of the reduction in usenahd.

6.1.6 Conclusions

We have realised an interactive framework for supervisedatging based on jetstreams. User experi-

ments lead to the following conclusions:

e The chosen loop closing algorithm, inspired by probaldigtctography, is a successful solution

to the problem of producing closed contours in a boundagking framework.

e Modes of interaction are a matter of user preference, soithgiving as complete control as
possible to the userRequirement), one form of 'control’ is the ability to choose between mahu

and automated methods.

e Slidebars controlling certain algorithm parameters areegaly popular, and allow an algorithm to
generalise across user-styles as well as applicationsnegithin an application and boundary-

sections for a given region.

e The methods of on-line supervision between successivegata runs leads to a slower tool than
simple freehand drawing, but more user experience may nedgiegams faster than the freehand

tool.

e The extra interactions and the time-saving potential ottimeent framework may benefit another

application than MS lesions. In particular larger ROIs maitdr exploit the tracking algorithm.

6.2 SVM Texture Classification

The previous section was concerned with improving bounttacking by efficient modes of interaction.
As well as interactivity we seek an appropriate model of thage data{,) to alleviate problems as-
sociated with boundary ambiguity. This section developsuieless texture classifiers for the problem
of boundary ambiguity and investigates their propertiaslamitations in synthetic and medical images.
We introduce two different classifiers for boundary exti@tt Theregion-trainedapproach seeks to dis-

tinguish between textures inside and outside a ROI, whicatés the boundary after gradient filtering a
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classified image. Theoundary-trainedapproach distinguishes boundaries from all other datatijre
by treating boundary data as a class of its own.

Section 6.2.1 introduces the data sets used and sectidhde8cribes how SVMs are evaluated
in terms of classification success. Section 6.2.4 uses theseand performance evaluation methods
to validate the SVMs and optimise certain model paramet&gperiments in section 6.2.5 address

hypotheses regarding the success and generality of thefides

6.2.1 Data and texture sampling

We noted in chapter 2, that the validation and evaluatioresf methodologies benefits from the use of
synthetic data. Synthetic textures and composite texinagés have the advantage over medical data,

that the ground truth is known exactly and image propertaaste controlled.

6.2.1.1 Synthetic texture images

We use data sets derived from images in the Vision Textughdat [44]. Thesgl2 x 512 images each
contain a single 'texture’, meaning a continuous scenentéif@am one semantic class. We choose the
textures of 'stone’ (figure 6.11 (a)) and 'fabric’ (figure 6.(d)) as these have finer scale pixel variation
compared to the others in the database and in each case téiaskaprovides two different instances
allowing us to use different data for training and testing\veu classifier. We pre-process the VisTex
images in order to emulate properties of medical images antta@ image contrast using 'histogram
specification’. This general technique computes a transfanction or 'look-up table’ that transforms
the image histogram to a specified distribution. We set pixehsities; to have Gaussian distributions
defined byexp((i;—’;)Q) and control the first-y) and second-ordeb] statistics. We specify the means
{,ufg, Nbg} and standard deviatior{ssrfg, abg}, where subscripts 'fg’ and 'bg’ denote foreground and
background respectively. We choose these statistics tomtlabse of MS lesions and the white matter
immediately adjacent to them, for all ground truth in a refere MRI dataset. The reference data is a
single MRI volume, and is that having the most represergatdntrast between region and background.

We define this most representative volume as that having #xdian 'Z-score’, which is a standard

measure of histogram overlap, given By = (Hfg - ubg)/\/(a]?g/N) + (U%Q/N)' whereN is the
number of ground truth pixels common to both classes. Figuré (b)/(c) and (e)/(f) shows example

histogram transformations and resulting images.

6.2.1.2 Synthetic texture boundaries

We create synthetic data for the boundary-trained SVM byfog composite images from two synthetic
textures. We choose two texture images to represent 'fotegl’ and 'background’, and copy their
contents inside and outside a synthetic shape. We genesatecd shapes in polar coordinatest)
with origin at the centre of an image, by varying the raditmisbidally over the range of orientations
{0..., 27}, along with a random perturbation. We also choose the aiiemt ¢ = 0) and the number

of sinusoidal periods at random in the equation

2w 4w

r =120+ 15sin(M (0 + A9)) + Ar, 96{077—077—0,...

27}, (6.7)
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Figure 6.11: Synthetic images derived from the Vision Textatabase. (a) Greyscale version of the
'stone’ texture. (b) Cumulative histograms of the origiimetensity distribution and that specified to
match MS lesion statistics, shown along with the transfarncfion. (c) Transformed image of 'stone’
texture. (d)-(f) the same for 'fabric’ texture specified tatch background white matter statistics. The

overlapping stone and fabric histograms are shown befQren(g after (h) the transformation.

where Ad is the orientation of the shape selected at random from aumitlistribution in the range
{0...,27}, Aris the radial perturbation selected from a normal distidsut/ (0, 2.5) and M is double
the number of sinusoidal periods, selected from a uniforstridution over the rangé2,...,6}. The
shapes have one boundary point%@radians. The 70 points that define each shape are then itatrgo
by the Bresenham line algorithm.

Figure 6.12 shows composite texture images created usmgxXample shapes. In total we generate

40 shapes, which have a mean of 757 boundary pixels.

6.2.1.3 Medical regions and boundaries

We have MR images of 40 brains containing MS lesions. Thesettaare previously labelled by an

unknown expert using the tool in [22] along with manual pafitieg. For each brain there are two 3D
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Figure 6.12: Composite texture images made from synthleéipes having (a) 1, (b) 2, (c) 3, (d) 4, (e) 5

and (f) 6 sinusoidal periods

data sets, imaging Proton Density (PD) and spin-spin réilaxéime (T2) respectively. It is likely that
ground truth labelling was performed mainly on the PD sliegth corresponding T2 slices viewed as a

reference [19]. MR slices and lesions in figure 6.10 are exesfpom this dataset.

6.2.2 Sampling for feature vectors

We use the two types of ground truth described above to ofgatare vectors for boundary-trained and
region-trained SVMs. In each case, we sample pixels fromighbeurhood centred on each ground
truth pixel, and turn the intensities directly into 'featlvectors.

First, following the region-based classifiers in [203], veesquare pixel windows of width, to
sample vectors of dimensionality>. Second, for use in the boundary-trained SVM, we use a star-
shaped sampling window that spans a width of 7 pixels butsgpfedimensional feature vectors (inset
in figure 6.14). The star-shape creat&aimensional feature vector that spans an aréaof pixels.

This sampling window is expected to capture both the smatlale textures at either side of a boundary
and the larger scale texture that a boundary itself comp[&@0]. Upon sampling, we re-scale the raw
intensity to the rang€0 . . . 1} by subtracting the minimum and dividing by the range of alliea in the

corresponding volume. Such rescaling to a small range ivgsrthe performance of SVMs [197].

6.2.2.1 Positive and negative ground truth

SVMs require labelled training data from both positive ardative classes. The two classes are defined
differently for the boundary- and region-trained SVMs and¥RI and synthetic images. Figure 6.13
shows labelling schemes for both classifiers in MS lesioa.d@ositive labels are defined (a) on and (b)
inside the ground truth boundaries. For the negative claskbeloff-boundaryandnon-lesionpixels
respectively. We select these pixels at random, with pritibatveighted byp « e~2, wherer is the
distance to the closest positive class pixel, but rejections immediately adjacent to positive ground
truth to allow for imperfections in the original labellingNote that in the boundary-trained case, the
negative examples include locations inside the lesions.

We define the negative classes in this way so that the SVMidistates between boundaries and
the nearby tissue that a supervised contour model is mady lik encounter. The idea of assigning an

exclusive class to data immediately adjacent to a boundasiniilar in principle to one of the schemes



6.2. SVM Texture Classification 97

(@) (b)

Figure 6.13: Example ground truth pixels (white) for the age classes of (a) 'off-boundary’ and (b)

'non-lesion’. Corresponding positive class pixels arevaho black.

used by de Bruijnet al. [119] in their active appearance models. However, our latgels automatic

and the spatial constraint encodes the probabilistic raifithe contour models that we intend to use
with the SVMs. The random negative-class pixel labellimgnieates when, in a given slice, the same
number of negative labels have been assigned as there atieggpoBhis avoids problems that can arise

from unbalanced training sets [272].

6.2.3 Performance evaluation

Each SVM assigns distance valuks, to the feature vectors in a test set. We seek to evaluatefidass
performance based on these outputs. Performance evalbatsatwo roles in this section. First, param-
eter optimisation in section 6.2.4 is based on maximisiagsification success. Second, we compare
the success of different classifiers in the experimentsaf@e6.2.5. For both purposes we use the area
under an ROC curve (AUC) as a success measure.

The general method of producing ROC curves was describedBimardd is explained here more
specifically for the SVMs above. We calculate true positracfions?' P and false positive fractions
FP by comparing the true labels of test data with the labelsgassi by thresholding decision val-
uesdsyy. At any threshold, all measurements above the thresholdlassified as positives and those
below it negatives. Counts of true positivl%,, true negativesV., false positivesV,, and false neg-
atives N, give the true-positive fractiofi’ P and false-positive fractiod’ P by equation 4.8. For all
train/test scenarios we keep the number of positive andtivegadass data the same, and the number of
training/testing data the same. In all cases we vary thetiotd in 500 increments from the minimum
(negative) decision value to the maximum (positive) decisialue, and form the ROC curve by plotting
F P againstl'P.

As described in section 4.3, cross-validation such as ael@me-out’ scheme removes bias in ROC
analysis. ForN individual datasets containing ground truth, we train a S¥Mdata from(N — 1)
datasets and test it on that data 'left out’ of training. Byeating/N times with a different set omitted
from training each time, we géY values of AUC use the mean AUC as a single performance measure
For this leave-one-out scheme we must first partition tha it distinct sets. In the case of MR images
we have 40 separate scan volumes which serves as a meapiagftion. In the case of synthetic images

we take random subsets of the available data.
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6.2.4 SVM design

We use binary SVM classifiers of the software library ’libsJ&16], with a radial basis function (RBF)
kernel chosen for its ability to generalise across diffetexture types. In the absence of explicit texture
features, the design of a SVM involves choosing texture wive] and investigating the sensitivity to
sample sizes and SVM parameters. This section uses ROCsantdysee how SVM performance is
affected by changing texture windows, sample sizes and hpaslameters. We perform these prelimi-
nary investigations on both MS lesion data and synthetiwmtes, which lead to the same conclusions.
Only the results for MS lesion data sets are presented henégelater experiments, these preliminary
investigations only use a subset of the available MRI volsimeorder to satisfy time constraints. We

select five volumes at random for use as test data.

6.2.4.1 Texture neighbourhoods

The size of the sampling window used to extract feature vestoould match the scale of discriminating
textures present in the ground truth. To observe the valulffefrent sampling windows in MS lesion
classification we repeat ROC analyses for SVMs using squarpling windows of &3, 5x5 and
7x7 pixels. These result in 9, 25 and 49-dimensional featuctove respectively. We also construct
25-dimensional feature vectors using the star shaped sagnpindow described above.

We repeat ROC analysis on the five test data sets and presenétin AUC, with error bars dtone
standard deviation, for the various classifiers. Figurd 6Hows the results for the various window types

and the inset diagrams show the windows. Figure 6.14 sugjthedtclassifier performance increases with

Boundary-trained Region-trained
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Figure 6.14: Plots of classifier performance for differemingling windows. Results for PD and T2
lesions are shown for (a) the boundary-trained SVM and (@)¢gion-trained SVMInset diagrams of

the sampling windows.

the dimensionality of input feature vectors. This is intu@f as larger texture patches capture texture at
larger scalesn additionto the smaller scale textures closer to the centre of thehpatdthough the
49-dimensional { x 7 window) SVM may perform slightly better, we choose to useddsensional
feature vectors for the following experiments to satisfydiconstraints. Th& x 5 square window and

the star-shaped sampling window both form 25-dimensiogatiure spaces for the respective SVMs,
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but the star-shape window spans a larger area in the imagieowgh there is no significant difference
in performance between these two classifiers, we choosdahshaped window for boundary-trained
SVMs by intuition, as these SVMs need to capture texturetheeside of a boundary and would be

more affected by the inaccuracy of ground truth.

6.2.4.2 Training sample size

The size of a training set affects the ability of a SVM to captdiscriminating textures and generalise
well across all unseen examples. To observe the affectiofricpset size we first choose an image that
will be used in testing, which is removed from the training} ddext, we group together all available
ground truth in the remaining 39 images and a subset of theegapound truth selected at random.
The subsets are defined as%,10.5%, 1%, 5%, 10%, 507% and 100% of the pooled ground truth. We
repeat ROC analysis for a pre-selected set of five test insagksalculate the mean AUC, for each of the
training sizes. Results suggests that there is little todesgl from using more tha% of the available
ground truth as training examples, for both image types atid 8VM types. We use this subsé(t)

in the following two experiments to allow the desired amafritaining and testing in a reasonable time.

6.2.4.3 SVM parameters

We investigate the effect of varying RBF kernel widthand the cost of 'slack variableg’ using a
grid search to determine whiah, ¢) pair gives optimal SVM performance. Preliminary investigaton
suggest that our SVMs are not very sensitive tehile ~ values should be set around unity. Based on
the scheme given in [197] and used in [195], we vary each patemexponentially. Figure 6.15 shows
the topology of AUC vsy andc for the various classifiers. Based on these preliminanjtesaie choose

to usey = 1.0 and: = 10 in the following experiments. A more exhaustive paranse¢arch is desirable,

but was impossible prior to the following experiments duérte constraints.

6.2.5 Experiments

This section evaluates the performance of various textuMssusing ROC analysis.

6.2.5.1 Comparing texture and intensity

First, we hypothesise that:

H6.2.5.1: Texture SVMs are an improvement over intensitggholding for discrimi-

nating regions and boundaries.

To test this hypothesis, we repeat ROC analysis by thresigphibth the output of SVM classifiers
dsywy @nd image intensities. We repeat for synthetic and MS lgsixtures.

In the case of MS lesions we use all available ground truth.dehis means that the leave-one-out
scheme is repeated for 40 testing brains, and in each casktladl ground truth from the 39 remaining
brains are used in training. This leads to a mean and stadéaration calculated over 40 AUC values.

We repeat for region- and boundary-trained SVMs and for T@ BB images. In the case of
synthetic textures, we use 7500 training/testing vecidissen at random from each image. We use

one pair of stone and fabric images for training and a secairdf@r testing. We finally partition the
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Figure 6.15: Surface plots of classifier performance foyiway~ andc. The top row shows results for
the boundary-trained SVM classifying (a) PD and (b) T2 insagehe bottom row shows results for the
region-trained SVM classifying (c) PD and (d) T2 images.

training and testing sets into 10 subsets, by sampling ranidcations from the images, to perform
cross-validation.

For intensity thresholding in MRI data sets we perform twifedlent ROC analyses, with different
interpretations. In one case, we construct ROC cupegsbrain This means that we threshold the
ground truth in each brain to produce 40 separate curves téhke the mean and standard deviation of
the AUC values. Theer brainanalysis tells us how well the ROIs in a given image contrgatrest the
surrounding tissue. In another case, we group all the grawrtidl together from the 40 brains and vary
the intensity threshold to produce a singlebal ROC curve.

For all intensity ROC analyses, the negative class grourt is represented by the same, localised
random selections as used for SVM training. Table 6.3 shbevstean AUC £ one standard deviation)
for the two SVMs, along with results for intensity threshalgl In the case of synthetic images we do
not perform intensity thresholding on 'boundary’ groundttr, because the boundary is defined between
adjacent pixels, so all single pixels are either inside dside a region. These results suggest that SVM
texture is an improvement over PD or T2 intensity for diséniating MS lesion ROIs and boundaries. We
perform independent t-tests for the MS lesion results tatifyethe significance of this improvement. In
the case oper brainintensity analysis, tests reveal that, for T2 data, the awpment of both region- and
boundary-trained SVMs is significant with a confidence=009.95%. For PD data, boundary-trained
SVMs classify significantly better with a confidence betwee$t and95%, whereas the improvement

of the region-trained SVMs is not significant (confidenced0%). Comparing withglobal intensity



6.2. SVM Texture Classification 101
Region ground truth Boundary ground truth

Image | SVM Intensity Intensity SVM Intensity Intensity

type texture (per brain) | (global) texture (per brain) | (global)

PD 0.928+0.055| 0.924+-0.020| 0.836 0.875+0.043| 0.705+-0.062| 0.610

T2 0.92°A4-0.021| 0.881:-0.032| 0.854 0.858+0.039| 0.687A-0.071| 0.624

Synth. | 1.00+ <0.001 N/A 0.93+0.003| 0.95+0.003 | N/A N/A

Table 6.3: Comparison of mean AUG-(one standard deviation) for SVM texture classification and

intensity thresholding at regions and boundaries.

analysis, SVMs are a significant improvement in all cases.
We accept hypothesi§6.2.5.1, but note that the improvement of the region-thi®8¥M over the

per-brain intensity thresholding is not significant, and/rba negligible for a given MR image.

6.2.5.2 Locally trained SVMs
In the case of MS lesion textures we also investigate the Lis®aally trainedSVMs. These classi-
fiers are trained using ground truth from one slice only, aseduo classify data in an adjacent slice.
Such a classification scheme has two possible uses in a segioeriramework, which draw from the
incremental learning literature reviewed in chapter 4str-itraining data could be accumulated during
run-time, as the user identifies more ground truth intevaliti Second, 3-dimensional segmentation
tasks involving contouring of successive slices could hsesegmentation accepted in one slice to train
a classifier for the next.

A locally trained SVM is confounded by having a small traimiget, but at the same time benefits

from the coherence of training and testing data. We hypatadisat:
'H6.2.5.2: Locally-trained SVMs perform at least as well azbglly trained SVMs.

To test this hypothesis, we trainoae-slice-SVMn ground truth from all lesions in one slice, and
testit on all lesions in an adjacent slice. We repeat by swaghe training/testing sources, and for slice
pairs from three different brains shown in figure 6.16. Wenttake the mean and standard deviation
of AUC values over the six training/testing cases for regimd boundary-trained SVMs and for both
image types. This allows independent t-tests to look famifitant differences between the performance
of locally-trained SVMs and those using all available grdtnuth as in table 6.3. For each slice pair the
two AUC values and their mean are given in table 6.4, wheaéd on A’ implies tested on B and vice
versa, and the image nameg#p2’ correspond to the axial slices shown in figure 6.16. Telesuggests
that, compared with the global case in table 6.3, localiyated SVMs perform at least as well on region
data but less well on boundaries. An independent t-testigvbat the boundary-trained classifiers in
table 6.3 perform significantly better than the locallyifiesd counterpart.

We accept hypothesi¥6.2.5.2 for region-trained SVMs but reject it for boundargined SVMs.
The rejection ofH{6.2.5.2 for local boundary-trained SVMs could be due to #u that there are gen-

erally less ground truth pixels making up a boundary tharcargained inside the region. At the same
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Figure 6.16: PD images of the three chosen pairs of adjaséaltsices. The images in each pair are

labelled A and B, and their slice numbers given.

Boundary-trained SVMs Region-trained SVMs

Image/type| trained on A | trained on B | mean | trained on A | trained on B | mean
pls2 PD | 0.815 0.789 0.802 | 0.963 0.951 0.957
pl10s2 PD | 0.713 0.744 0.723 | 0.912 0.894 0.903
pl7s2 PD | 0.785 0.797 0.791 | 0.950 0.953 0.952

PD Overallmean  0.77#0.038 Overallmean  0.93%0.028
pls2 T2 0.834 0.807 0.821 | 0.958 0.909 0.934
pl0s2 T2 | 0.812 0.740 0.776 | 0.951 0.911 0.931
pl7s2T2 | 0.788 0.719 0.754 | 0.972 0.920 0.946

T2 Overallmean  0.7880.045 Overallmean  0.93%0.027

Table 6.4: Classifier performance of small, locally trai®Ms. Image names correspond to the axial

slices shown in figure 6.16.

time, it is likely that boundaries require more ground trilitAn regions, to achieve the virtual rotational

invariance described in section 4.2.1 and to overcome #erimracy of ground truth.

The acceptance ¢16.2.5.2 for local region-trained SVMs motivates the useegfon-data in slice-
by-slice incremental learning. For an idea of whether suabsifiers could be exploited in real time,
we observe training and testing times for the locally-tegirsVMs. Mean training times were24s
and0.22s for boundary- and region-trained SVMs respectively. Trgpeetive mean testing times were

0.059s and0.075s. Such short timescales suggest that some form of trainidgesting could be used
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during run-time without causing noticeable delay to thexsegtation process. However, only the ground
truth pixels are classified in the testing stages above,adsan practice all of the (masked) brain tissue

in a slice would be classified.

6.2.6 Conclusions

This section has developed SVM classifiers for discrimimgategions and boundaries in textured images.

After optimising the classifier design we arrive at the falilog conclusions:
e For synthetic textures and MS lesions, the featureless Syisgood classifier performance.
e The approach is capable of locating both regions and boiesdar

e ROC analysis supports the use of both region- and boundairyetl SVMs in segmentation algo-

rithms.

e The method extends to other applications, as it does nobretpultispectral data or application-

specific pre-processing.
e Locally-trained SVMs classifyegionsat least as well as those trained across multiple datasets.

e Locally trained SVMs lend themselves to incremental leagréichemes, that can benefit a seg-
mentation tool either by responding to interactions or pggiing learned image priors through

image slices.

6.3 SVM Jetstreams

Experiments above motivate the use of region- and bountlaiyed SVMs as image modelS,) to
alleviate the problem of boundary ambiguity in supervisegnsentation. The exception, revealed by
the test of hypothesi®6.2.5.1, is that the benefits of region-trained SVM overisity thresholding in

a single image is not significant. However, we did see somedugment and this may still benefit a
segmentation tool, given that the results of the classifieffiest high-pass filtered and it is the gradient
magnitude of the decision value that drives the contour hoéle such, we are motivated to test the
benefit of both SVMs in segmentation.

This section introduces a framework for supervised ROl @orihg that combines the boundary
tracking algorithm in section 6.1 with image models basedh@nSVMs in section 6.2. We use both
boundary- and region-trained SVMs to drive the adaptedrggms. In the first case, the distance to the
hyperplane output by the boundary-trained SVM gives a nreasiiboundarinessThis decision value,
denotedd,, replaces the intensity gradient magnitude. We separatfylocal boundary direction by
convolving the image of, with two orthogonal ridge’ templates to give the comporsarita direction
vectorR, andR,, and approximate the local boundary direction byﬂa(r%).

In the second case, classification by the region-trained $MMs the distance valug.. We use di-
rectional Sobel filters to calculate the gradient vegfprof the classified image, which has components
gd,» andgq, . in thex andy directions. The magnitude of this vector gives a measureohbariness

and we calculate local boundary direction by*[éhgj—ry).
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We classify the whole of a slice in an off-line step. Figurekréand 6.18 show synthetic and MS
lesion images along with the magnitudes of (a) intensityignat, (b) gradient of the images classified

by the region-trained SVMs and (c) the output from boundeajred SVMs.

(b) (c)

Figure 6.17:(Top lefty synthetic image of stone (foreground) and fabric (backgd) textures. (a)

Magnitude of intensity gradient. (b) Magnitude of the geadiofd,., (c) Rawd, values.

6.3.1 Performance evaluation

To evaluate a segmentation framework, we must make choégesding both a performance measure
and a comparison method. These two choices should be madé tbesapplication and the specific
component of the segmentation framework that is under tigason (the variable). In this case the
application is supervised region contouring and the végimithe image modelt).

We evaluate the performance of a tool by measuring accuragtyraer/intra-operator variability.
Accuracy refers to the agreement of any contour with the'tregion boundary. For synthetic images we
know the ground truth exactly, whereas in medical imagesieasgegmentation is not available. To assess
any semiautomatic segmentation we choose to use the freéeletineation of the corresponding ROI, as
drawn by the corresponding operator, as the ground trutrerGhat a user has ultimate control over both
jetstreams and manual delineation, we assume that the sutigevould be the same if jetstreams were
perfectly 'accurate’. However, by the same assumption,rivemual segmentations of the same region,

drawn by the same user, would be identical, which is nevec#se. As such we assess jetstreams in
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(b) (c)

Figure 6.18:(Top lefty axial MRI slice showing PD (left hemisphere) and T2 (rigkhtisphere) inten-

sity. White contours show the ground-truth segmentatidesibns. (a) Magnitude of intensity gradient.

(b) Magnitude of the gradient @f., (c) Rawd,, values.

terms of therelative accuracy compared with the agreement of two manual contours

Inter-operator variability, or 'repeatability’, refers the agreement between contours produced
by different users for the same ROI. Any disagreement migfi¢ct an intrinsic difference in opinion
between two raters. However, where two users perceive arrégithe same way, this variability is
minimised by a good segmentation tool. Intra-operatolity, or 'precision’, refers to the agreement
between contours produced for one ROI by the same user atatfifftimes. This can reflect inevitable
human error, but again can be reduced by good software.

We measure the 'agreement’ between any two contours usimponndary-based and one region-
based similarity measure. A boundary-based measure islalggmore relevant to a boundary-based
segmentation tool such as boundary tracking. On the othed, Fearegion-based measure is relevant
to the practical purpose of a segmentation tool, as in the o&$/S lesion contouring where a key
derivative of segmented images is the ’lesion load’, caltad from the area inside lesions.

To measure boundary-based similarity we find the distaraa frach point on one contour to the
closest point on the other and take the average of thesedéstaThis gives the mean minimum distance
(MMD), equivalent to the modified Hausdorff distance of [],0#here a lower value indicates higher
similarity. To measure region-based similarity we use tieeZimilarity Coefficient [104] (DSC), with
values ranging from 0 (no overlap) to 1 (perfect overlapegiby DSC= 2N(ACB) \where N (A)

N(A)+N(B)’
denotes the number of pixels in regidnand so on.
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Next, we choose which segmentation methods to compare.chbise should isolate the relevant
components of the segmentation framework for evaluation.a¥é concerned with the benefits of the
texture classifiers and the effectiveness of the modes efdntion in guiding a contour round a ROI
boundary. First we compare SVM jetstreams with the samedidatn by the intensity gradient. We also
compare the variability of jetstreams with that of the fraeth tool, as freehand drawing and jetstreams
are used in a similar way, i.e. guiding an open contour ard@dvhole of a closed boundary.

We test for significance of the differences in performandgben two contouring methods using
paired t-tests, where a pair refers to the two contourinchous. In the case of accuracy and intra-
operator variability and there are six pairs arising fromdkx lesions involved, and we perform separate
t-test for each user. In the case of inter-operator vartgbibr P users there argi_llz‘ uniquepairs

of users and we perform separate t-test for each region.

6.3.2 Experiments with synthetic texture regions

We ask 5 volunteers to segment the 6 synthetic ROIs in figlui2 &n all cases a user segments each ROI
on 2 separate occasions, and on each occasion using 4 meitimmethods are jetstreams driven by
region-/boundary-trained SVMs and intensity gradiend arfree-hand tool. We evaluate the segmen-
tation accuracy and intra-/inter-operator variabilityadf methods using boundary- and region-based

similarity measures.

6.3.2.1 Accuracy

First, we hypothesise that:

H6.3.2.1: SVM jetstreams used to segment synthetic texagiems are
(a) more accurate than the intensity-driven jetstreants, an

(b) more accurate than freehand delineation

To test hypothesi$(6.3.2.1 we measure the accuracy of each method, by the stynitetween
jetstream contours and the exact ground truth, and take danraver all ROIs. Figure 6.19 shows
the results separately for each user. T-tests reveal thag ik no significant difference between the
accuracy of the three jetstreams. However, all three @gis are significantly more accurate than
freehand segmentation for three out of five users (user 2d%6nnOne user (3) uses the freehand tool
with significantly higher accuracy than the jetstream drilag the region-trained SVM in terms of DSC
alone. We reject hypothest$6.3.2.1 (a) and acceft6.3.2.1 (b) for the majority of users.

6.3.2.2 Intra-operator variability

Next, we hypothesise that:

H6.3.2.2: in terms of intra-operator variability, SVM jetstms used to segment syn-
thetic texture regions are
(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation
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Figure 6.19: Accuracy of jetstreams used in synthetic imageeasured by (a) mean minimum distance

and (b) Dice similarity coefficient. Error bars are givental standard deviation.

To test hypothesi${6.3.2.2 we measure the intra-operator variability of eaelthod, by the sim-
ilarity between contours created to segment the same regidwo occasions, and take the mean over

all ROIs. Figure 6.20 shows the results separately for eaeh independent t-tests reveal that the only
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Figure 6.20: Intra-operator variability of jetstreamsdi$er synthetic images, measured by (a) mean

minimum distance and (b) Dice similarity coefficient.

significant difference between the three jetstream typlestiseen the two SVM jetstreams, whereby the
variability in terms of DSC was significantly lower for thegien-trained SVM than for the boundary-
trained SVM in the case of user 1. As such we reject hypotligi8.2.2 (a).

The trends in figure 6.20 suggest that the SVM jetstreams ggveerally better and less varied
results than freehand segmentation. For 3 out of 5 usersastt bne jetstream gave significantly lower
variability than the freehand tool in terms of one or both &®and MMD. This is true for all jetstreams
in the case of users 2 and 5, and the tool driven by regiongds$VM in the case of user 1. However, all
jetstreams showed no significant benefits over freehandesgtgtion for user 4 and significanthygher

variability for user 3. As such we can not accept hypoth2&s3.2.2 (b), but suggest evidence for it
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based on figure 6.20, and assume that the improvement wocddrigemore apparent after more practice

on the part of the user.

6.3.2.3 Inter-operator variability

Next, we hypothesise that:

H6.3.2.3: in terms of inter-operator variability, SVM jetsams used to segment syn-
thetic texture regions are
(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation

To test hypothesi$(6.3.2.3 we measure the inter-operator variability of eaethod, by the simi-
larity between contours created to segment the same regifoubusers, and take the mean over all 10

unique pairs of users. Figure 6.21 shows the results sebafat each region.
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Figure 6.21: Inter-operator variability of jetstreams di$er synthetic images, measured by (a) mean

minimum distance and (b) Dice similarity coefficient.

T-tests reveal no significant difference between SVM jetstrs and the intensity-driven tool, so we
can not accept hypothest#6.3.2.3 (a). However, the trend in figure 6.21 suggests laagability for
at least the region-trained SVM. Indeed, the region-tidiB¥M shows some significant improvement
over the boundary-trained SVM. This is true for region (ii)terms of MMD and (iv) in terms of both
measures. In terms of DSC, the region-trained SVM signiflgayut-performs freehand segmentation
in all cases, with the boundary-trained SVM also showingigicant improvement for regions (i) and
(ii). The region-trained SVM also gives significant impravent in terms of MMD for regions (i) and
(iii). We accept hypothesi&6.3.2.3 (b).

6.3.2.4 Useability

The final hypothesis concerns the usability of SVM jetstreawle hypothesise that:

H6.3.2.4: SVM jetstreams used to segment synthetic texagiems place less demand

on the user than jetstreams driven by intensity gradient.
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To test hypothesi${6.3.2.4 we count the number of anchors used to complete actloentour
using jetstreams driven by each of the three image modelstakiéethe mean over 6 regions and look
for significant differences between the SVM driven by intgngradient and each of the SVM types.
Table 6.5 shows the results for each user. Bold numbers wjterscripts '+ and ’-’ respectively, denote
tools that were significantly more and less user friendlyeims of demand, than the jetstream driven

by intensity gradient. In all cases, use of the region-gdi8VM leads to less user demand than using

Image model User 1 User 2 User 3 User 4 User 5

intensity grad. | 55.6A4-10.13 | 64.33:10.46| 71.1746.43 54.50+9.59 37.83+7.60
region SVM 31.67-3.33" | 55.33:6.98 | 65.00+9.84 | 29.67+4.84" | 18.17-4.22"
boundary SVM| 54.83:15.89 | 82.6725.85| 83.83+9.77 | 70.1413.06 | 38.646.95

Table 6.5: Mean number of anchors required to segment symthgture regions. Bold numbers denote

a significant difference between jetstreams driven by SVMliatensity gradient < 0.05).

intensity gradient and this improvement is significant foe tajority of users. However, use of the
boundary-trained SVM leads to a reduction in useabilitytfer majority of users, which is significant
in two cases. We accept hypothesi6.3.2.4 for the region-trained SVM but reject it for the bdary-
trained SVM.

6.3.3 Experiments in MS lesion contouring

The following experiments test the efficacy of the SVM jetamns for the application of MS lesion
contouring. In order to test the tool in a realistic setting ask expert raters to perform segmentations.
These are 4 trained raters with experience of MS lesion coimg who, at the time of the experiments,
work at the Institute of Neurology (IoN), London. The expestgment MS lesions using three jetstreams
as above, and the freehand drawing in the experimental@rbdescribed in section 6.1.5, where three
repeated segmentations of the same lesion refer to the ystsweams driven by the three different
image models. All raters also segmented each of the 6 lesiging a freehand tool. In summary, on a
single occasion, each rater followed a randomised sequéi2deasks from 6 lesions and 4 methods. We
use the results to compare the texture-driven jetstreahsimtensity-driven jetstream and the freehand

tool.

6.3.3.1 Accuracy

First, we hypothesise that:

H6.3.3.1: SVM jetstreams used to segment MS lesions are
(a) more accurate than the intensity-driven jetstreams and

(b) at least as accurate as freehand delineation

To test hypothesi$(6.3.3.1 we must measure the accuracy of contours with respeome defi-
nition of 'ground truth’. Unlike the synthetic images aboteie boundaries are not defined for the MS

lesions. To measure the accuracy of each jetstream, weltaksgrilarity between contours created by
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a rater using that jetstream and the same rater’s freehartdwo To quantify freehand accuracy we
measure the similarity between a freehand contour and andemte created by the same rater, for the
same ROI, days earlier. Figure 6.22 compares the mean sijndaer all 6 lesions, of each method used

on PD and T2 images. T-tests reveal no significant differéeteeen the three SVMs for either PD or
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Figure 6.22: Accuracy of jetstreams used for MS lesion insadep row: for PD images by (a) mean
minimum distance and (b) Dice similarity coefficieBottom row:for T2 images by (¢c) mean minimum

distance and (d) Dice similarity coefficient.

T2 images. The only significant difference between jetstieand freehand tool is for the case of user
1, who achieved higher accuracy with the freehand tool in fABges. We can not accept hypothesis
H6.3.3.1.

6.3.3.2 Intra-operator variability

Next, we hypothesise that:

'H6.3.3.2: in terms of intra-operator variability, SVM jetsams used to segment MS

lesions are
(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation
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To test hypothesi${6.3.3.2 we measure the intra-operator variability of eaetthmd, by the similarity

between contours created to segment the same region on tasiors, and take the mean over all ROIs.

Figure 6.23 shows the results separately for each user. Baegions, T-tests reveal no significant
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Figure 6.23: Intra-operator variability of jetstreamsdiar MS lesion imagesTop row: for PD images

by (a) mean minimum distance and (b) Dice similarity coedfiti Bottom row: for T2 images by (c)

mean minimum distance and (d) Dice similarity coefficient.

differences between jetstreams or with respect to freekagthentation, in terms of either similarity

measure. Similarly for T2 regions there was no significaffiédénce in terms of DSC, while in terms of

MMD, SVM jetstreams performed significantly worse in somsesa This is seen for the region-trained
SVM (users 1 and 2) and boundary-trained SVM (user 3). We caactept hypothesi¥6.3.3.2 based

on the current data, but expect that the level of intra-dperariabilityw ould be reduced if the expert

raters had more practice with the tools.

6.3.3.3

Inter-operator variability

The next experiment concerns inter-rater variabilitys&iwe discuss an issue raised by the contouring

results, regarding the difference between users, in fheiceptionof lesion boundaries (figure 6.24).

The freehand contours overlaid in figure 6.24 reveal thaflendome lesions such as (i) and (ii) are

unambiguous, others such as (iii) and (iv) are perceiveerdiftly by at least one rater, who groups

nearby lesions inside the same contour. This ambiguityssndit from the inter-rater variability used
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Figure 6.24: Ambiguity of MS lesion boundaries as percelvedifferent experts.

to assess contouring methods. We are interested in the dese Vesions are perceived the same by
two raters, but limitations of the method leads to discrepmin their segmentation. We choose two

unambiguous lesions (i) and (ii) to compare the inter-ragégrability of each method and hypothesise
that:

H6.3.3.3: in terms of inter-operator variability, SVM jeesams used to segmeumtam-
biguousMS lesions are
(a) better than the intensity-driven jetstreams, and

(b) better than freehand delineation

To test hypothesi{6.3.3.3 we measure the dissimilarity between segmentaltiptwo users, and
take the mean dissimilarity over all 6 unique pairs. Figu#b&ompares the similarity measures for
the 4 methods, shown separately for regions (i) and (ii).eslst reveal that the region-trained SVM
gives significant improvement in terms of both MMD and DSGC,R®I (i) in T2 images only. There is
no significant improvement over freehand segmentation. @rwihole we must not accept hypothesis
'H6.3.3.3.

6.3.4 Conclusions

We have presented a generalised contouring tool that casliaundary tracking with image models
based on SVM texture classification and on-line supervisldser experiments with synthetic texture

images and MS lesions reveal that

e for synthetic regions with known ground-truth, jetstreasinsen by texture models or intensity

gradient are generally more accurate than freehand drawing

e for MS lesions, jetstreams do not seem as accurate as fréemawing, but the definition of

accuracy is flawed in the absence of ground-truth,

e in terms of accuracy, the benefits of texture-based ovensitiebased image models, as revealed

by classification experiments, are largely lost when usivilylS to drive jetstreams,
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Figure 6.25: Inter-operator variability of jetstreamsdi$er MS lesions (i) and (ii).Top row: for PD
images by (a) mean minimum distance and (b) Dice similaagfficient. Bottom row:for T2 images

by (c) mean minimum distance and (d) Dice similarity coeéfiti

e in terms of user demand, the benefits of texture-based otemsity-based image models, are

revealed by experiments on synthetic images,

e in terms of inter- and intra-rater variability, SVM jetstas show some improvement over free-
hand segmentation in synthetic images, but statisticés teveal no significance and the same

apparent improvement is not seen for MS lesion contouring,

¢ the lack of improvements in segmentation variability coffect the level of user control enabled

by the jetstream framework, and the general lack of prattiaeusers had, and

e in terms of user demand, we see significant benefits of th@megained SVM over gradient

intensity in driving boundary trackers.
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6.4 Discussion and Future work

This chapter arrives at the following key conclusions:

e The strength of the SVM texture models is more apparent ssdfiaation experiments than when

the models are used in supervised contouring.

e The strengths of the interactive jetstream framework areerapparent in synthetic images, where

regions are larger and ground truth is known.

e The combination of texture models and jetstream interastizenefits segmentation in terms of

accuracy and user demand more than variability, due to et & user control.

The boundary tracking framework developed here enablesmadxontrol over segmentation results,
and in turn the steering mechanisms allow for idiosyncratides’ of contouring. We learn from this,
that while we may simultaneously maximise user control aithcompromising accuracygguirement
1), variability may never be eradicated in a fully user-stediramework. However, this and other limi-
tations of the tool are likely to be alleviated if users hav@epractice with the tool.

The methods we have developed contribute to the wider fiesgwfiautomatic segmentation. The
loop closing algorithm extends to the task of interactivstgaliting, where tracking between fixed points
would offer a fast, accurate and repeatable method of rigyg/&roneous sections of a contour resulting
from artefacts such as 'bleeding’ in region-growing or leset frameworks.

The methods of 'no-go areas’ and the ability to choose froseen particles were deemed redun-
dant for MS lesion segmentation, but both could be expldaii#fdrently to improve supervised segmen-
tation. In the case of no-go areas, the method could be usadttmnatically exclude nearby regions
that have already been segmented, in applications like EiSecontouring, where several ROIs may
existin a given image but only one is delineated at a given tifhe ability to interactively choose from
multiple hypotheses in the jetstream framework may be betigloited if the choices were visible at all
times rather than requiring a user to invoke their display.

The use of SVM classifiers as an image model works in the cagetsifeams, but the benefits
over intensity gradient are limited due to the high leveloofline supervision. We are motivated to
extend the SVMs for use in other segmentation frameworkse Uge of the region-trained SVM is
particularly appealing for two reasons. First, there igdence that this SVM improves on intensity
gradient in terms of useability. Second, this SVM works vireltlassifying local data based on small
training sets. This last observation makes the SVM suitezbtwstraining 3-dimensional segmentation
by contour propagation or making efficient use of interawdiom the form of training data labelled upon

initialisation.



Chapter 7

Time Series Shape Models

This chapter introduces new statistical shape models ($&ivigariable shapes without correspondence
points, which draw from the nonlinear dynamics literatund svork with radial time series representa-
tions. We base the SSMs on two time series models, namelyelvimgnd Gaussian processes (GP)
discussed in chapter 5. Both are stochastic models withrrd@tistic components that can be exploited
to characterise global dynamics. The deterministic coreptsare thalrift function in a Langevin
model and &ernelfunction in a Gaussian process. Chapter 5 also showed tmagelvan models are
Markovian whereas Gaussian processes dynamics are basedtaruous correlation functions over all
length scales. For this reason, the Langevin models couttidagght of as an extension of the Cyclic
MREF in section 3.2.2 and the GP models an extension of the CA&efin section 3.2.1.

The remainder of this chapter is organised as follows. 8ectil describes the shape representa-
tions, introducing definitions and notations used througtioe rest of the thesis. Section 7.2 presents
Langevin models for region shapes in both generalised andgkaped cases. Section 7.3 presents gener-
alised and star-shaped GP models. For each model, we dewalkipne learning procedures for training
on multiple instances of a 2-dimensional shape. We alseptesethods o$hape scoringwhich eval-
uates the agreement of test shapes with a trained model.eSltaping methods lie primarily in the
field of classification and recognition, but are intendedtHer use in shape regularisation for segmenta-
tion. Section 7.5 tests the affinity of the models for desngMS and liver tumour ROIs and evaluates
the discriminative models by using the machine learningsirape scoring procedures in classification

experiments.

7.1 Shape Models and Time Series

Before introducing new shape models we must define what wa imeghape’, as a universal definition
is not available. In general, two objects have the same dhi#pey share certain spatial properties. In

one popular definition, Kendall [273] defines these propsrdis

“all the geometrical information that remains when locatiscale and rotational effects

are removed from an object".

According to Kendall's definition, two regions of interestthe same semantic class may not have the

same 'shape’. Regions such as MS lesions or tumours can belifferent because of the pathological
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processes that form them. This is in contrast with anatdmeécgons such as vertebrae or hearts which,
mutations notwithstanding, bare global similarities byegic design. For this project we require a more
general definition if we maintain that two MS lesions, for exde, have the same 'shape’. We hereby

define shape as

“all the information about a region’s form that is shared By egions belonging to the

same semantic class®,

where the 'information about a region’s form’ is indepentdeithat region’s location. Note that this
definition leads to a non-Euclidean description of shapereltthe different 'sizes’ of shapes in a class
form part of the model for that class. This is applicable fathmlogical applications where regions of
different scale are expected due to their growth. For thiésttal shape models developed here, the
'information’ is embedded in the choice of deterministieiétion and its parameters. The remainder
of this section defines various components of the paramatritours and shape models central to the

remainder of the thesis.

7.1.1 Radial time series

A family of parametric contours uses the radius/éfsuccessive points around a region boundary
r = {ro,...,r~n—-1}, measured from a fixed locatiocn. = {z.,y.} inside the region [163, 73, 78].
Section 3.5.1 concluded that this representation benedits knowledge of the ROI centre, and also
removes the assumption of correspondence. We refegemerally as aadial time serieswhere spe-
cific types differ by what 'time’ represents. Two examples boundary arc-length(eg. [166]) and the
anglef between radial vectors (eg. [158]). Formally, we define gpsha each case by a parameter set

Q comprising

Qgen ={r;s,xc} = {{ro,....rv=1h {s0. - s b {ze yet (@)
Qstar= {I‘, evXC} = {{7,07 cre TNfl}v {907 cre 9]\[,1}, {IcvyC}} (b),

(7.1)

where the generalised ca€gyenin 7.1(a) can represent any two-dimensional shape, whéeptiar
representation 7.1(b) is limited to the 'star-shaped’ seére all boundary points of a shape, denoted
Qstar are visible fromx.. The polar representation has the benefit of naturally ssmting closed
contours without self-intersection.

In general terms, a time series models the discrete timegoolof astate variable In our case the
state variable is radius For the dynamical models introduced later, it is convetrtiemork in the state
space of &ero-mean fielas in [75, 73, 77, 225]. In a zero-mean field, the mean of asefigength
N approaches zero @ — oo, although the mean of any finite series is arbitrary. We deasj(t),
an arbitrary state variable of a zero-mean field. Figurelludtiates the relationship between zero-mean

field, radial time series and shape for both star shaped ametajesed parametrisations.

7.1.2 Training data

The discriminative shape models in this section can usereitte generalised or star-shaped parametri-

sations in equation (7.1). In either case, training datarigirlly in the form of closed boundaries
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Figure 7.1: Time series shape model definitions, showing ashape (a) relates to the star-shaped
representation of (b) radial time series and (c) time sdries zero-mean field, and the generalised
parametrisation of (d) radial time series and (e) time séari@ zero-mean field. Dashed lines in (a), (b)

and (d) show the centre of the radial state space.

expressed iz, y} coordinates. We pre-process this data to create radialstmes with three required
properties. First, training series should be of zero-mezld &is described above. Second, the indepen-
dent variabled or s needs to be discretised at regular intervals. Third, in #eewof GP models, the
length of each serie¥ is the same.

We first choose an internal poist. to represent a regions centre. This is the only additional in
formation we need to assign to our training contours, in@sttto the landmarks required in the point
distribution model (section 3.1.1) or the skeleton in theéps method (section 3.1.2). Manual estimates
are simple to obtain but time consuming, so we introduceraatic methods for both generalised and
star-shaped training data. In the generalised case, wetiakaternal point having maximum closest
distance to any of the boundary pixels. In the star-shapsel, @ge first identify the internal points from
where all boundary points are visible, known as the 'keratthe shape. If no such points exist we omit
the contour from the star-shaped set, otherwise we compuiem the centroid of these points. We
refer a centre point defined by the automatic methods ababe&sie centre, as it is used when training
a model.

After identifying x. we record the series of radial distanegsat each pixel around a training
contour, along with the corresponding increments of thejgehdent variablé or s. In the star-shaped
case, the angle&; are monotonically increasing but arbitrarily spaced, sorasample the series at
regularAd. For the GP models we also resample all generalised sarie$ to have commomV. Next,

we estimater. This radius represents the centre of the state space ecchpithe radial time series,
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corresponding to zero in a zero-mean field. To estimate take the midpoint between the minimum
and maximum radius in a series. Recall that the mean of a dfigte) series does not relate to the
centre of state space. Finally, we subtrafrom the series, which splits the model into a zero-mean field
time series and a separate scale paramet&his scale parameteris analogous to the parametein

the CAR model (section 3.2.1). Note that the models could adarscale invariant at this stage, either
by dividing all radii by the scale parameter or by normalisiadial time series to a fixed range such as

{-1,...,41}, for applications where scale invariance is preferred.

7.2 Langevin Models

Section 5.1 reviewed the use of Langevin models to chaiaetand simulate dynamical systems in-
cluding physiological processes [232] and series in théiapdomain [224]. This section formulates
Langevin-type models for radial time series, with the gdahodelling fluctuating boundaries of ROIs
such as tumours and lesions. The models learn higher-lef@ination about the global statistics of
shapes, which generalises despite high within-classhititja
Langevin shape models treat a radial time series as theetisttme evolution of a 1-dimensional
state variable(s) or r(6), which replace the vectoy(¢) in section 5.1. For convenience we use the
notationr(¢) to refer to both parametrisations. A Langevin model is ctigrésed by the deterministic
(drift) term and a stochastic (diffusion) term in the Lanigesquation. We use the drift and diffusion
functions of a Langevin equation to encode higher-levarimiation about the global statistics of shapes
with a small number of model parameters.
We start by writing equation 5.1 in terms of radial time serie
dr
P A(r(t)) + B(r(t))wy, (7.2)
where the continuous variableoccupies a zero-mean field after subtracting an estimateaoflw, is
time dependent Gaussian noise with zero mean and unit eariarhe drift and diffusion terms model
the 'stability’ of a boundary as a function of its distancerfrthe region centre, where the drift relates to
whether the boundary shifts toward or away from the centrd the diffusion relates to the strength of

this tendency.

7.2.1 Drift and diffusion functions

The drift term A(r(¢)) in equation 7.2 allows the local dynamical behaviour of aruary to vary
throughout the state space of radius’. This gives a rotaitnvariant model of the global characteristics
of boundary fluctuations. For the purpose of ROl shape primesseek drift functions that are simple,
controlled by few parameters, and allow intuitive intetpti®n with respect to the shape itself. Where
Langevin models are used for different applications in ttexdture, drift functions are suggested ac-
cording to a combination of empirical evidence and any keadgk of an underlying physical model
[234, 232, 224, 274, 236, 242]. For a stable series to remmainzero-mean field, we require that the
drift function has a global trend of(r) — A_ > 0asr — —oco andA(r) — A1 < 0asr — +oo.

We refer to this as theegative trend requirement
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We present three simple candidates for drift and diffusiorcfions, chosen after empirical investi-

gations to model tumour and lesion regions. The candidé#tg dr; . 3) and diffusion functions®; . 3)

are given by
Ay (r(t),a) = —agrexp[—r?/a3] —agr  Bi(r(t),b) = by
Ay (r(t),a) = aor + a1r® — agr® By (r(t),b) = by + by (r — by)? (7.3)
As(r(t),a) = ag — a1 explaar] Bs(r(t),b) = by + by (r — by)>.

We ensure the drift functiond; _ 3 fulfil the negative trend requirement by assertingis positive in

functionsA; and As, anda, is positive inAs.

7.2.2 Parameter estimation

Starting with a set of training shapes, the machine leartasg is to estimate the scale parametan
Qgenor Qstgrand the form and parameters of the drift and diffusion fuori

For the scale parameter we assume a normal distribBti6n) = N (7, 02) and calculate the mean
7 and standard deviation: by estimating® from the radial time series of each training shape.

To estimate the form and parameters of the drift and diffufimction we devise machine learning
procedures adapted from the direct estimation method efifich and Peinke [229]. The adaptations
enable us to learn from multiple instances of periodic salerived from a training set of shapes.

First we transform a set d¥/ training shapes into zero-mean serfe$, ..., r™, ..., r -1} as de-
scribed in section 7.1.2. Next we form a discrete estimatiche drift and diffusion functions common

to the population of training shapes in the following steps:

Step 1 Divide the state spagemin; - - - » "max} of the whole training set, into bins of equal width

Ar, centred on discrete values.

h

Step 2 For thent" bin, inspect then!" series and note all observatiori8 (¢;) that fall in the

ranger™(t;) € r, = 4.

Step 3 Starting from these observations, follow the serifsalong a trajectory of lengti¢.

Where this trajectory overshoots the end of a series, réfstan o as the series is periodic.

Step 4 Repeat steps 2-3 for alll series in the training set to form a common histogram from

future positions of the state variable.

Step 5 Use this histogram to approximate the transition densstyPs(r(t + At)|r(t) €

Ty, £ %) = N (un, on) specific to thet bin in state space.

Step 6 Estimate the mean,, and standard deviatian, from the normal distributioV (11, ,)-
These steps arrive at discrete approximations of the driftdiffusion functions

A(rp(t) = pn — 10 and 7.4)

B('f‘n(t)) :071 Tn e {Tmina"'arn7-"7TmaX}a
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specific to the chosen delay parameter. Next we simultaneously seek functiorsr(¢), a) and
B(r(t),b) along with their parametetsandb, which best fit the observed drift and diffusion functions.
We use a Levenberg Marquardt fitting routine and start bydjtiach of equationd 3 to the extracted
drift functions and each aB; 3 to the extracted diffusion functions. Then we take the coration of
functionsA and B whose fits give the lowest? error. For both4 andB we omit the observations at the
extremes of state space from the fitting procedure, as tleggens are under-represented in the training
data.

The procedure above involves secondary parameters thabmakosen, namely the delay parame-
ter At and the width of the state-space bis. We optimise for these parameters for a given application
by using they? error of the fitting procedure as a measure of model affinitg. al¢o benefit from the
ability to generate synthetic data (explained in the nextptér) to gain insight into the sensitivity of

parameter estimation to these values.

7.2.3 Shape scoring

Shape scoring assigns a value to a test shape, accordisgtpéement with a model. The same principle
underlies shape classification and object recognitionstadide suggest an intuitive, fast approach to
shape scoring, for the purpose of shape regularisatiorginmesegmentation.

Where time series models have been used for classificatitheititerature, the general approach
is to repeat parameter estimation for both training andngsdata, and score the test set based on
the similarity of the two estimates. Examples for shapesifiagtion by the circular autoregressive
model [159, 160] use estimated parameters as feature gdat@eneric classification schemes. An
example for electrocardiograph (ECG) series classifindbpthe Langevin model [223], groups ECG
series into healthy and unhealthy classes by qualitativepesison of the estimated drift functions.
These approaches assume that a single test shape/setigsmsasufficient information for parameter
estimation. In the case of the circular autoregressive mpadeameters are reliably estimated from a
single shape. In the example of ECG, a typical series comtaims of thousands of points, representing
heart rate fluctuations over periods up to 24 hours.

These approaches to shape scoring are not appropriaterfpuaoses for three reasons. First, for
the purpose of shape regularisation, we need to score teeragnt of a single time series with a model.
The parameter estimation procedure above can not reliatijnate parameters from a single radial
time series, which does not contain sufficient data. Secfomdshape regularisation in an interactive
segmentation framework the scoring method must be fastrasisehe approaches above are likely to
be slow. Third, we prefer a score that is probabilistic, idesrto allow integration into a probabilistic
segmentation framework as motivated in section 2.5.

We introduce a probabilistic shape scoring method baseti®transition densities derived from
the Fokker-Planck equation. Formally, for a contour defipggarameter§) = {r, x., 7}, we seek the
prior probabilityPr(Q|a). This chapter is not concerned with the position of a contoodel relative to
an image, so we omit the dependencexprand score the shape accordindqQ|a) = Pr({r,7}|a).

For Langevin shape priors we recall the expression for tim jelihood which, or the case of the shape
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models, becomes

N—-1

Pr(Qla,b) = Pr(rg) [ H Pr(r(t; + At)|r(t;),a, b)| Pr(F). (7.5)

1=0
We finally define the score for a single shape, by dividing thetjlikelihood by the number of points

around the contour and taking the logarithm

Sian = x log Pr(Qla, b)
N—1 (7.6)

- — x <1ogPr(To) + {Z log Pr(r(t; + At)|r(t;), a, b)} —l—logPr(F)),

i=0

2l =2l

wherePr(7) = N(7,02) is the distribution over scale parameters and wePsét,) = Pr(7) without
loss of generality because the first pointin a radial tim&seran be chosen at any point on the boundary.

The conditional probabilitieBr(r;|r;—1) are normally distributed with means and variances given by
Pr(r(ti)|r(ti-1)) = N(r(ti-1)) — A(r(ti-1), a), B(r(ti-1), b)), (7.7)

whereA and B are evaluated using the learned model parameatarsib.

7.3 Gaussian Process Models

A Gaussian process (GP) is characterised by a discrete mpatidn and a kernel function that defines
a covariance matrix. Section 5.2 reviewed GP methods, gtz the 1-dimensional case is an example
of nonlinear time series analysis. This section formul&Bsnodels for radial time series, with the goal
of learning higher-level information about the global stits of boundary dynamics. In this section we
introduce GP SSMs with an example kernel function and cobhst@an function, and discuss extensions
to other kernels and non-constant mean function as the béfsigire work.

Gaussian process shape models treat a radial time seriesaadan vector of radit at discrete
inputss or 6. As above we use the general notati@t), which replaceg(¢) in section 5.2. We propose
that, by modelling a radial time series as a Gaussian prptiesgernel function encodes higher-level
shape information with a small number of model parameters.

We start by rewriting equation 5.11 to represent a radia¢ tgaries as & -dimensional random
vector of outputs = {rg,r1,...,ry—1} corresponding to inputs = {tg,t1,...,tx—1}. A given
seriesr has an associated probabiliy(r|p, 3(r, r)), which follows the N-dimensional multivariate
normal distribution

Pr(r|E(r,r)) = Ny (1, E(r, 1))
= m exp[—%(r — WIS () (r - )] 7o
wherey is a discrete mean function given by the vector of expectatauesF(r;) andX(r,r) is the
N x N covariance matrix. Elements & model the covariance between pairs of outputsr;} as
a function of the corresponding inpufs;,¢;}. The covariance matrix is computed using the kernel
function

Z(T“’I’J):E(tz,t],a), ’L’] € {OavN_l}v (79)
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wherea is a vector of parameters of the kernel function. The comaganatrix becomes

€0,0(to, to, a) €0,1(to,t1,a) eo,N—1(to, tn—1,a)
e10(t1,to,a) e11(ti,t1,a) ei,N—1(ti,tn—1,a)
3(r,r) = _ ' _ . (7.10)
en—10(tnv—1,t0,a) en—11(tn—1,t1,a) ... en—in—1(tN—1,tN—1,2)

7.3.1 Kernel and mean functions

The kernel function (equation 7.9) provides the deternimjgart of the GP model, which describes how
the correlation between two boundary points varies witlir eparation. We choose a stationary kernel
e(ti, t;) = e(t;—t;, a). Inthis way the kernel functions are both rotation invarimd easily interpreted,
modelling correlation as a function #ngth-scale; — t;. For the case of radial time series we seek a
kernel function that is simple, and periodic to ensure dati@n between the points at the beginning and

end of a series. We use a function based on the periodic kerf#15], given by

e(t; —tj,a) = exp [—asinQ(tj ;ti)}, (7.11)

which has a single free parameter= {a} governing the length-scale of correlation.
For convenience, and to retain rotation invariance, we usenatant mean function. In the zero-
mean field this corresponds to the vector of zeros: 0. Depending on the application, novel mean

functions could be derived from training data or run-timeeractions in a segmentation framework.

7.3.2 Parameter estimation

Starting with a set of training series, the machine learitéisg is to estimate the discrete mean function
and the form and parameters of the kernel function. In thitiee we assume constant expectation
valuesE(r;) = 0¥i such that the mean functiqnis a vector of zeros. We also assume that the kernel
function in equation 7.11 is general enough to describe argngraining set. The remaining task is to
estimate the mean and variance\6r, o2), and the parametessof the kernel function. As before we
estimater for a single contour as above and take the meand standard deviatian: over the training
set. To estimate the kernel parameters we use Markov Chameuv@arlo (MCMC) methods following
the work of [248].

We choose the MCMC method for its ability to avoid local miairand, moreover, to handbeul-
titask learningwhereby, as in our case, the training data naturally comeudigphe independent series.
Starting with M training shapes™, wherem = 0,..., M — 1, the algorithm seeks the parametars
that maximise the joint probability density functiem (% ~1|a) given by

M-1
Pr(r®M-1a) = H Pr(r™|a)
m=0

n0 (7.12)

=TT s o0l 507 075 @0 - )

m=0
whereX(a) denotes that the free parametarare the only unknowns in the covariance matrix. For

convenience and to avoid numerical issues arising from si@gular covariance matrices [166], we
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maximise the log of the joint PDF given by

L= logPr(r0 """ M71|a)

= (7.13)
m=0

The MCMC algorithm seeks the posterior distribution overapaetersr(a). We use Gibbs sampling
to repeatedly draw samples from a proposal distributiorn. tRe case of equation 7.11 we use the 1-
dimensional distribution centred on the current estimatée. N'(a;, o,), where variance,, is chosen
empirically. At thei + 1th iteration, the parameter; . ; drawn from the proposal distribution replaces
the 'current’ parameter estimate with probability given by the likelihood ratid‘% until, after a
‘burn-in’ period, the Markov Chain iteratively samplesiinghe stable distribution(a). If we assume
7(a) to be Gaussian then the maximaaposterioriprobability (MAP) solution is given by the mean

B+k

1
. > ai, (7.14)
=B

over a large numbékr of samples, wher8 is the number of iterations in the burn-in period.

7.3.3 Shape scoring
Proceeding as for the Langevin model, we seek to score ahagesccording to its agreement with the
model. As before, we evaluata(Q) = Pr({r,7}), i.e. independent of the centre poiqgt. We start

with the log probability density function for a single sesjigiven the learned parameters

log(Pr(r|a)) = 3 loa(2r) — L los(|S(@))) — 5 ((r~ WS a)r ). (715)

The full equation for shape scoring under the GP model iredutie scale parameter(r) = N (7, 02),
giving
Ser = log Pr(Q|a)

= log(Pr(r|a)) + log Pr(7) (7.16)

=~ log(2n) — 3 log(|S(a)]) — 5 ((r — W72 (@)(r — ) + logPr(r).

7.4 Data and Performance Evaluation
We have 276 liver tumour contours from [29], of which 241 a@-shaped. We also have 3086 MS

lesion contours from the datasets in the previous chaptereduce this large training set we discard
the smallest MS lesions, made up of 15 pixels or less. Theirgéngaground truth are 1608 MS lesion
contours, of which 1307 are star-shaped. Figure 7.2 (a) @nshow examples of liver tumour and MS

lesion contours respectively.

7.4.1 Figures of merit

The performance of a discriminative model is related topec#ficity and sensitivity. Specificity tells us
how consistently a model describes a specific region typeneisase of Langevin models, the specificity
of candidate functions in equation (7.3) predicts theiatieé discriminator power. For this purpose we

infer Langevin model specificity using th€ error returned by Levenberg-Marquardt fitting.



7.4. Data and Performance Evaluation 124
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Figure 7.2: Top row examples of positive class ground truth shapes from (&) fiumour and (b)
MS lesion sets.Bottom row examples of negative class sets defined in section 7.4.2isedl in the
experiment of section 7.5.2, comprising (c) noisy sinuseiith radial range matching the liver tumour

sets and (d) noisy circles with radial range matching the &%h set

For both Langevin and GP models, the specificity and seitgitigll us how well a model can
distinguish shapes that belong to the model from those thatad. The shape models should score
test shapes with higher valués,, or Sg, if they belong to the same semantic class as the training
data. We evaluate a model’s ability to distinguish betwdwsapss by thresholding the scores assigned
to positive and negative test shapes, and creating ROC uAswe saw in section 3.4, the choice of
negative class is somewhat arbitrary when evaluating shaqaiels. We use synthetic shapes created
to satisfy two requirements. First, a negative class muse lsamilar radial statistics to the positive
class, so that remaining differences between positive agétive class are subtle. Second, a shape
must be of the type encountered during the evolution of ahsistic active contour. This last criterion
allows performance evaluation to infer the value of the rilisimative models as shape regularisers in a

stochastic segmentation framework.

7.4.2 Negative classes

We create two synthetic negative classes that satisfy tip@resnents above. We refer to the first as
noisy circles which we generate by drawing random valae$rom a normal distribution. Each series
has the same lengt and first/second order statistics as one in the positived&ist. Examples of
noisy circles are shown in figure 7.2 (c). The second syrttatiss arenoisy sinusoidslefined by

r; = w x ysin(p 27 i/N), with noisew is drawn fromN/ (0, 1) and the number of periodsis drawn
from a uniform distribution betweeh and 10. The amplitudey and lengthN of each series match
the radial range and lengtN of one in the positive class. Examples of noisy sinusoidsshosvn in
figure 7.2 (d).

7.4.3 Comparison methods

Finally, we choose comparison methods to investigate theridiination characteristics of the SSMs.
As the models are new, we are view their evaluation as a 'pobaoncept’, more so than a direct
comparison of the state of the art. Moreover, the state o&th& not obvious, when considering the

balance between maximising the shape information soughtranimising the level of shape similarity
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assumed. We seek comparison methods that
e gain information about a shape without assuming correspoce] where
e the information is interpretable and
e can be adapted to give a probabilistic score based on artggamipulation

We choose two shape descriptors that satisfy these regemtsnir he first descriptor is based on the sum
of a local smoothness measyre- 1/N x Zf\’:’ol cos(p) wherey is the angle between successive steps
from one boundary point to the next. We calculate the meand standard deviation, of all training
contours assuming a normal distributiSp = N ((, o¢). A test contour with smoothneg$ is scored

using the normalised log probability given by

1

Sc= [% log(2) — %bg(ffc) =

C/U_C C)ﬂ + log Pr(7). (7.17)
The second descriptor is based on the 1-dimensional Fadeismposition of a radial time se-
ries. We estimate the firsk' coefficients3® of sine and3¢ of cosine terms in the approximation
r ~ ZkK;ol By, cos(kt) + G5 sin(kt). For each training contour we form ti2d<-dimensional vector
B={65-...05% 1,05 ...,0%_,} and calculate the mean vectﬁrand covariance matrix(p, f)
assuming a multivariate normal distributidfi (3, (B, B)). A test contour with Fourier coefficienfs

is scored using the normalised log probability given by

1

S5 = [ 108(2m) — 2 Toa(S(B. B))) — 5 (B~ B)'S (B, B)(B' ~ )] +logPr(r). (7.18)

7.5 Experiments

This section tests the discriminative power of the dynah8&Ms. We address two hypotheses concern-
ing the efficacy of the Langevin models for the chosen regypes (7.5.1) and the sensitivity of both
Langevin and GP models (7.5.2).

7.5.1 Langevin model selection for medical contours

In the case of Langevin models we have suggested more thafuooion to describe the observed
dynamics of a training set. The next experiments investigédferent drift and diffusion functions for
a given region type, in order to test that a Langevin modetjadtely describes the region type, and
choose the best functions.

We hypothesise that:

‘H7.5.1: Langevin models capture global shape informati@tiéio to a population of

region boundaries.

We address hypothesig7.5.1 in two ways. First, we assess the models qualitativglipoking
for structure in the discrete drift and diffusion functiogdracted from training data. We use the steps
in section 7.2.2 to estimate drift and diffusion functiolysdgjuation (7.4). Figure 7.3 shows the results.

By visual inspection, drift and diffusion functions havers® structure for both region types modelled
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Figure 7.3: Extracted drift (top row) and diffusion (bott@ow) functions for Langevin models trained

on (a)/(b) liver tumours and (c)/(d) MS lesions using the egatised/star-shaped parametrisations re-

spectively.

with both generalised and star-shaped parametrisatioredl tases, however, the structure is degraded

towards the extremes of state space where training datarisesp

Second, we look for evidence that different region typesbas described by different (combina-
tions of) drift and diffusion functions. Table 7.1 shows f{teerror when each candidate function is used

for each region-type and both generalised ('gen.’) andstaperd parametrisations.

Region Drift X2 error Diffn. x? error
type gen. star gen. star

Ap | 2.55x107 | 1.20 x 108 By | 6.25x107 | 3.49 x 108

liver tumour || Ay | 2.21x107 | 1.19x10% | B, | 5.82x 107 | 2.54 x 108
Az | 2.81x107 | 1.21 x 108 Bz | 6.00x 107 | 2.71 x 108

A; | 3.63x108 | 4.91 x 108 By | 4.25 x 108 | 2.89 x 10°

MS lesion || As | 3.92x 10% | 4.70 x 10® By | 3.68x10% | 1.39 x 10°
As | 4.12x10% | 2.29 x 108 B3 3.69 x 10% | 1.33 x 10°

Table 7.1:x2 errors when fitting functions to discrete estimates of Lamgdrift and diffusion.

Solid lines in figure 7.3 show the results of fitting chosenctions (bold in table 7.1) from the

candidate set 7.3. The chosen functions are those havirigvilest 2 error, in all cases except for the

diffusion functions in the generalised models (bottom r@y,and (c)). In these cases the constant and

quadratic functiong3; and B, give similarx? error and we favouB; for its simplicity.

We accept hypothesi¥7.5.1 because, for both generalised and star-shaped magedse structure

in the estimated functions, and these are different forweregion types, suggesting that the training

contours have distinct global properties that the Langeadels can capture.
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7.5.2 Discrimination capability for medical contours

This section uses the discriminative SSMs in classificagiqueriments. First, we hypothesise that:

‘H7.5.2: Langevin and GP models are sensitive enough to disoerour and lesion

shapes from synthetic shapes of equivalent radial scaleanhce,

We test hypothesi${7.5.2 using ROC analysis. We divide the data into trainind &@sting sets
of approximately the same size, where contours in each gghate from a subset of the MRI or CT
volumes. Next we train Langevin and GP models and use eaqusaffo6) and (7.16) to score the testing
set along with the same number of negative-class cont@ksntfrom the synthetic sets of noisy circles
and sinusoids. We threshold the scores at 500 incrementsaladlate the true- and false-positive
fractions that form a ROC curve. The area under the curve (AwrGvides a measure of classification
accuracy between 0 and 1. The central columns of table 7 e results for Langevin and GP
models, used to classify liver tumour and MS lesion shap#slvath generalised-(s)) and star-shaped

(r(0)) contour parametrisations.

Positive | Negative| Langevin G.) | Gauss. Proc.9.) | Smooth Fourier (Sx)
class class | r(s) r(0) r(s) r(6) (Se) | K=3]| K=10

Liver circular | 0.989| 0.999 | 0.861| 0.978 0.961 | 0.644 | 0.796
tumour | sinusoid | 0.919| 0.930 | 0.813| 0.943 0.621 | 0.598 | 0.685

MS circular | 0.030| 0.532 | 0.837 0.804 0.810 | 0.698 | 0.678
lesion | sinusoid | 0.799| 0.916 | 0.581 0.813 0.723 | 0.753 0.692

Table 7.2: Classification results for the SSMs and simpl@stiescriptors, used to distinguish liver

tumour and MS lesion shapes from synthetic negative classes

In general, the models of liver tumour shapes perform wellh WUC above 0.9 in all cases ex-
cept the GP model with the generalised contour parameétnisathe star-shaped Langevin model also
discriminates between lesions and noisy sinusoids with AUT9, while all other SSMs struggle to dis-
tinguish MS lesion shapes from either negative class. AKisggiexample is discriminating MS lesions
from noisy circles, which causes the Langevin model to fadl,an the generalised model, consistently
misclassify (AUCG<0.5). We revisit this observation in section 7.6. On the whek accept hypothe-
sis’H7.5.2 for the star-shaped models, observing that both hanged GP models discriminate liver
tumours better than MS lesions.

Next, we hypothesise that:

H7.5.3: Langevin and GP models capture more information than
(a) a linear combination of local smoothness, or

(b) global information regarding frequency statistics

We repeat ROC analysis using the smoothness and Fouriaiptess described above, creating

ROC curves by thresholding: andSx. In the case of Fourier descriptors we repeatfor= 3 and
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K = 10in equation 7.18, to truncate the Fourier descriptors attamd higher frequencies. Results are
given in the right hand side of table 7.2.

In most cases the dynamical SSMs have higher classificatioaracy than the smoothness and
Fourier descriptors. Langevin models discriminate livendurs from noisy circles better than from
noisy sinusoids, whereas this ranking is reversed for tse 0AMS lesions. This confirms that the two
medical region types differ in terms of the dynamics camtimglLangevin models. We accept hypothesis
H7.5.3.

Finally, we investigate the relative efficacy of LangevirddP models for describing ore regions
of interest, recalling that the former assumes Markoviamadyics and the latter does not. For this we

make the null hypothesis
‘H7.5.4: Langevin and GP models have the same discriminatwgp
Comparing the Langevin and GP columns in table 7.2 lead<tfolfowing observations:

(i) Langevin models out perform GP models in discriminatiivgr tumours from noisy circles

and MS lesions from noisy sinusoids.
(iiy GP models out perform Langevin models in discrimingtMS lesions from noisy circles.

Taken together, observations (i) and (ii) indicate thatdumand lesion boundaries both fluctuate with
Markovian dynamics, but this behaviour alone does not disktS lesions from noisy circles. However,

we can not make a general conclusion about the efficacy of &dven model because the Langevin
models use deterministic functions chosen for the respetdsion types from the set in equation 7.3,

whereas we only try a single kernel function in the GP model.

7.6 Conclusions and Future Work
This chapter presented statistical shape models that cenmainlinear time series analysis with radial
time series contour parametrisations. Model selectioncéagsification experiments reveal that

e Langevin models capture global information that differsi@en region types, and

e Langevin and GP models distinguish tumours and lesions &yorthetic shapes with similar radial

statistics and range.

These findings show that the SSMs capture global informatbmut region boundaries, without assum-
ing correspondence points or other high-level shape siityilaetween training examples.

Comparisons with two simple shape descriptors reveal that

e Langevin and GP models capture global information that passe from the smoothness or fre-

guency of boundary fluctuations

e Langevinand GP models generally perform better than sismteothness and Fourier descriptors,

and
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e star-shaped models generally out-perform those usingrgksesd contour parametrisation.

These findings show that the SSMs capture more higher-lgiedlal shape information than integrating
local smoothness around a contour or analysing the frequspectrum of boundary fluctuations, and
that their success is helped by, but not limited to, datariggia to the star-shaped set.

The choice of negative class for use in binary classificaiosomewhat arbitrary and this could
explain a negative result (AU€0.5) when classifying MS lesions using the Langevin modé&h\wen-
eralised contour parametrisation.

For a noisy circle, the transition densi®(r;11|r;) is equivalent to the driving noise used in cre-
ating the synthetic data, i.e. a stationary distributiothvziero mean and standard deviation chosen to
match the lesion training set. This corresponds to a lineérwiith single stable point (negative zero
crossing) at the centre of the zero-mean field. The cengamef figure 7.3 (c) shows similar behaviour,
and it is in this region that training data is most closelgadid with the functiom;. Misclassification
is caused by the synthetic negative class predominantlypyiieg this region of state space. In other
words, real MS lesion data with boundary dynamics that atiesfimguishable from noisy circles, make
up a large part of the training data and the positive testatg,cutall of the synthetic data.

The discriminative models are expected to benefit segnientitameworks by shape regularisa-
tion, and the investigations above were designed with thisind. Shape classification also benefits
medical applications outside the field of segmentation. den¢ example is given in [10] where shape
models discriminate healthy from Alzheimers patients Hasethe shape of brain ventricles. This use
of binary classification motivates future work with the ne®Ns, starting with a specific role in MS
lesion imaging. It has been suggested [276, 15] that malsplerosis gives rise to four different 'types’
of lesion. So called 'Lassmann patterns’ are thought toetate with differences in disease prognosis,
with implications for the treatment of the disease. Inggions currently rely on histological studies
but, if training data became available, we are motivateceietbp machine learning approaches to non-
invasive classification of lesion types. We propose to usesttape models introduced here, perhaps in
combination with the texture models in the previous chapter

In the case of GP models, future work could incorporate difie mean functions. We chose a
constant mean function above for rotation invariance, &sdbrresponds to a circular ‘'mean shape’.
The GP model readily extends to a non-circular mean shapewsi mean functiong. In an interactive
segmentation framework the mean shape could be given byughroutline’ drawn manually on an
image by the user. This is a similar idea to the use of the 'tatapwith the 1D-CMRF in [77].

Finally we reiterate the value of the discriminative modalgside classification or segmentation
applications, as methods of tomographic reconstructighiarage registration can also make use of
shape regularisation. In the example of registration, tkegnce of tumours in target and source images
poses a particular problem as they are likely to have chabgw®eeen the times of acquiring two images.
The new SSMs are expected to benefit this task, requiringtbaly(i) the centre point of a tumour can
be estimated in the source and target image and (ii) thariadata represent the variations in tumour

shape due to changes over time.



Chapter 8

Segmentation Frameworks and Generative

Models

This chapter exploits the time series models in the previtwapter for segmentation. First we use the
discriminative models as shape regularisers in the opditiois scheme of a simple active contour model.
Then we develop generative models to form the basis of noeblgbilistic segmentation algorithms. We
constrain the generative models to incorporate obsen&fiom image and interactions. We present the
segmentation frameworks for star-shaped regions usingdlae parametrisation in equation 7.1 (b) and
discuss extensions for non star-shaped models.

The rest of this chapter is organised as follows. Firstjee@&.1 introduces appropriate observation
models derived from images. Section 8.2 describes a defdencantour model exploiting the SSMs
as shape regularisers. Section 8.3 presents a generalseeMiork for interactive segmentation using
generative shape models, which combines generative SStprababilistic observations and efficient
interactions. We then present the specific methods of usemgmtive Langevin and GP models in
such a framework, in sections 8.4 and 8.5 respectively.i@e8t6 describes choices regarding data
and performance metrics, used to evaluate the strengtle shifipe priors in a segmentation framework.
Experiments in section 8.7 test the value of shape priofsinarious segmentation frameworks. Section

8.8 discusses the findings and draws conclusions.

8.1 Image Models and Time Series

The last chapter dealt with the prior models of shape alordgpendent of position in the image, al-
lowing us to removex,. from the shape mod&stgr = {r,7}. For segmentation, we re-introduce the
centre pointk,. and introduce information from the image dddocal to the region centre, giving the

expression for the posterior
Pr(Q|D) = Pr({r,7,x.}|D). (8.1)
This section describes ways to model the image Betaat are consistent with the polar parametrisation

(8.1.1). We also model the uncertainty of centre-pointtiocain section 8.1.2, and introduce the full

Bayesian framework in section 8.1.3.
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8.1.1 Data likelihood

For star-shaped regions we define an image observation rimogelar coordinates. A similar method
in [75] models the intensity changes at the region boundimygaeach radial vector as an ideal step
function with Gaussian noise. For use with the GP and Lamgesgmentation algorithms, we require

an observation model that
e estimates the probability that the boundary intersectslialraector at radius,
¢ is independent of the choice of boundary measure, extenditexture classification if necessary
e provides observations in a form which the time series moaegldily incorporate, and
e is readily complemented by information from user interaasi

We introduce aadial profile modewhere the boundary measure is a function of radius. In thapter
we base the boundary measure on the gradient, degotad this could be replaced by the results of
tissue classification such as the boundary meagyrer d;, used in chapter 6.

The model is based on both the magnitygleand directiony of the image gradient as shown in

figure 8.1. We define an estimaté of the region centre by a pixel selected manually by the uker o

- obsgrvegl
*N (giv oy )

-20 -10 OT 10 20 30

@) (b) (©

Figure 8.1: Observation model from an example synthetiginga) Synthetic region with boundary

given by a liver tumour contour, showing an estimate of th&treex/,, local boundary direction and
radial vector at arbitrary anglg. (b) Greyscale representations of the magnitydéop) and direction

1 (bottom) of image gradient sampled along radial vectorth angled; marked. (c) Radial profile of
gradient magnitude corresponding to angjlewith Gaussian fit after translating into the zero-mean field

and re-scaling to the rang@®. .. 1}.

an interactive tool. After obtaining/, we sampldg| andv along the each radial vectér. In the case

of the gradient magnitude we rescale values along eachetofihe rang®...1 and fit a Gaussian
function with meary; at the first peak ofg| and standard deviatios/ given by the full width at half
maximum. Next we take an estimaité of the scale parameter from the mid-point of all the profile
meansj;,i = 0,..., Ngpg— 1 whereNgpgis the number of observation angles. Figure 8.1 (c) shows
an example radial profile df| after translating into the zero-mean field by subtractirggehtimate™.

Finally, we form the likelihood rati(p?n/p?ﬁ, wherep®N andp®ff represent the probabilities that the
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local section of a generated shape correspondidgitd; } is on or off the region boundary, given by
P?n(r) = eXP[‘(%‘(”) - ¢z‘(7"))2] ,and

p?ﬁ(r) =1- exp[—(r ;ggi)ﬂ,

(8.2)

andg; is the angle with respect to the horizontal, made by the aorgection from poin{r;_1, 6,1} to
{rs,0;}. This definition of likelihood ratio is inspired by the joinse of gradient direction and magnitude
in the jetstream algorithm of [43]. Repeating for alE {1,..., N* — 1} whereN* is the number of

observation angles, results in the observation mddel! {g, 07}.

8.1.2 Modelling centre-point uncertainty

When using the shape models in segmentation, an initial insemaction provides an estimate of the
centre of an unseen ROI, denote{d This initialisation is not precise, as a region’s 'centilees not
correspond to a visual cue. For consistency, the choserecérghould be the same as that which would
have been used, if the ROl were part of the training data, @enq.. Recall from section 7.1.2, that
for star a shaped regions, is the centroid of the region’s kernel. In practice, we misstiane that the
user-initialisation is close to the true cenkle~ x., and incorporate uncertainty into the segmentation
algorithm. The task of incorporating centre-point undettais twofold. First, we seek a statistical
model of the discrepancy betweeaf) andx.. Second, we need to understand how this discrepancy
affects a time series model in order to incorporate the effec

For rotation invariance, we model centre-point uncena@tst an anisotropic Gaussian distribution
Pr(x.|x.) = Na(x, 02T), (8.3)

whereo, is a common variance im andy andI is the2 x 2 identity matrix. We estimate. using
interactive experiments. We present medical images, withgéon clearly delineated by its 'ground
truth’ contour to a volunteer who selects the pixel that tbegsider to be the 'centre’ of the ROI. We
denote an estimated centre pointyy The software then calculates the translatidas = =, — 2/,
andAy = y. — y.. We use these to calculate an absolute valye= 7VM2;A7’2, divided by the
scale of the corresponding region. This gives a normalisedsure of the absolute ‘error’ the manual
estimate. We repeat for 30 regions, and repeat this seqgertbat the volunteer estimates the centre of
each region twice, then calculate the mean valyever 60 centre-points. The results axe = 0.154
for liver tumours and. = 0.0.250 for MS lesions. We translate a centre point estimate acogrii
equation 8.3 by first drawing an angldrom a uniform distribution and computsz = A7 cos(f)and
Ay = A Fsinf. Figure 8.2 shows the effect of translatiops., y.} — {z.,y.} + {Az,Ay}, ona
perfect circle (a). Each translation adds a sinusoidatittetthe centrei() of a radial series (b). It follows
that centre point perturbation affects any time seriesérsiiace of (b) by a periodic offsétr(9) given
by

Ar(0) = Ax cos(0) + Aysin(0). (8.4)
When modelling centre point uncertainty by translati¢is:, Ay} we add the sinusoidal trend in equa-
tion 8.4 to a generated time series. This scheme reducesutatigm time, compared to generating a

series, transforming into image space, and then tranglaid Az, Ay}
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Figure 8.2: Effect of perturbing the centre-point on a canstadial time series.

8.1.3 Bayesian formulation
The generative segmentation algorithms adopt a Bayesranufation so that an optimisation scheme
(Cs) estimates the maximum-posterioriprobability (MAP) solutionQgi5, The MAP solution is the

shape that maximises the posterior probability given by

Pr(Q|D) = Pr(D|Q) Pr(Q), (8.5)

wherePr(Q) is the shape prior anBr(D|Q) is the data likelihood. Recallin@star = {r,7,x.} we
can write
Pr(Q) = Pr(r) Pr(x.) Pr(7) (8.6)

wherePr(r) is a probabilistic 'score’ from equation 7.6 or 7.18;(x.) comes from equation 8.3 and
Pr(7) is estimated for a given image as described later. We caridtra data likelihood by repeating

equation 8.2 for alb; € 0, giving

Pr(D|Q) = Pr({p°", p°M}|Q), 8.7)

wherep®n = {p9N ... poN . p0N 1 andpOff — (poff  ,off .p?vfil}. This sets up the general
Bayesian formulation for all time series shape models usesegmentation. Sections 8.4.1 and 8.5
present specific methods for Bayesian MAP estimation usamgative models. First, the next section

uses the discriminative shape models for shape reguiarisat

8.2 Shape Regularisation for Segmentation

This section presents methods of shape regularisatiog tieérl_angevin model and discusses regularisa-
tion with the GP model. We start with a simple deformable oantmodel and incorporate discriminative
shape models into the objective function. Section 8.2.klkbgs the theory for a segmentation frame-
work and section 8.2.2 demonstrates its performance oheiioimages to observe the role of the shape

prior.

8.2.1 Radial active contour model (RACM): a simple framewok

The deformable contour model is adapted from the classsoake’ of Kasst al, [5] for use with the
shape models. We refer to this DCM as fRadial Active Contour ModgRACM), which is charac-
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terised by the choice of contour parametrisatiér)( objective function ¢,) deformation mechanism
(Cs) and optimisation scheméy).

The contour parametrisatiod,() is the radial time series 7.1(a) or 7.1(b). We demonsti@té¢he
star-shaped case (7.1(b)) for convenience, as it enableswisrk with the radial profile image model
introduced above. The RACM extends to the generalised petresation (7.1(a)), by using a consistent
image model derived from the image frame.

The objective function(,) is an energy functional, combining the shape model witimelets of
the observation modéb. Upon estimation of the region centkg, we calculate vectors oV means
G and N variancess? from the radial profile model above, where for simplicity thieservations are
gradient magnitude. We use these to defineraage energyerm given by

= ri — i)
Eimagd®) = Y exp[—%}. (8.8)

i=0 (o7
We also define ahape energyerm, which is simply the normalised log probability used $hape
scoring in the previous chapter

Eshapér) = Sian for Langevin, and

(8.9)
Eshapér) = Sep for GP,

whereS, ., andSg, are given by equations 7.6 and 7.16 respectively. Finaffytntour energy is defined
by
E = aEjmage+ (1 — a)Eghape (8.10)

whereq is a parameter that controls the relative influence of imagkeshape model.

The deformation mechanisr@y) and optimisation scheméq) combine stochastic sampling with
a greedy algorithm. Greedy algorithms such as the one testior snakes in section 2.1.2 are attractive
for their simplicity. By replacing the greedy search witbdtastic sampling we introduce the benefits
of a stochastic framework as noted in section 2.5, as weNaisliag the case where a greedy algorithm
enters an oscillatory state rather than converging.

The RACM is initialised with a noisy circle centred an, with radiusr estimated by the mean of
g. The algorithms proceed by perturbing successive pojr{ia the Langevin case) or whole serie@n
the GP case). In the Langevin case we draw egaahturn fromN\ (r;, 1), while in the GP case we draw
a seriex’ from N (r,I). In each case the perturbation is 'accepted’ if it causeslaaté®n in global
energyEl. The RACM terminates after a fixed number of iterations orthe Langevin case, when
all radii in a series are perturbed without acceptancengivio change in energy between successive

iterations.

8.2.2 Demonstration of the Langevin RACM

Next, we demonstrate the RACM, used with the Langevin modeldifferent weightings:. Figure 8.3
shows the results using the Langevin model for a synthetagas low signal-to-noise ratios (SNR).
The boundary is given by a ground truth liver tumour, whictsveanitted from the training set. We

repeat segmentation with decreasing from, where the shape prior is ignored, i, where image
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(@) (b)

(©) (d) (e) ®)

Figure 8.3: (a) Binary image showing ground truth liver tumshape. (b) Synthetic liver tumour image

with SNR=1.84. (c) - (f) Results of RACM segmentation, (greentours) using Langevin regularisation
with (¢) a« = 1.0, (d) a« = 0.85, (e)a = 0.75 and (f)ae = 0.5.

and shape priors are equally weighted. Panel (c) shows fiaet af image noise in the absence of shape
priors, where points of high gradient resulting from imagése cause jagged boundaries. Panels (d) and
(e) seem to give a good balance between image and shape mddlelshe smoother contour in panel
(f) suggests that the RACM is over-constrained when imagksiiape energies are equally weighted
(o =0.5).

We also implemented the RACM with regularisation by the GRIeti@nd found the approach to
be impractical for two reasons. First, GP regularisatioreiy slow, as scoring shapes by equation 7.16
requires inverting &V x N matrix at each iteration of the RACM. In practice the GP RACktdly
converges after 500 iterations, which can take several teénisecond, it is not clear when the RACM
has converged under GP regularisation. The algorithmtitela considers proposals in the form of
complete contours, and must be able to reject a complet®@oat any iteration. This means that an

energy change of zero is not an appropriate terminatioarait.

The use of GP models for shape regularisation may be suiteaiténteractive tasks such as image

reconstruction or registration, which can be performedio#.

In summary, we have presented a general framework for segrgestar-shaped regions with
Langevin regularisation, which naturally extends to thaegalised Langevin model and parametrisa-

tion. We also state that GP regularisation is possible bigrdkis for future work.
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8.3 A Generalised Framework for Interactive Segmentation sing

Generative Shape Models

We have just seen how image and shape models can be usedetogetim ACM framework, where
a contour is deformed stochasticallys), and an optimisation scheme minimises an energy fundtiona
that includes a term for the shape prior. Next we introducé#fardnt approach to segmentation, where
generative shape models replace the deformation mechanig@na posterioriprobability replaces the
energy functional. This section presents the general fnarie which is independent of the choice of
shape model. We state in general terms, and with referente timllowing sections 8.4 and 8.5, how
to proceed using the Langevin and GP shape models. Thissplaesubsequent sections in context, as
well as contributing to the wider field of segmentation bynfatising a general framework

The framework comprises the general components in the &eftl tolumn of table 8.1, where the
right hand column introduces the corresponding Langevih@R method to be detailed in the next 2

sections.

8.4 Generative Langevin Models for Segmentation

Section 5.1.2 described how a Langevin series is simulatéldeonumerical solution of a stochastic dif-
ferential equation (SDE). In the context of shape modellieglesire a similar scheme to generate shapes
from a model. The resulting shapes can serve as proposdigmotheses’ in probabilistic segmentation
frameworks. This section introduces adaptations to therBdaruyama scheme, designed to generate
appropriate series. Subsection 8.4.1 adapts the Eulemara scheme for solving SDEs, making it
appropriate for shape generation by generating closecbumnand addressing issues concerning the
centre pointx. and the discrete nature of training data. Subsection 8dn2hmnes particle-filtering
with the generative models as a novel approach to data dasoniand 8.4.3 presents the segmentation

framework.

8.4.1 Euler-Maruyama scheme for shapes

We start by writing the Euler-Maruyama scheme in polar coaigs

r(0 +d) = r(0) + d x A(r(6)) + Vd x B(r(6))w(6), (8.11)

which we initialise with a small value(0) = 0.01. Next we choose the integration time stepuia the
following observations.We noted in section 5.1.2, thatingle choice of integration time step is optimal
for all Langevin models. In practice we find that the modetsrast too sensitive to this parameter for a
range of small values. There is an upper limit, however, @gelavalues introduce chaotic behaviour to
the stochastic process. To explain this behaviour we natisthie well-known ’logistic equation’ [277]
which models chaotic fluctuations of a populatioasz(t + 1) = kz(t)(1 — x(t))), is a special case of

equation 8.11. We choosé ¢ 0.5, which works well in practice.

Next we incorporate the effect of centre point perturbatioaquation 8.4. The Euler-Maruyama
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General component proposed

Examples we present

(1) any SSM that defines a closed cq
tour Q as an instance of a contour re
resentation , and uses machine learn

methods.

ntangevin and GP SSMs from chapter 7 above, W
P-Q = Qstar= {r,xc, 7} .
ng

(2) any model that derives a data like

hoodD from information in an image

above .

(3) an interactive method of initialisg
tion , which provides as much info
mation to the shape model as possi
from as simple an interaction as pos
ble .

- Mouse curser click in the centre of a region. Gives
-timate x/, for use with the uncertainty model in se
blon 8.1.2. Also used to extract the radial profile mo
sifrom the image and in turn estimate the SSM param

T.

(4) a generative mechanism, whig
is capable of drawing samples fro
the prior distributionPr(Q) after the

model is trained

hGenerative Langevin SSM (section 8.4.2) or genera

MGP SSM (section 8.5.1).

(5) a method of constraining the gene
ative model to draw samples from th
posterior distributio®r(Q|D) .

2ri.angevin method using the generative model asa g
eally adaptive prior instep-wiseparticle filtering (sec-
tion 8.4.2 ). GP method using probabilistic regress
technique where the image provides noisy observat

(section 8.5.1).

(6) an optimisation scheme capable
estimating the maximuna posteriori
probability (MAP) solutionQ"**, ac-
counting for the inaccuracy of user in

tialisation.

oMaxim. Pr(D|Q) = Pr(Pr(D|Pr(r) Pr(x.) Pr(7)),
accounting for uncertainty on the user-initialised cer
x’.. Done by estimating the MAP solution directly fro

I-(5) and combining wittshape-wisgarticle filtering in

sections 8.4.3 (Langevin) and 8.5.2 (GP) .

i-The 'radial profile’ model introduced in section 8.1,

137

ith

1

tive

ons

tre

3

(7) an interactive method of post edi
ing, which works with the shape mod

as closely as possible.

t-Enabling repeated initialisation, and bounda
elbased correction procedures for the Langevin (g
tion 8.4.3.1) and GP contours (section 8.5.2.1), wh
the GP method refines the shape prior and re-calcu

the MAP estimate .

ry-
ec-
ere

ates

Table 8.1: Components of a generalised framework for iote@segmentation using generative SSMs.

The components are listed here along with the examplesmesséor Langevin and GP frameworks.

scheme becomes

(0 + df) = r(0) +df x A(r()) + Vdo x B(r(#))w(8) + Az cos(d) + Aysin(h),

where{Az, Ay} are drawn fromV,(x.,, 0

(8.12)

) during optimisation in the algorithms introduced below.
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The next two subsections address certain issues regardengeneration of closed contours
(8.4.1.1), and discrepancies between a prior model andrgieteseries resulting from the discretisa-

tion of training data in{x, y} coordinates (8.4.1.2).

8.4.1.1 Generating Closed Contours

The Langevin models were partly motivated by conclusionderia section 6.4, that boundary track-
ing methods are prone to self intersection and lack sat@faenethods of loop closing. The star-
shaped parametrisation naturally rules out self-intéirsgcontours by asserting monotonically increas-
ing angled. However, Langevin series allow discontinuities at thets&ad of a27 cycle due to the
Markov property. A discontinuity arises from a net displaest|ry_1 — 79| > 0 over a period
of N points. However, due to the natural fluctuations in the timeges, discontinuities are only ap-
parent if[rxy_1 — 79| > B(ry-1,b) = B(rg,b), i.e. the difference between first and last radii is
greater than the magnitude of the noise term local to thaisaafi the ’join’. As such we can produce
a pseudo-periodic series by allowing the magnitudesyof; andr, to differ within a 'tolerance’ of
|rn—1—ro| < B(rn-1,b).

To generate closed contours we run the Euler-Maruyamaratieg for N’ > N — 1 iterations,
terminating as soon dsx — rv.—n| < B(rys,b). Two observations reveal the efficiency of the
proposed algorithm. First, the algorithm need never stopeenthan/N points at a time as, by using
a 'list’-type data structure, we remove the zeroth pointrfrihe list each time thé'th point is added.
Second, the existence of stable regions in the radius spawerfied by the drift function) increases the
likelihood that two points; andr;, of arbitrary separatiofi — ¢, are at similar radii. However, care
should be taken if a model has stable regions at either sidleeatero-centre. In these cases, a series
might satisfy the termination criterion after spendiNgiterations in the positive (or negative) half of
state space. The resulting series would not occupy a zeenrfiredd, affecting estimates of the scale
parameter. To preserve the zero-mean field we sum dlgg of series values oveW points and only
accept a closed loop that has a total sign within the rar@ye, chosen empirically. The joint termination
criterion for generating model-consistent closed cord@atherefore given by

N

|7’N/ — TN’7N| < B(’I’N/,b) and Z S|gr(rz) < 0.2. (813)
i=N'—N

The use of the joint termination criteria in equation 8.1B3ea two issues. First, excepting the
special case wher&” is an integer number ok, the termination criteria result in an angular offset
between the 'start’ of the series and the presumed ahgie0 (horizontal in the image frame). While
the prior shape model is rotation invariant,tse- 0 is arbitrary, the use of generative models with image
observations below demands that the initial angle in eqoail2 corresponds to the 'start’ of the radial
profile model. The segmentation algorithms recognise an@cofor this offset.

Second, the need faV’ > N iterations to generate a series 8f points could slow down the
algorithm, in theory to speeds below what is practical in @teractive framework. The probability
of termination is governed by the shape prior and, when usestgmentation, the image model that

constrains series generation (below). This type of coimttimexpected to speed up shape generation in
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a similar way to the probabilistic loop closing algorithmdaction 6.1.3.1. In practice the criteria are

met quickly and any delay is not noticeable.

8.4.1.2 Compensating for discretisation errors

Because training shapes are originally defined on a pixd| gre state spaceof training series is dis-
cretised. This leads to an inconsistency between the dy@mioperties learned from data and those
of a generated series. To investigate the inconsistencyaiveetl models on synthetic data generated by
known models, where we expect to retrieve the known parasmeétée repeat for two types of synthetic
data. In the first case we generate series, transform thesghiapes of choseron a discretd x, y} grid,
then re-sample the shapes in the same way that radial tines see derived from medical ROI contours.
In the second case we generate series and leave them uretb Wl find that models trained on raw se-
ries retrieve the 'true’ parameters while models trainedenies derived from shapes give errors. Figure
8.4 (a)/(b) illustrate this effect for a simple model usingudic drift functionA(r (), a) = ag(1—7(6)3)

with a single parameter = {a(}. Figure 8.4 shows that the discrepancy is systematic anaraptly

2.5 2.5 30GQ " 1
—true —true measured
* retrieved * retrieved 25 —y=mz+c
2 —y=mzr+c 2 —y=mzxr+c
15 15

retrieved
retrieved

=

=18 7 =26

0.5 m =0.746 0.5 m =0.884
c =-0.269 c=-0.154
GO 0.20.40.60.81 1.331.67 2 2.335 GO 0.20.40.60.81 1.331.67 2 2.335
true parameter true parameter
(a) (b) (©)

Figure 8.4: Effect of state space discretisation on shapamjcs. Panels (a) and (b) show the offset
between the 'true’ parameter in the drift function of a Lavigenodel used to generate synthetic shapes,
and the parameter retrieved fras0 of these shapes by the direct estimation method. The ofiset i
slightly different for shapes generated with fa)- 18 and (b)7 = 26. Panel (c) shows the relationship

between scale parameteand the number of pixeld’ in a training contour.

linear. Comparing plotéa) and(b) reveals that the discrepancy also depends on the scale garam
as the state space is more finely discretised further frongianis centre.To correct for discrepancies
between those parameters we learn and those that wouldreggroeonsistent boundary dynamics in the
generative model, we store parameter sets in vectors obthe{fao, . . . a,, bo, . . . by, 7} and compute a
linear mapping between learned and 'true’ sets. For eaclbowtion of drift and diffusion function we
vary {ag, - . . ap, bo, . .. by, 7} SO that mappings generalise over a range of parameter shdibe result
allows us to calibrate any trained model for the purpose apstgeneration.

Finally we need to down-sample the high resolution seriésrbdransforming to the image frame
{z,y}. As the training data were up-sampled to a common, high uéeal series generation must
also occur at this resolution. This would lead to too high rimary resolution in all but the largest

shapes (greates). We down-sample each series to contairpoints, whereV is chosen from a linear
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relationship betwee andr in the training data. Figure 8.4 (c) shows this relationshithe case of
liver tumour boundaries.

Figure 8.5 demonstrates the use of the generative shapdsiiodereating shape instances (irre-
spective of an image). The figure verifies the success of thgdtosing procedures, as well as revealing

the affect of calibration and changing drift/diffusion pareters. Examples demonstrate affect of chang-

uncalibrated calibrated uncalibrated calibrated

o —liver tumour 01 —liver tumour oA —MS lesion —MS lesion

M < < o4
\/\% 0 éi\

-0.1 = 01 * 0 \ g—o.l \
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(@) (b) (©) (d)

As(r(0),a)
o
As(r(0),a)

By(r(6).b)
Ba(r(6),b)
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Figure 8.5: Example instances from generative Langevipetmaodels.Top row the drift functions
(a) after parameter estimation and (b) after calibrationlie liver tumour data, and (c)/(d) the same
for the MS lesion dataSecond rowthe corresponding diffusion functions (e)/(f) for livembours and
(9)/(h) for MS lesions.Third row: three instances of series generated by each m&agtom row the

corresponding shapes.

ing the drift and diffusion parameters, on generated sistiapes. We also note that discontinuities are

not visually noticeable.
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8.4.2 Data assimilation

Before we can estimat@giZ, . we first need a method of drawing closed contours from theepiost
distributionPr(Q|D) (equation 8.5). This means generating closed contoursitianly agree with the
shape model as above, but also incorporate observatiomstifr® image. Incorporating observations is
equivalent tadata assimilationwhich we described in section 5.1.3 and noted that thisasttbject of
ongoing research [240, 241] in the case of Langevin simanatiVe present a data assimilation method
inspired by the patrticle filters in [43]. The result is an exdenof boundary tracking according to the
definition in 2.2, but which tracks a whole boundary to proglacclosed contour with global shape
constraints.

We further adapt the Euler-Maruyama scheme above so thatdthion of the SDE is equivalent to
the iterative computation of posterior densities as inise@.2.1. Rewriting the jetstream equation 6.1

for the time series models gives
Pr(rit1|ri,a, b, D) < Pr(r;|la, b, D) X q(riy1|ri,a,b) X I(D|riy1), (8.14)
whereq and! now denote a global shape prior and data likelihood given by

q(riv1lri, a,b) = N(ri — A(ris1,a), B(riy1,b))  and

on
Pit1

off
Piva

Note also that 8.14 shares the Markov property of Langevidetso(equation 5.2).

(8.15)

I(Dlriz1) =

For a fixed centre point., the algorithm generates a setféfseries*, k = 0,... K —1 as follows.
k=0,...K—1

At each ste; we drawkK predictions for; solving the SDE in equation 8.12) times for a
fixedr;. We then assign weights; "~ to each prediction, given by
p"
wf+1 = aﬁ + (1 —a)N(r; — A(riz1,a), B(r;, b)), (8.16)

[
wherea controls the relative influence of shape and image priorsdkd regularisation example in
section 8.2. The weights form a discrete approximation of the posterior(r;1|a, b, D), specific
to #;. We performstep-wiseimportance sampling, by selecting points with replacement from the
posterior. Repeating folV steps results ik separate series that can be mapped into image space.
Finally we take the single radial time series (closed cortoarresponding to the points of maximum

weightw.

8.4.3 Probabilistic algorithm

The techniques above modify the numerical integration mehto incorporate the data likelihood by
a step wisedata assimilation technique. The resulting contours edénthe region boundary for
a fixed centre poink. and scale parameterin equation 8.6. To estimate the (MAP) solution

QY5 = argmax Pr(QstadD), whereQgstar = {r,x., 7}, we simultaneously seek. andr in the

Qstar
optimisation scheme. (the simultaneous optimisatios ofs in common with the approach taken in

[73]). We extend the particle filter approach to samplecomplete contours from the posterior distribu-

tion.
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We draw)M combinations of centre poinks. and scale parametefrom the distribution®r(x.) =
Ny(xL, A.), centred on the user initialisatiod,, andPr(7) = N (7, 02), wherer comes from the mean
of g; estimated from the local image gradient arjdcould either come from the image as the mean of
o7 or chosen empirically. For each combination we generatesed| contour with data assimilation as

described in section 8.4.2 and assign a weight to each ctwsedur, given by

N—-1
Wagtar = ]1) w} (8.17)

wherew; are the maximum step-wise weights as described above. \&etoethis procedure ashape
wise particle filtering, whereby each particle is a closed contothe combination of step-wise and
shape-wise particle filtering results in a nested algorjtiuiich is fast enough in practice for use in

real-time segmentation.

8.4.3.1 Interactivity and post editing

The Langevin framework has two modes of interaction, fatiafisation and post editing. Figure 8.6
demonstrates the use of this tool. A user initialises thensgdation by giving the centre point estimate
x/, inside the region of interest. Upon initialisation the sa@fte immediately displays the contour given
by the MAP solution above. The user can repeat the inititdisaany number of times, which might
give different contours. The user can edit the displayedaworby dragging any of the points in the
contour model that miss the desired region boundary. It ssibte that contour points are too close
together, meaning that a large number would need to be dilamge a small section of the boundary.
To alleviate this problem we allow the user to adjust the lo@up resolution using a slide-bar. This

adjustment is reversible.

8.5 Generative Gaussian Processes for Segmentation

This section adapts GP models to generate model shapedifegps) and, in section 8.5.1, to incorpo-
rate the data likelihood from the radial profile observativodel above (section 8.1.1).

Whereas the Langevin model required numerical procedoremnsure the generation of closed
contours, GP models facilitate analytical closed contoodets. This is because, unlike the Markovian
case of Langevin models, GP models encode the global cortsifaorrelating a point(6) with (6 +
27) by using a periodic kernel function. We use equation 7.Irbéhiced in section 7.3.1.

GP models readily generate samples from the prior as destciibsection 5.2.2. In the case of

radial time series this means evaluating

r =u+ Az (8.18)

As with the Langevin models above, we use a linear relatiprishcalibrate the generative model with
respect to the parameter estimation, and down-sample aajedeseries to give a suitable boundary
resolution for the corresponding scale parameter. Figuré sBows the chosen kernel function for

different parameters = {a}, along with the corresponding radial time series and shapes
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(b)

(e) (f)

Figure 8.6: Interactive contouring with the Langevin SSMltqa) Close-up of a MS lesion in an axial
PD weighted MR image. (b) A contour (MAP estimate) shown imgldgjreen after selection of an initial
estimate of the centre poirf, (red). (c) An alternative initial contour shown after ratigisation with

a new estimat&’.. The same contour as in (b), shown after the user has redneedgolution of those
boundary points (blue) that can be 'dragged’. (e)/(f) Thagdiing mode before/after two boundary
points are moved. White lines are added here to highlightrtheslation of the dragged points, but are
not shown to the user during run-time. (g)/(h) The final contoefore/after returning to the original

boundary resolution.

8.5.1 Conditioning the prior

This section shows how to directly generate samples fronptis¢erior over contourBr(QstadD)
Pr(D|Qstar) Pr(Qstar) wherePr(Qstay) is the shape prior anélr (D|Qstay) is the data likelihood. We
follow the method of conditioning the prior on 'noisy obseations’ as described in section 5.2.3. This
has the same role as the step-wise particle filter in the hangase but has two key differences. First,
unlike the Markovian case, the observation model congrihia whole radial time series in 'one-shot’.
Second, the angleés at which observations are made need not belong to the vefttgputs6. We can

use any number of observations at arbitrary angles.

We define a noisy observation at anglaising the radial profile model. We start with the Gaussian
model of the gradient magnitude, i.&.+ p° (r) wherep®™ is from equation 8.2 in the radial profile

model. The noisy observation for tli observation angle is given by (g;, o).

For an arbitrary numbel of observationse store a vector of megpsnd a matrix of variances
(1 —p2N(r))o?1, wherel is aN x N identity matrix. We construct a vectéf of lengthN’ = N 4+ N*
by concatenating the vector of observation inguitsith the vector of N* inputs for which we do not
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Figure 8.7: Generative GP model trained on liver tumouns(dav) and MS lesions (bottom row). Panels
(a)/(d) show the kernel functions with a representatiorhef dovariance matrix (inset). Panels (b)/(e)
each show three instances of a generated series and (hp(f)the corresponding shapes with typical

scale factoF

have observations, denotétl. This new vecto®’ = {0, 0*}7 has a covariance matrix of the form

6(90,90) 6(90,97\[/_1)
x(6',0') = : :
e(xi_1.00) .. e(Oh_1,08_1) (8.19)
EQQ + 0'21 299*

- )

Yo-o Yo-o~

whereXgg denotes dV x N sub matrix,Xgg+ is aN x N* sub matrix and so on. These sub-matrices

are used to form the posterior model defined by

r’ = Nu(kpost Zpost: (8.20)
where
Hpost= 1 + Ze-0[Teo + oI (G — 1) (8.21)
and
post= Ze-or — Se+0[See + 021 Soe-. (8.22)

We could draw samples from the posterior by constructidg-dimensional vecto¥, wherez; is
from A/(0, 1), then evaluating* = Hpost+ AZ. This is equivalent to replacing andX in equation

8.18 with equations 8.21 and 8.22 respectively. Howevesdlsamples are of limited use to the present
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framework. Whereas in the Langevin case we estimate the MARien (for a fixed centre-point and
scale parameter) from such samples, the GP model allowddolai the MAP estimate directly from
the posterior model. This is because e&elr;|0;) is a Gaussian distribution, so the MAP estimate is

equivalent to the posterior mean calculated at all inputggby

—1
Q" = post= (0") + 5(0",0) [ 5(0.0) + 021 (& (@) ©:23)

where vectorg and o, contain the observations from the radial profiles describesgction 8.1.1 and
n(6*) andp(0) is the mean function evaluated at the inputs correspondingobserved and observed

data respectively.

8.5.2 Probabilistic algorithm

The estimate in equation 8.23 has a unique solution for angieatre-point and estimated The present
segmentation framework has three remaining requiremeintg, we require the MAP estima@g{;, ;=

argmax Pr(QstalD) whereQstar= {r,x., 7}. Second, we require the use of full observation model
Qstar
incorporating the local boundary direction in the likelittbratio p2"(r)/p2f (). Third, we require

control over the relative influence of image and shape modéie chosen algorithm achieves all three
of these requirements by using a nested particle filter &sael

We draw}M combinations of centre poinks and scale parametefrom the distribution®r(x.) =
N, (x.,A.), centred on the user initialisatiod},, andPr(7) = N (7, o2), wherer comes from the mean
of g; estimated from the local image gradient arfdcould either come from the image as the mean of
o? or chosen empirically. For each combination we compute tetgpior mean by equation 8.23, for

use asM shape-wise particles. We weight each shape by

pgfr;(r) +(1—)Ser (8.24)

1 N—-1
Wagtar= oy Z; 20 ()

wherepP(r) andpOff

K2

(r) are from the observation model (equation 82), is the Gaussian process

shape score in equation 7.16 amés the relative weighting between image and shape models.

8.5.2.1 Interactivity and post editing

As in the Langevin case, the GP framework involves two mod@gteraction for initialisation and post
editing. Initialisation estimates the centre paitas before. The post editing procedure is new, and
makes more efficient use of interactions than the pointgiragmode in the Langevin framework. The
ability to interact closely with an underlying shape pribiosld intuitively reduce the demand on the
user and has been shown to benefit different interactivednaorks in [147] and [148] .

Recall from section 2.3, that successful modes of intevadti the literature work closely with the
underlying segmentation algorithm. The method here usesime interactions to update the posterior
model. After initialising the tool the user can identify ptsé on the region boundary that the displayed
contour does not pass through. The software calculatesifie and radius”; corresponding to this
point and defines moise-free observatiorisy A/ (r%,0) corresponding to anglg . The observation and

angled; complement the observation model above and the MAP soligicercalculated, which passes
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through the user-defined boundary point. The new solutialisislayed in real time and any number of
similar interactions can be performed to further refine tteeled. Figure 8.8 demonstrates the use of

interactions as noise-free observations.

5 5 5 5
" M " o SN e s TOM TOM
o ] - .
G ; = 0 ; = ; = ; 5
(@) (b) (©) (d)

Figure 8.8: Using the GP SSM tool for interactive contouriighe same MS lesion image as in fig-
ure 8.6 (a).Top row: (a) The first contour (green) displayed after the user hamatd the region centre
x!, (red). (b-d) Post editing by successively identifying omeidary point (b) followed by a second
(c) and third (d) shown in redBottom row: corresponding radial time series in the zero-mean field,
where black lines show the MAP solution, grey points shoveyobservationg + o9 from the radial
profile model andX’ are polar representations of user-identified boundarytsaiised as noise-free

observations.

It is interesting to consider an equivalent mode of inteéascin the Langevin framework. Such a
scheme would require updating the drift and diffusion fiores so that the refined model is constrained to
pass through a poirtr, #}. Changes could only update the transition densRigs;.,16)|r;) and so the
analogy breaks down. An interaction can only assign a higbatility Pr(r(6)), which not conditional
on the previous point. Even if a single transition denBityr; 1 0)|r;) could be somehow prescribed, the
Markovian nature of the model means that the informationldionly be used if the radial time series
passed through the corresponding radiusMoreover, the constraint would be effectieeerytime the
series passed through radiys not only at the desired poidt;, 6;}, i.e. at the angle corresponding to

the interaction.

8.6 Data and Performance Evaluation

This section describes how we evaluate the SSM segmenfadimeworks. We select test images and
perform segmentation with both the RACM and the interactivels based on generative SSMs. In all
cases we seek to evaluate the power of the shape prior in thesponding framework. Section 8.6.1

introduces test images common to all following experimeBesction 8.6.2 states what figures of merit
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we use, and explains their various roles in measuring acguaa well as useability and variability of
an interactive tool. Section 8.6.3 explains how we creafereace tools that without learned shape

knowledge, and how we test for differences in performanteden these and the full SSMs.

8.6.1 Testimages

To allow us to make more reliable measurement of accuracyre@te synthetic images wherein the
true region boundary is known, and is a contour chosen frensé of MS lesion or liver tumour ground
truth. To isolate the benefits of the shape models it is daisita use synthetic images that alleviate the
problem of boundary ambiguity. However, we also need tottessegmentation tools in realistic data,
for the conclusions to be of practical use. As a compromisereate synthetic images of low SNR and,
in the case of MS lesions, repeat experiments on real MRIé&nag

The foreground and background in synthetic images have Seaubistograms with mean grey-
levels187 and210 respectively, and standard deviatidrs5. These statistics are equivalent to a SNR
of 1.84, within the range seen for tumour and lesion imaging apptioa. We also smooth the synthetic
images with & x 3 pixel averaging kernel. Figure 8.9 shows the complete setsbimages.

Starting with 241 star-shaped training contours from maliner-tumour segmentations [29] and
1307 from MS lesions. We remove the three test contours frach set and train Langevin and GP

SSMs on the remaining contours.

8.6.2 Figures of merit

We evaluate segmentation tools in terms of accuracy, véityadnd useability. As in section 6.3.1, we
choose performance measures and comparison methods toesajiplication and the components of a
segmentation framework being evaluated. As with the ictera jetstreams of section 6.3, we evaluate
the present segmentation frameworks with a combinatiopatial similarity measures and quantitative
measures of user behaviour.

In the case of the generative segmentation frameworkslgsitgimeasures each have five distinct
roles relating to the two stages of initialisation and paftieg. First, the similarity between anitial
contour and the ground truth indicates the accuracy of tbbahilistic algorithms in sections 8.4.3 and
8.5.2, in the absence of post editing. Second, the sinyilagtween dinal contour accepted by the user
and the ground truth indicates the accuracy of the processelkr, the 'process’ here refers to a combi-
nation of the probabilistic framework, the modes of intéiatand the user’s ability to both use the tool
and perceive a region. Given the level of user control andstiogectivity of supervised segmentation,
accuracy is best suited to comparing two tools used by the garson. Third, the similarity between
a final contour and a second contour, accepted by a diffeygerator using the same tool to segment
the same ROI, measures the inter-operator variability af thol. Similarly, the similarity between a
final contour and a second contour, accepted by the sametopasing the same tool to segment the
same ROI, measures the intra-operator variability of thak tThe final role of similarity relates to the
useability of a tool. The similarity between a final contoacepted by the user and the initial contour
before post editing, provides a measure of the level of pdihg necessary.

In evaluating similarity we use mean minimum distance (MMD)7] and Dice similarity coef-
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Synth. liver tumour (i) (ii) (i)

Synth. MS lesion (i)

MRI MS lesion (i) (ii) (iii)

Figure 8.9: ROIs used in experiments, with numbers (i) tpsed in subsequent discussiomsp row:
synthetic liver tumour image#/iddle row: synthetic MS lesion image8ottom row:MS lesion images
from PD weighted MRI.

ficient (DSC) [104]. Following the arguments in section 6.8IMD is appropriate as it is a stable
boundary-based dissimilarity measure and the regiondlaS€ is relevant to the secondary measure of

'lesion load’ sought by MS lesion segmentation.

In the case of the generative segmentation frameworks, seeusle the Hausdorff distandg to
measure the similarity between a final contour accepted &yisler and the initial contour before post
editing [106]. Recall thatly is a 'maxmin’ measure, giving the largest example aroundathele of
a contour, of the shortest distance from a pixel on that agrtim any pixel on the compared contour.
This offers meaningful quantification of the amount of paditieg performed using methods in sec-
tions 8.4.3.1 and 8.5.2.1, as these methods make localtions where the contour deviates from the
true boundary. In the case of shape regularisation we dawgeiment any post editing procedures, so
we just use the MMD and DSC.
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In the case of the generative frameworks, which are intmgave also measure the useability of
each tool using two aspects of user behaviour. First, wettak@umber of boundary points interacted
with ('drags’ in section 8.4.3.1 or 'noise-free observagbin section 8.5.2.1). The second aspect of
user behaviour is the number of initialisations deemed seg before a contour is edited (or accepted

without editing).

8.6.3 Comparison methods

We have simultaneously developed new shape models alohgniéractive DCM frameworks for their
use in segmentation. Direct comparison with another setatien algorithm in the literature is con-
sidered as future work, while we currently design 'proof ohcept’ experiments to test if the shape
models are effective and the segmentation algorithms afilusVe take the same general approach as
in [73, 42, 149, 53], which is to test the value of a nagditionto a segmentation framework (eg shape

prior, image prior or interactive mode) by comparing the ediramework with and without that addition.

Recall that, in the case of SVM jetstreams, we evaluatedilleeof the texture classifiers by consid-
ering an equivalent tool driven by intensity gradient asmparison method. In the case of the Langevin
and GP frameworks we seek to evaluate the benefits of thelglodpe priors, which calls upon different
comparison methods for the shape regularisation frame{(RACM) and generative frameworks. For
the shape regularisation framework we duplicate the algorivithout the shape prior by setting= 1
to remove the shape scoring from the energy functional. lk@igenerative frameworks, removing the
global shape prior is not trivial. We wish to replace the e shape information with something that is
reasonable, but does not assume any prior knowledge almogtdbal shape of a region. In the case of
the Langevin model we choose a stationary distribuliefr; ; |r;) = N (r;, 1) to replace the transition
densities. This results in a subtly different tool, whereadlssmoothness is retained but the global drift
and diffusion characteristics are removed. In the GP modeimould ideally replace the covariance
matrix with the N x N identity matrixX(r,r) = I, equivalent to using the Kronicker delta function
as the kernel. However, this leads to numerical issues assiegular matrices need to be inverted.
Instead we use a covariance kernel that approximates ttefdattions (r;, ;) ~ §(0; — 6;) by setting
e(ry,r;) = min[1, (N(6; — 6;)~')]. In both Langevin and GP experiments we refer to their respec

reference models as havingnarmal prior as opposed to learned prior.

For a given measure of accuracy, variability or useabilitg,look for significant differences be-
tween results for a framework with learned and normal pritanr this purpose we use both parametric
and non-parametric hypothesis tests. First we use thd {gasametric) as before. We also use the
Wilcoxon signed rank test (non-parametric), which is appiate when the assumption of normally dis-
tributed results. The non-parametric test is more consigeyanaking less assumptions about the data
than the t-test, and might alleviate problems associatédinterpretation of results from small samples

discussed in section 6.4.
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8.7 Experiments

This section evaluates the discriminative and generatispa models for segmentation. Section 8.7.1
evaluates the benefits of the Langevin model for shape regati@n in star-shaped region segmentation.
As stated above, the regularisation method extends nbtiivalthe generalised model with arc-length
parametrisation 7.1 (a) We defer evaluation of the gerssdicase for future work.

Section 8.7.2 evaluates the interactive generative framenused to segment star-shaped regions.

8.7.1 Shape regularisation
Experiments in this section test the use of discriminatiaedevin models for shape regularisation in the
RACM framework described in section 8.2. We choose not tahs&P model for shape regularisation
as discussed in the same section.

First, we test the ability of the regularised RACM to balaimfermation regarding image and shape
properties. We noted in section 2.5 that conflicting image stmape information need to be balanced

and that greedy algorithms can enter an oscillatory stateowt convergence. We hypothesise that:
'H8.7.1.1: The evolution of a RACM terminates by convergeonczeto energy

To test this hypothesis we run the RACM on the testimagese&ch region we fix the centre-point
x. at the 'true’ centre as described in section 7.1.2 and saraglal profiles of the gradient magnitude
as described in section 8.1.1. We estimafeom the mean of vectog in the observation model and
initialise the RACM with a noisy circle, defined by drawingfrom N/ (7,2.5) fori = {0,..., N — 1}.
As described section 8.2, the evolving RACM terminates wheriotal energy is zerar when reaching
the chosen maximum number of iterations. We set this maximumber to 500. Table 8.2 shows the

number of iterations for convergence in each of the test @nag

Synthetic MRI

! liver tumour MS lesion MS lesion

@) | @) | iy | @) | G | i)y | @) | (@) | (i)
0.7 311| 458 | 406 | 73| 65 | 66 | 111 | 214 | 113
0.8 308| 166 | 364 | 71| 76 | 99 || 107 | 176 | 58
1 115| 123 | 120| 32| 46 | 36 52 | 41 | 46

Table 8.2: Number of iterations for convergence of the RAGYyb&athm

In all cases the algorithm terminates at zero enetg$@0 iterations) allowing us to accept hypoth-
esisH8.7.1.1.
Next, we test the accuracy of the regularised RACM. We hygsiie that:

H8.7.1.2: the accuracy of a simple deformable contour madeiproved by the use of

Langevin shape priors.

To test this hypothesis we perform quantitative experimesing the RACM algorithm without

interactivity. We initialise the RACM in the test images igdre 8.9. Upon convergence to zero energy



8.7. Experiments 151

we evaluate RACM accuracy by calculating the mean minimwstadice (MMD), Dice similarity coef-
ficient (DSC) and Hausdorff distanal; with respect to the ground truth contour. We repeat for each
of the test images both with and without shape regularisatiiere shape regularisation is included by
settinga < 1 in equation 8.10, and excluded by= 1. Tables 8.3 to 8.5 shows the results for images
(i) to (iii), in each of three image types as in figure 8.9, a@lanith the overall mean. In all cases the
shape regularisatiory(= 0.7 or 0.8) gives an increase in accuracy, indicated by lower mean MWD o
dg, or higher mean DSC.

Next we test for significant differences between the acquoathe RACM with and without shape
regularisation using a one-tailed paired-samples t-t€he p-values in tables 8.3 to 8.5 indicate the
significance of differences in accuracy between the RACMauit shape prior and the cases when
a = 0.7 anda = 0.8. Superscript '+’ denotes an increase in accuracy (no regile a decrease in
accuracy), when using shape priors (non-z€xoBold values indicate where differences are significant

with a confidence interval of 95. Results are given separately for each image segmented.

Synthetic MRI

o liver tumour MS lesion MS lesion mean p-value
@ | Gy | @) | @ | @ | @iy | @ | () | (i)
0.7| 053] 1.01| 1.60| 0.72| 0.92| 0.89| 0.87| 1.72| 0.90 | 1.018+-0.391| 0.077"
0.8| 0.57| 1.00| 1.68| 0.73| 0.61| 0.78 || 1.08 | 1.91| 1.02| 1.042+-0.466 | 0.028"
1 0.65|1.24| 1.89| 0.72| 0.69| 0.76 || 1.35| 2.06| 0.90 | 1.140+0.534| N/A

Table 8.3: Effect of learned shape regularisation on segatien accuracy in terms of mean minimum

distance (MMD).

Synthetic MRI

Q@ liver tumour MS lesion MS lesion mean p-value
@ | Gy | @) | @ | @ | @iy | @ | @) | (i)
0.7 | 0.97| 0.95| 0.94| 0.79| 0.83| 0.85| 0.74| 0.71| 0.84 | 0.847-0.092| 0.270"
0.8 0.96| 0.95| 0.94| 0.78| 0.87| 0.86| 0.71| 0.69| 0.82| 0.842-0.101| 0.407"
1 0.96| 0.93| 0.93| 0.79| 0.88| 0.86| 0.71| 0.67| 0.84 | 0.841-0.101| N/A

Table 8.4: Effect of learned shape regularisation on segatien accuracy in terms of Dice Similarity

Coefficient (DSC)

Tables 8.3 to 8.5 show that, for the boundary-based accunaagures of MMD and gy, regular-
isation gives significant improvement for one or both of thetéd shape prior weightings & 0.7 or
0.8). In terms of the region-based accuracy measure (DSC) thefibef shape regularisation is not
significant.

In conclusion, we accept hypothe${8.7.1.2 for boundary-based accuracy, but not region-hased

where the improvement is apparent but not significant.
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Synthetic MRI

! liver tumour MS lesion MS lesion mean p-value
@ | @) | Gi) | @ | @) | Gi) | @) | @) | (i)
0.7| 1.41| 13.0 | 15.62| 1.41| 3.0 | 3.16|| 7.62| 7.81| 2.24 | 6.1415.251| 0.023"
0.8 1.41| 15.65| 16.64| 2.83| 2.0 | 2.0 || 8.54| 8.06 | 2.24 | 6.59746.032| 0.014"
1 2.24| 24.17| 18.03| 5.00 | 2.24 | 4.47 || 10.0| 8.94| 4.24 | 8.814+7.607| N/A

Table 8.5: Effect of learned shape regularisation on seggition accuracy in terms of Hausdorff distance
(dm)

8.7.2 Interactive generative frameworks

Experiments in this section test the practical value of ttieractive segmentation frameworks of sec-
tions 8.4 and 8.5, and the benefits of the dynamical shapespoahese frameworks. We design an
experimental protocol that tests the tools in various sgesand calculate statistics of each tool’s per-
formance in user trials.

Following the findings above, we set= 0.75 in both Langevin and GP frameworks. The number
of shape-wise particle3/ in the shape-wise importance sampling common to both fraresvmust
balance the benefits of this part of the algorithm with a linearease in computation time. In practice
we find that reducing/ to 5 allows real-time segmentation without compromisinguaacy.

We ask 10 volunteers to use both segmentation frameworkseiriollowing experiments. Each
volunteer uses a tool to segment the same randomised sequfdmages from the set in figure 8.9. The
sequence includes each region twice for segmentation bjothevith normal and learned priors. In
addition, one region is included a further two times to all@peated segmentation by each prior type.
For this purpose we choose region (iii), from each image {gyathetic liver tumour, synthetic MS
lesion and MRI MS lesion). The resulting sequence compidesegmentations, which a user repeats
using Langevin and GP frameworks.

Both Langevin and GP frameworks involve an initialisatiéepsfollowed by interactive post edit-
ing. In each case the user can repeat the initialisation amber of times. After initialisation, the user
either accepts a contour without post editing, or perfornysamount of interactions. These interactions
are either 'drags’ in the case of the Langevin tool (figurg 8r6noise-free observations (mouse clicks
on the boundary) in the case of the GP tool (figure 8.8).

Before performing the experiment, each volunteer pragtisesegmenting 3 regions (not from the
set in figure8.9) using each tool with learned and normalgri@vhilst using a given tool (Langevin or
GP) a user is not aware that it occurs in two different modesrled and normal prior).

The remainder of this section presents various statistivalyses that test certain hypotheses re-

garding the benefits of the shape priors to the accuracyhitity and useability of each tool.

8.7.2.1 Accuracy

First, we hypothesise that:
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H8.7.2.1: the accuracy of each interactive framework isdased by the learned global

shape priors.

To test hypothesi${8.7.2.1 we measure the dissimilarity, in terms of MMD and D$&€&tween
segmentation results and ground truth and take the meamdés#ty over all regions. Results for each
user are given in appendix tables 10.1 (for synthetic livendurs), 10.2 (for synthetic MS lesions)
and 10.3 (for MRI MS lesions) along with the overall mean MM&DSC for each tool. For synthetic
liver tumours (table 10.1) the mean accuracy is the samepariu for tools with learned shape priors,
with the exception of the accuracy of the Langevin tool assuezd by MMD, which shows a small
(0.022 pixel units) increase in MMD when the prior is used.r Bpnthetic MS lesions (table 10.2)
the mean accuracy is consistently superior for tools withirled shape priors. For MRI MS lesions
(table 10.3) the mean accuracy is the same or superior fd¢s with learned shape priors, with the
exception of the accuracy of the Langevin tool as measurdai3y.

To look for significant differences between the accuracyheftbols used with learned and normal
priors we use a paired-samples t-test and a non-paraméfitcoion signed rank) test. Table 8.6 shows
thep-values revealed by both tests, when similarity is measbyedean minimum distance (MMD) and
Dice similarity coefficient (DSC). Theg-values in table 8.6 indicate the significance of the diffierein
accuracy resulting from learned shape priors. Superscriptaind -’ denote an increase and decrease
in accuracy respectively, when using learned shape pri®otd values indicate where differences are
significant with a confidence interval of 95 No results give a significant reduction in accuracy. Result
are given separately for synthetic liver tumour (LT) and tiplé sclerosis (MS) regions as well as the

real MRI images of MS lesions.

T-test Wilcoxon

synth. LT | synth. MS| MRIMS | synth. LT | synth. MS| MRI MS

Model | Measure

MMD 0.287 0.485" 0.050" 0.361" 0.480" 0.057*
DSC 0.476~ 0.815" 0.340° 0.439" 0.193F 0.228"
MMD | < 0.001" 0.250" 0.064" | 00.003 0.288f 0.057*
DSC | <0.001" 0.194" 0.006" 0.003" 0.288" 0.004"

Lan

GP

Table 8.6:p-values indicating significance of the effect of learnedoghariors on the accuracy of inter-

active segmentation

Table 8.6 leads to the following observations:

- According to a parametric test, the accuracy of the Langiaimework, as measured by MMD,

is significantly increased by the learned shape prior whgmsating MRI MS lesions.

- The accuracy of both tools is consistently increased wliegmegnting MS lesions in synthetic

images, but this increase is not significant.

- According to both parametric and non-parametric tests aitcuracy of the GP framework, as
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measured by MMIDand DSC, is significantly increased by the learned shape pri@ngegment-
ing synthetic liver tumours, and that measured by MMD alansignificantly increased by the

learned shape prior when segmenting MRI MS lesions.

In conclusion, we accept hypothe$i8.7.2.1 in the Langevin case for MRI MS lesions and in the
GP case for all regions except for synthetic MS lesions. Tgmaeent (but insignificant) reduction in
accuracy for the Langevin tool segmenting synthetic liuandurs could caused by a reduction in post
editing. The tool with shape priors may give a reasonabléaxonwhich subconsciously influences
the user to accept the result with insufficient post editimgleed, this post editing involved on average

10.520 boundary interactions for the tool with shape préomd 16.075 without.

8.7.2.2 Inter-operator variability

Next, we hypothesise that:

H8.7.2.2: inter-operator variability of each interactivarhework is reduced by the

global shape priors.

To test hypothesi$(8.7.2.2 we measure the dissimilarity, in terms of MMD and O&@Bveen the
segmentation by two different users, of a single ROI. Fohd20| we take the mean over all 45 distinct
pairs of users. Because each region can be perceived diffely each user we give results for each
region separately. Table 10.4 gives the results separfatedggmentation of synthetic (liver tumour and
MS lesion) and MRI (MS lesion) images. In the Langevin frarogy learned shape priors reduce the
inter-operator variability measured by MMD and DSC in 5 ofitte 9 images, namely synthetic liver
tumours (i) and (iii), synthetic MS lesions (i) and (iii) aMRI MS lesion (iii), as well as synthetic liver
tumour (ii) in terms of MMD alone. In the GP framework, leadrehape priors reduce the inter-operator
variability measured by MMD and DSC in 3 out of the 9 imagesnaly synthetic liver tumour (i),
synthetic MS lesion (ii) and MRI MS lesion (ii), as well as MRIS lesion (i) in terms of MMD alone.

To look for significant differences between the inter-oparaariability of the tools used with
learned and normal priors we use a paired-samples t-test and-parametric (Wilcoxon signed rank)
test. Tables 8.7 and 8.8 show thevalues revealed by parametric and non-parametric tesfsece
tively, when similarity is measured by mean minimum dis@a(ldMD) and Dice similarity coefficient
(DSC). Thep-values in tables 8.7 and 8.8 indicate the significance ofdifference in inter-operator
variability resulting from learned shape priors. Supepsr+’ and '-’ denote a reduction and increase
in inter-operator variability respectively, when usingrdeed shape priors. Bold values indicate where
differences are significant with a confidence interval dii9Results are given separately for each image

segmented. Tables 8.7 and 8.8 lead to the following obgensat

- For some images, the reduction in inter-operator vaiitghd significant in terms of one or both
measures (MMD/DSC) according to one or both tests (paréain-parametric). In the case of
the Langevin framework this is true for synthetic liver twms (i) and (ii), synthetic MS lesions (i)
and (iii) and MRI MS lesion (iii). In the case of the GP toolghs true for synthetic liver tumour
(i), synthetic MS lesion (ii) and MRI MS lesion (ii).
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Synthetic MRI

Mod. | Meas. liver tumour MS lesion MS lesion

W | @ | W | @ | | o | @ | a
MMD < .001" | 0.338F 0.006" 0.008" | 0.047" 0.278" 0.359" | 0.011" | 0.008"
DSC 0.159" | 0.019° | <.001" | 0.002" | 0.208 | <.001" | 0.003" | 0.011 | 0.055"
MMD 0.087" | 0.321" | 0.018 | 0.245 | 0.010" | 0.032" | 0.260" | 0.323" | 0.098"
DSC 0.046" 0.462" 0.056~ 0.305" | 0.009" 0.002" 0.061" | 0.030" | 0.490°

Lan

GP

Table 8.7:p-values from T-test indicating significance of the effectezrned shape priors on the inter-

operator variability of interactive segmentation

Synthetic MRI

Mod. | Meas. liver tumour MS lesion MS lesion

W | @ | a o | @ | a M | o | i
MMD || <.001" | 0.357" | 0.008" | 0.019" | 0.141 | 0.328" | 0.400" | 0.005 | 0.012"
DsC || 0.230" | 0.025° | <.001" | 0.015" | 0.255 | 0.001" | 0.006" | 0.012" | 0.082"
MMD || 0.136" | 0.444 | 0.136" | 0.489 | 0.021" | 0.053 | 0.154" | 0.173" | 0.123
DSC || 0.063" | 0.431 | 0.084 | 0.484 | 0.015" | 0.003 | 0.077 | 0.039" | 0.480°

Lan

GP

Table 8.8:p-values from Wilcoxon signed rank test indicating significa of the effect of learned shape

priors on the inter-operator variability of interactiveysgentation

- For some of the images revealingianreasen inter-operator variability, this increase is signifi-
cant in terms of one or both measures (MMD/DSC) accordingnéoar both tests (parametric/non-
parametric). In the case of the Langevin framework thisug tior synthetic liver tumour (ii),
synthetic MS lesion (ii) and MRI MS lesions (i) and (ii).

- To summarise results for the Langevin framework, the patamtests reveal 7 cases where the
inter-operator variability is significantly reduced anddses where it is significantly increased.

These numbers become 4 and 0 in the case of non-parametsic tes

- To summarise results for the GP framework, the paramedsistreveal 4 cases where the inter-
operator variability is significantly reduced and 3 casegmstit significantly increased. These

numbers become 3 and 1 in the case of non-parametric tests.

In conclusion, we can not accept hypothdsi®.7.2.2 due to the appreciable amount of significant
negative results. These results could be explained by gtelévels of user control offered by both post
editing methods. More user control allows for differeniesyof post editing between users, which can

override the benefits of the shape priors to the variabilityesults.
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8.7.2.3 Intra-operator variability

Next, we hypothesise that:

'H8.7.1.3: intra-operator variability of each interactivarhework is reduced by the

global shape priors.

We measure the similarity, in terms of MMD and DSC betweensegmentations of a region (iii)
by the same user at different times. The full results arergineppendix tables 10.5 (for synthetic liver
tumours), 10.6 (for synthetic MS lesions) and 10.7 (for MRS Nésions) along with the overall mean
MMD and DSC for each tool.

Results for each user are given in appendix tables 10.1 yiothstic liver tumours), 10.2 (for
synthetic MS lesions) and 10.3 (for MRI MS lesions) alonghvitie overall mean MMD and DSC for
each tool. For synthetic liver tumours the mean intra-ojpesariability is the same or superior for tools
with learned shape priors, with the exception of the infpa+ator variability of the Langevin tool as
measured by MMD. For synthetic MS lesions the mean intraaipevariability is the same or superior
for tools with learned shape priors, with the exception @f ithtra-operator variability of the Langevin
tool as measured by MMD and the GP tool as measured by DSC. RoIM& lesions the mean intra-
operator variability is consistently superior for toolglmiearned shape priors.

To test hypothesia(8.7.1.3 we look for significant differences between thesirdperator variability
of the tools used with learned and normal priors using a gesemples t-test and a non-parametric
(Wilcoxon signed rank) test. Table 8.9 shows thealues revealed by both tests, for each image type
and when similarity is measured mean minimum distance (M) Dice similarity coefficient (DSC).
Superscripts '+ and '-’ denote a reduction and increaseiraroperator variability respectively, when

using learned shape priors. None of the differences ardfisigmt with a confidence interval &6 %.

T-test Wilcoxon

Model | Measure
synth. LT | synth. MS| MRI MS | synth. LT | synth. MS| MRI MS
. MMD 0.063" 0.279 0.128" 0.121 0.430° 0.143"

an

DSC 0.279" 0.500° 0.405" 0.322" 0.399 0.288"
P MMD 0.184" 0.377 0.458" 0.254" 0.323" 0.400"
DSC 0.323" 0.268 0.494 0.480" 0.305" 0.480°

Table 8.9: p-values indicating significance of the effect of learnedpghpriors on the intra-operator

variability of interactive segmentation

Table 8.9 suggests that the intra-operator variabilityadhth angevin and GP frameworks is reduced
in all cases except for synthetic MS lesion segmentatiom;iwinvolves the smallest regions.

In conclusion, we can not accept hypothg§i8.7.1.3 due to the lack of significant difference be-
tween intra-operator variability of the tools with learnadd normal priors. These results could be

explained by the high levels of user control as in the casg&f7.2.2.
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8.7.2.4 Useability

Next, we hypothesise that:

'H8.7.2.4: the number of initialisations necessary in eaaméwork is reduced by the

global shape priors.

We test hypothesi&8.7.2.4 in two ways. First, we count how many times numbenitifilisations
Ninit = 1. Inthese special cases a user accepts or edits a contaw siftgle initialisation. We compare
this number for each framework with and without learned shaors. For the Langevin framework,
Nipjt = 1 72 times with learned prior and 54 with normal prior. For the Bamework,Nj,it = 1
103 times with learned prior and 95 times with normal priarbbth cases the learned shape prior leads
to an increase in the number of once-only initialisationkewe the difference is more apparent in the
Langevin case.

Second, we count the number of initialisatidkig,;; that a user invokes before accepting or editing
a contour. We take the mean over all regions and compare & twith normal and learned prior,
reporting the difference for each user. Table 10.8 showssthdts for each user along with overall mean
and standard deviation. We also look for significant diffees between the number of initialisations
of the tools used with learned and normal priors using a gesemples t-test and a non-parametric
(Wilcoxon signed rank) test. Thevalues in table 8.10 indicate the significance of the déffee in
the number of initialisations resulting from learned shppers. Superscripts '+ denote a reduction in
the number of initialisations, when using learned shapergriBold values indicate where differences
are significant with a confidence interval of@5All results give a significant reduction in the number

of initialisations. Table 8.10 reveals that, for both Lavigeand GP frameworks, the learned shape

Model | T-test | Wilcoxon

Lan 0.017" | 0.008"
GP 0.039" 0.046"

Table 8.10:p-values indicating significance of the effect of learnedpghgriors on the number of ini-

tialisations

priors lead to a significant reduction in the number of contoitialisations necessary, according to both
parametric and non-parametric tests.

In conclusion, we accept hypothesig8.7.2.4 for both segmentation frameworks and all image
types.

Next, we hypothesise that:

H8.7.2.5: The level of post editing necessary in each framieisseduced by the global

shape priors

We test hypothesi&8.7.2.5 in two ways. First, we count how many times the nunebboundary

point interactions mad&/j,+ = 0. In these special cases a user accepts a contour aftelisatiian
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without post editing. We compare this number for each fraorgwith and without learned shape
priors. For the Langevin framework,this happens 10 timet ¥@arned prior and once with normal
prior. For the GP framework, this happens 16 times with lednprior and 9 times with normal prior. In
both cases the learned shape prior leads to a striking iseiadahe number of first-time acceptances.
Second, we compare the level of post editing performed diafigiontours for each tool used with
normal and learned shape priors. We quantify the "level’asdtpediting in two ways. First, we count the
number of boundary point interactions maig,;, being the number of points 'dragged’ in the Langevin
framework (figure 8.6) and the number of noise-free obsemain the GP case (figure 8.8). Second, to
account for the subjective nature of the level of post ediieemed 'necessary’ by a user, we measure
the dissimilarity between initial and final contours usihg Hausdorff distancéy . In each caseXjq¢
anddy) we take the mean over all regions and compare for tools watimal and learned prior. The
full results are given in appendix tables 10.9, 10.10 and ILOWe also look for significant differences
between level of post editing of the tools used with learned mormal priors using a paired-samples
t-test and a non-parametric (Wilcoxon) test. Thealues in table 8.11 indicate the significance of the
difference in the level of post editing resulting from leadnshape priors. Superscript '+’ denotes a
reduction in the level of post editing (no results give anréase in the level of post editing), when using
learned shape priors. Bold values indicate where redustoa significant with a confidence interval of
95%. Results are given separately for synthetic liver tumoii) @nd multiple sclerosis (MS) regions as

well as the real MRI images of MS lesions.

T-test Wilcoxon

synth. LT | synth. MS| MRIMS | synth. LT | synth. MS| MRI MS

Model | Measure

Nip¢ | 0.002F | 0334 | 0157 | 0.004" | 0.323 | 0.143"

Lan
dy 0.019" 0.173" 0.418" 0.024+ 0.143" 0.323"
- Nint < 0.001" 0.010" 0.001" | < 0.001" 0.013" 0.004"
dy 0.021+ 0.185" 0.299" 0.021+ 0.180" 0.288"

Table 8.11:p-values indicating significance of the effect of learnedpghpriors on the level of post

editing

Table 8.11 leads to the following observations:

- The level of post editing is significantly reduced by leatsbape priors when using Langevin or
GP frameworks to segmenting synthetic liver tumours. Thisue regardless of the statistical test

or method of measuring the level of interactivity.

- In terms of the number of interaction§,;, the level of post editing is significantly reduced by
learned shape priors when using the GP model to segment dhg ofégion/image types. This is

true regardless of the statistical test.

We accept hypothesig8.7.2.5 for both segmentation frameworks and all imagegype
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8.8 Conclusions and Future Work

This chapter has shown that two new dynamical shape modsisly Langevin and Gaussian process
SSMs, can be used in region segmentation. We constructeapdesACM algorithm for a radial con-
tour parametrisation (RACM) and introduced the use of dyiocahshape models for regularisation by
incorporating discriminative models in an energy funcéibriWVe demonstrated this with the Langevin
SSM.

We also presented a generalised framework for interacégenentation using generative shape
models. This framework uses samples drawn from a prioriligton over shapes, along with appro-
priate observation models from image and interactions Bayesian optimisation scheme. We demon-
strated for the case of generative Langevin and GP SSMs Himhvwve presented methods of generating
model shapes, incorporating image observations and, icdbe of GP SSMs, make efficient use of
run-time information from user interactions. The incomg@n of observations to condition the shape
priors is a major contribution.

We performed experiments to isolate the learned shapemafiion and test its benefit to the rest of

a segmentation framework. These experiments reveal that

e a simple deformable contour model (RACM) that combines leaitgshape regularisation with a

stochastic deformation mechanism converges to a stahlé@oin a range of images,
e Langevin shape regularisation improves the accuracy aheatation by the RACM,

e GP shape regularisation is not practical for run-time segat®n but might benefit reconstruction

or registration tasks,

e learned shape priors generally improve the accuracy ofdotige segmentation tools based on

Langevin and GP SSMs,

e prior knowledge of shape does not reduce segmentatiorblitsian a framework that gives ulti-

mate control to the user, which echoes the conclusion dreavn €hapter 6, and

e the demand on the user of an interactive framework is redudesh exploiting learned shape

priors.

The experiments above represent a 'proof of concept’ fondve shape models and their respective
segmentation algorithms. The next step would be to compa&renethods with the closest competitor
in the literature. It would be interesting, for example, tmpare the power of the shape priors, with
those encoded by a PDM, built without explicit point corr@sgence as in Berlet al. [130]. We noted
in section 3.1.1, that using the method of Beétsl. for supervised segmentation would first require
the incorporation of the simulation algorithm in a segmgateframework. The generalised framework
above could incoprorate the method as a generative mechgaires (4) in table 8.1.

This chapter developed and tested SSMs for star-shapemheegily. In the case of shape regular-
isation, the extension to the generalised contour par@gagtn is straightforward, although the polar

image model used here needs to be replaced. Future workvaili@e the SSMs for generalised shape
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Figure 8.10: Ambiguity for the contour parametrisationadii r vs. arc-lengths.

regularisation and for different segmentation methodé siscclassical snakes and level sets. A frame-
work that parametrises a contour as a Fourier decompositioldl also benefit from this type of shape
regularisation following the findings in the previous chepsection 7.5.2). In the case of the gener-
ative frameworks, extension to non star-shaped regionsnegimore changes to the algorithm. The
arc-length parametrisatiot{s) introduces an ambiguity problem. For any starting peintthere is no
1:1 mapping between a poifit;, s;} and a point{z, y} in the image frame as shown in figure 8.10.
To overcome this problem, future work will replace the radiime series with arangular time series
{®,s}, where{¢p = {¢o, ¢1,...,0n_1} are angles with respect to the horizontal in the image frame a
s = {so,...,58i,...8n—1} are arc-length increments. By using this representatiah thie Langevin
model above we could create an open-contour model for ictigesboundary tracking with shape priors.
However, the models would lose rotation invariance.

Finally, the models in this chapter would extend to 3-diniems. One approach would be to pro-
pogate the 2-dimensional model from one slice to the nexil, thie whole of a 3-dimensional volume is
segmented. Another approach would be to reduce a 3-dinraisibape to a 1-dimensional representa-

tion as in [278].
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Conclusions and Future Work

This project has tackled the problem of segmenting difficefions of interest in medical images,

where interactive, 2-dimensional contouring is in commm@atpce but where these lack automation and
the applications offer little prior knowledge. We introducimage models and modes of interaction
to a boundary tracking framework designed for lesion coribg and novel statistical shape models
designed to introduce global shape priors to supervisetbonong. We demonstrated the benefits of
new interactive frameworks, as well as the specific roleshefitnage and shape models, in terms of
segmentation quality, variability and the useability obalt Section 9.1 presents a condensed form of
the findings and contributions made by this project and @e@i2 suggests future research motivated

by these findings.

9.1 Conclusions

This section concludes the thesis by summarising the firsdamgl contributions resulting from the work

herein.

9.1.1 Key findings

This project has made the following key observations:

1. SVM texture classification leads to better edge detetkian gradient filtering, without calcu-

lating explicit texture features.

2. The combination of SVM texture models and jetstream auons benefits segmentation in

terms of accuracy and user demand.

3. In a framework that gives ultimate control to the usempkinowledge from an SVM texture

model does not reduce segmentation variability.

4. Two new SSMs based on nonlinear dynamics capture globglesimformation with high dis-
crimination power, and can be used in applications withoutespondence points or other high-

level shape similarity, such as tumours and lesions.
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5. A simple active contour model benefits from shape priorbesided in the SSMs, in terms of

accuracy.

6. A generalised interactive segmentation framework cardifferent generative shape models as

the basis of a probabilistic optimisation scheme.

7. Two dynamical shape models (Langevin and GP SSMs) workim#ie generalised segmen-

tation framework, and can incorporate observation modedsiefficient and novel manner.

8. Prior knowledge of shape, embedded in the generative Isydonefits the interactive segmen-

tation frameworks in terms of accuracy and useability.

9. In a framework that gives ultimate control to the usempkinowledge from an SVM texture

model or time series shape model does not reduce segmentatiability.

9.1.2 Other contributions
We have made the following contributions to the various fieddcompassed by this multidisciplinary

project:

1. Motivated the use of incremental learning in MS lesiomsegtation, by training 'small’ SVMs

on local data.

2. Presented novel modes of interaction for a boundaryimgdkamework, including two meth-

ods of "loop closing’.
3. Highlighted the importance of user preference when aésigmodes of interaction.

4. Motivated new research into the use of time series maodgitir shape modelling, which draws
from the rich nonlinear dynamics literature beyond the mgressive and Markov random field

models.

5. Introduced techniques from time series analysis, fanittig SSMs, scoring unseen shapes,

simulating model contours and constraining simulationsélight of observations.

6. Presented a novel method of 'data assimilation’ for Laimgmodelling, by combining simula-

tion techniques with theory from the tracking literature.

7. Stimulated the wider field of medical image analysis byngoting the future avenues of re-

search detailed below.
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9.2 Future Work

This project has motivated solid avenues of future workiuiding novel extensions for which we have
proposed clear starting points. We start by listing therituork, roughly in the order according to the

thesis, and finish by prioritising the three most pressinggensiand recap our suggested approaches.

1. Combining both featureless texture models and corretgrore-free shape priors in a unified

framework for supervised segmentation of variable shapisambiguous boundaries.

2. Using either of the constrained jetstream algorithmschvterminate at a fixed point, as a fast
and accurate post editing tool for replacing partial boupdactions in any deformable contour

model.

3. Extending Langevin and GP models to other applicatioas S lesion and liver tumour

contouring, and exploring novel covariance kernels in tifecase.

4. Using discriminative Langevin and GP SSMs for reguldiagein other deformable contour

frameworks such as level sets

5. Using discriminative Langevin and GP SSMs for classifyutS lesions in terms of ‘Lassman

types’.

6. Using discriminative Langevin and GP SSMs for reguldidsain image registration tasks,

where source and target images from different time poit&aown to contain tumours or lesions

7. Using discriminative Langevin and GP SSMs for reguldigsein image reconstruction, where

the imaging object is known to contain a tumour or lesion asddaugh location is known.

8. Using the generative SSM tools in other applicationshsa® tumour segmentation in 2-

dimensional ultrasound images that have very low SNR.

9. Extending the generative SSM tools for 3-dimensionahsmgation by contour stacking,
whereby the third dimension could comprise a new variahi@fthogonal time series modelling

and the observation model could use information propaghtedigh image slices.

10. Extending the generative Langevin model for interactdpen-contour boundary tracking that

generalises to non star-shaped regions.

The three prioritised tasks for future work relate to theetiseries shape models, which reflects
their novelty. First, having validated the role of the shpgers in improving the accuracy and useability
of a segmentation framework, the resulting tool should bemared with others from the contemporary
literature. In particular, it would be of great value to asséhe advantages and disadvantages of the
frameworks over the use of point distribution models fothpétgical regions of interest, which resorts
to arbitrarily assigning points of correspondence, as 80]1 In one case the arbitrary PDM could be
built into the generic framework presented in section 8rBariother case the arbitrary PDM could be

built into an active appearance model [279].
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The second priority extends the generative models for nanskaped regions. One approach is to
generate series according to #megular time serie§ ¢, s} as suggested in section 8.8, which could be
realised for both Langevin and GP models. Another approat¢ha Langevin case is inspired by the
work of Jafariet al. [224], who describe microscopic surfaces with Langevin etedn these models the
independent variable is replaced by a 2-dimensional fiedd région boundaries the analogous scheme
is to maintain radius as the state variable but model the behaviour(ef y) rather than-(6).

The third priority generalises the models to 3 dimensions,which section 8.8 suggested two
distinct approaches. In the first case, the 2-dimensiondetsacan be repeated throughout successive
slices of a 3-dimensional image, which is in line with botl #nisotropy of tomographic images and the
natural way in which humans interact with 2-dimensional eleds discussed previously. In addition
this approach would naturally allow information to propteghrough tomographic slices by updating the
radial profile model to constrain subsequent hypotheses s&bond approach would extend the models
themselves to describe 3-dimensional shape. This progogedsion is based on the re-parametrisation
of a 3-dimensional surface into a 1-d signature resembltiagddial time series. Such a parametrisation
is realised by the ’spiral’ transform, as used in [278]. listscheme a radial vector originates from the
centre of a volume of interest, and traces a path in spheyatal coordinates, from the 'North pole’ to
the 'South pole’. If the surface were a perfect sphere withalavector originating from its geometric
centre, the resulting time series would be a straight linaJagous to the case of a perfect circle in the

2-dimensional case.
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Appendix

This appendix gives the full set of results from experiméntsection 8.7.2. These results were used
for statistical analyses in section 8.7.2, which evaluaeegative segmentation tools in terms of ac-
curacy (tables 10.1, 10.2 and 10.3), inter-operator véitipftable 10.4) and intra-operator variability
(tables 10.5, 10.6 and 10.7) as well as useability in terntsuniber of initialisations (table 10.8) and
level of post-editing (tables 10.9, 10.10 and 10.11).



Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 0.901 | 0.560 | 0.8566| 0.926 | 0.753 | 0.745 | 0.716 | 0.730 | 0.729 | 0.989 | 0.792+0.126
MMD normal | 0.686 | 0.583 | 0.965 | 0.942 | 0.747 | 0.893 | 0.730 | 0.655 | 0.668 | 0.830 | 0.770+0.131
wan learned| 0.954 | 0.974 | 0.955 | 0.955| 0.964 | 0.961 | 0.966 | 0.967 | 0.963 | 0.951 | 0.961+0.007
bsce normal | 0.955 | 0.972 | 0.949 | 0.953 | 0.965 | 0.955 | 0.961 | 0.970 | 0.969 | 0.960 | 0.961+0.008
learned| 1.303 | 0.995 | 1.145| 1.276 | 1.024 | 0.884 | 1.070 | 1.126 | 1.123 | 0.993 | 1.090+0.138
MMD normal | 1.4773| 1.446 | 1.276 | 1.454 | 1.422 | 1.223 | 1.393 | 1.141 | 1.548 | 1.268 | 1.365+0.130
P learned| 0.935 | 0.950 | 0.944 | 0.939 | 0.948 | 0.953 | 0.945 | 0.943 | 0.941 | 0.947 | 0.945+0.005
pse normal | 0.925 | 0.931 | 0.934 | 0.928 | 0.924 | 0.938 | 0.931 | 0.941 | 0.923 | 0.934 | 0.931+0.006

Table 10.1: Effect of learned shape priors on the accuradgtefactive segmentation of synthetic liver tumours inmgrof mean minimum distance (MMD) and Dice

similarity coefficient (DSC)
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 0.501 | 0.440 | 0.705 | 0.821 | 0.658 | 0.574 | 0.546 | 0.650 | 0.661 | 0.711 | 0.627+0.112
MMP normal | 0.485 | 0.551 | 0.935| 0.645 | 0.569 | 0.755 | 0.530 | 0.588 | 0.748 | 0.480 | 0.629+0.145
wan learned| 0.910 | 0.906 | 0.852 | 0.830 | 0.872 | 0.892 | 0.866 | 0.878 | 0.865 | 0.880 | 0.875+0.024
pse normal | 0.885 | 0.873 | 0.827 | 0.864 | 0.897 | 0.861 | 0.860 | 0.883 | 0.848 | 0.883 | 0.868+0.021
learned| 0.560 | 0.710 | 0.774 | 0.857 | 0.877 | 0.575| 0.731 | 0.719 | 0.644 | 0.581 | 0.703+0.113
MMD normal | 0.774 | 0.612 | 0.813 | 0.720 | 0.769 | 0.754 | 0.717 | 0.678 | 0.864 | 0.651 | 0.732+0.075
P learned| 0.887 | 0.849 | 0.849 | 0.842 | 0.833 | 0.877 | 0.831 | 0.857 | 0.865 | 0.883 | 0.857+0.020
PSe normal | 0.843 | 0.866 | 0.840 | 0.845 | 0.840 | 0.841 | 0.852 | 0.867 | 0.837 | 0.877 | 0.851+0.014

Table 10.2: Effect of learned shape priors on the accurany@factive segmentation of synthetic MS lesions in terfma@an minimum distance (MMD) and Dice similarity

coefficient (DSC)
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 1.248 | 0.939 | 1.533 | 1.072 | 1.135| 1.197 | 1.026 | 0.969 | 1.202 | 1.125 | 1.145+0.054
MMP normal | 1.306 | 1.076 | 1.329 | 1.241 | 1.246 | 1.349 | 0.929 | 1.264 | 1.300 | 1.219 | 1.226+0.041
wan learned| 0.819 | 0.822 | 0.650 | 0.787 | 0.831 | 0.827 | 0.810 | 0.828 | 0.793 | 0.790 | 0.796+0.017
pse normal | 0.802 | 0.835| 0.668 | 0.807 | 0.826 | 0.811 | 0.833 | 0.798 | 0.787 | 0.817 | 0.798+0.015
learned| 1.575| 1.306 | 1.849 | 1.248 | 1.241 | 1.384 | 1.032 | 1.236 | 1.598 | 1.316 | 1.379+0.074
MMD normal | 1.449 | 1.299 | 1.812 | 1.297 | 1.478 | 1.415| 1.521 | 1.353 | 1.699 | 1.367 | 1.469+0.054
P learned| 0.769 | 0.782 | 0.684 | 0.787 | 0.797 | 0.800 | 0.829 | 0.803 | 0.758 | 0.806 | 0.782+0.040
PSe normal | 0.760 | 0.781 | 0.666 | 0.788 | 0.762 | 0.773 | 0.748 | 0.776 | 0.747 | 0.781 | 0.758+0.035

Table 10.3: Effect of learned shape priors on the accuraaytefactive segmentation of MRI MS lesions in terms of meanimmum distance (MMD) and Dice similarity

coefficient (DSC)
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Synthetic MRI
Mod. | Meas. | Prior liver tumour MS lesion MS lesion
i ii iii i i iii i ii iii

learn || 1.072£0.200| 1.454+0.207| 1.278+0.217 | 0.999+0.234 | 1.298:0.423| 1.179+0.310| 1.023+0.302| 2.110+0.890| 0.997-0.136
MMD norm || 1.351-0.259| 1.478+0.424 | 1.422+0.376| 1.144+0.288| 1.183+0.235| 1.220+0.305| 1.004+0.208 | 1.910+0.984 | 1.106+0.272
-an learn || 0.940+0.014 | 0.9474-0.010| 0.965+0.006 | 0.844+0.047| 0.845+0.052| 0.871-0.036| 0.790+0.090| 0.702+0.199 | 0.887-0.027
PSe norm || 0.937-0.017| 0.952+0.009 | 0.952+0.009| 0.805+0.066 | 0.858+0.037 | 0.835+0.048| 0.830+0.045| 0.730+0.210| 0.876+0.037
learn || 1.194+0.220| 1.406+0.190| 1.916+0.284 | 0.573+:0.258| 0.787:0.177 | 0.7874-0.247| 0.755+0.240| 1.548+0.575| 0.910+0.279
MMD norm || 1.272+0.318| 1.37740.373| 1.769+0.322| 0.536+0.222| 0.902+0.292| 0.703+0.209| 0.789+0.228 | 1.600+0.798| 0.841+0.307
P learn || 0.935+0.018| 0.953+0.012| 0.948+0.014 | 0.855+0.061| 0.889+0.029 | 0.867-0.046| 0.817-0.057 | 0.783+0.112 | 0.869+0.038
pse norm || 0.928+0.024| 0.953+0.017 | 0.953+0.012| 0.861+0.048 | 0.871+0.049 | 0.890+0.042| 0.836+0.049| 0.760+0.168 | 0.869+0.051

Table 10.4: Effect of learned shape priors on the inter-ajoervariability of interactive segmentation in terms ofaneminimum distance (MMD) and Dice similarity

coefficient (DSC)
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 3.101 | 1.026 | 2.547 | 2.135| 1.114 | 1.444 | 1.015 | 1.534 | 2.686 | 1.459 | 1.806+0.756
MMP normal | 0.947 | 0.975| 1.092 | 1.435| 0.871 | 1.725| 1.293 | 1.412 | 1.137 | 2.178 | 1.307+0.404
wan learned| 0.954 | 0.967 | 0.955 | 0.966 | 0.966 | 0.956 | 0.966 | 0.973 | 0.969 | 0.955 | 0.963+0.007
pse normal | 0.957 | 0.970 | 0.964 | 0.960 | 0.975 | 0.948 | 0.958 | 0.970 | 0.963 | 0.949 | 0.961+0.009
learned| 1.959 | 1.270 | 1.832 | 1450 | 1.768 | 1.801 | 2.114 | 1.339 | 2.023 | 1.476 | 1.703+0.299
MMD normal | 1.849 | 2.096 | 1.400 | 1.852 | 1.687 | 1.841 | 1.911 | 1.125| 2.563 | 1.925 | 1.825+0.384
P learned| 0.942 | 0.964 | 0.960 | 0.958 | 0.948 | 0.947 | 0.937 | 0.972 | 0.951 | 0.966 | 0.955+0.011
PSC normal | 0.948 | 0.946 | 0.968 | 0.957 | 0.962 | 0.952 | 0.940 | 0.976 | 0.919 | 0.956 | 0.952+0.016

Table 10.5: Effect of learned shape priors on the intra-ajewvariability of interactive segmentation of synthdier tumours in terms of mean minimum distance (MMD)

and Dice similarity coefficient (DSC)
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 1.069 | 0.848 | 1.086 | 0.706 | 0.996 | 1.054 | 0.905 | 1.019 | 1.354 | 1.675 | 1.071+0.272
MMP normal | 1.003 | 0.992 | 1.246 | 0.916 | 0.996 | 1.070 | 0.939 | 1.024 | 0.891 | 1.154 | 1.023+0.109
wan learned| 0.884 | 0.903 | 0.868 | 0.878 | 0.877 | 0.885| 0.869 | 0.874 | 0.789 | 0.885 | 0.871+0.031
pse normal | 0.892 | 0.860 | 0.856 | 0.875 | 0.880 | 0.871 | 0.896 | 0.877 | 0.849 | 0.856 | 0.871+0.016
learned| 0.371| 0.797 | 0.756 | 0.652 | 0.756 | 0.791 | 1.069 | 0.716 | 0.560 | 0.646 | 0.711+0.180
MMD normal | 0.527 | 0.610 | 0.210 | 1.290 | 0.646 | 0.862 | 0.702 | 0.541 | 0.777 | 0.610 | 0.678+0.277
P learned| 0.938 | 0.813 | 0.887 | 0.910 | 0.891 | 0.881 | 0.753 | 0.892 | 0.921 | 0.905 | 0.879+0.055
PSC normal | 0.911 | 0.880 | 0.977 | 0.790 | 0.899 | 0.873 | 0.895 | 0.917 | 0.891 | 0.906 | 0.894+0.046

Table 10.6: Effect of learned shape priors on the intra-ajpewvariability of interactive segmentation of synthédd§ lesions in terms of mean minimum distance (MMD)

and Dice similarity coefficient (DSC)
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 0.836 | 0.870 | 1.399 | 0.931 | 0.810 | 0.894 | 0.701 | 0.628 | 0.723 | 1.207 | 0.900+0.236
MMP normal | 2.289 | 0.601 | 0.815| 1.064 | 0.775 | 0.772 | 0.977 | 0.876 | 1.296 | 1.675 | 1.114+0.515
wan learned| 0.917 | 0.876 | 0.811 | 0.906 | 0.921 | 0.900 | 0.901 | 0.925 | 0.916 | 0.914 | 0.899+0.034
pse normal | 0.874 | 0.931 | 0.911 | 0.874 | 0.920 | 0.939 | 0.887 | 0.915 | 0.853 | 0.840 | 0.894+0.034
learned| 0.803 | 1.099 | 1.005 | 0.596 | 0.887 | 0.666 | 0.656 | 0.360 | 0.691 | 0.125 | 0.689+0.290
MMD normal | 1.134 | 0.747 | 0.246 | 0.904 | 1.184 | 0.606 | 0.677 | 0.375| 0.591 | 0.550 | 0.701+0.302
P learned| 0.898 | 0.858 | 0.857 | 0.924 | 0.851 | 0.898 | 0.903 | 0.934 | 0.905 | 0.983 | 0.901+0.040
PSC normal | 0.847 | 0.894 | 0.967 | 0.841 | 0.825 | 0.925 | 0.911 | 0.957 | 0.922 | 0.925 | 0.901+0.049

Table 10.7: Effect of learned shape priors on the intra-ajoevariability of interactive segmentation of MRI MS less in terms of mean minimum distance (MMD) and

Dice similarity coefficient (DSC)
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model | Prior | User1| User2| User 3| User4| User5| User6| User 7| User 8| User 9| User 10 Mean
learned| 2.917 | 3.167 | 1.333 | 1.167 | 1.583 | 1.500 | 2.417 | 1.917 | 1.750 | 2.167 | 1.992+0.670

wan normal | 3.000 | 3.250 | 1.167 | 1.917 | 2.167 | 1.750 | 4.167 | 2.917 | 1.917 | 2.250 | 2.450+0.878
learned| 1.917 | 1.500 | 1.000 | 1.000 | 1.250 | 1.083 | 1.167 | 1.417 | 1.250 | 1.417 | 1.300+0.278

P normal | 1.583 | 2.000 | 1.000 | 1.250 | 1.667 | 1.333 | 2.000 | 1.667 | 1.250 | 1.333 | 1.508+0.332

Table 10.8: Effect of learned shape priors on the numbenadtia contour model was initialised
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User7| User8| User9 | User 10 Mean
learned| 2.500 | 21.250| 5.000 | 14.250| 12.250| 10.000| 11.250| 5.750 | 6.000 | 17.000 | 10.520+5.895
Nint normal | 5.500 | 28.000| 9.000 | 18.250| 17.750| 22.500| 14.000| 12.750| 18.000| 15.250 | 16.075+6.450
wan learned| 3.555 | 2.962 | 4.971 | 4.485 | 4.827 | 4.220 | 3.559 | 3.100 | 4.321 | 8.083 | 4.413+1.466
dn normal | 4.733 | 7.977 | 6.440 | 5974 | 6.210 | 6.911 | 4615 | 6.807 | 7.884 | 4.487 | 6.204+1.273
learned| 2.250 | 5.7501| 5.500 | 2.750 | 5.250 | 4.500 | 4.500 | 9.500 | 4.750 | 4.500 | 4.925+1.958
Nint normal | 7.500 | 9.000 | 9.000 | 11.250| 7.000 | 9.500 | 13.750| 16.250| 6.500 | 9.000 | 9.875+3.078
P learned| 3.331 | 3.135 | 3.343 | 3.269 | 4.014 | 4.176 | 4.019 | 4.782 | 4520 | 2.316 | 3.691+0.742
dn normal | 4.450 | 4.190 | 3.272 | 2.722 | 4.075 | 4.180 | 5.589 | 4.767 | 5.579 | 3.800 | 4.262+0.907

Table 10.9: Effect of learned shape priors on the level of4pd#ing necessary during interactive segmentation oftsstic liver tumours in terms of the number of interactions

(Nint) and Hausdorff distancelf;) between contours before and after post-editing
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User7| User8 | User9| User 10 Mean
learned| 4.250 | 12.500| 1.750 | 8.500 | 12.500| 6.750 | 7.500 | 5.000 | 9.500 | 13.500 | 8.1754+3.900
Nint normal | 6.750 | 12.250| 4.0005| 8.000 | 11.250| 11.750| 9.000 | 10.250| 6.000 | 7.500 | 8.675+2.708
wan learned| 2.081 | 2.894 | 2.140 | 2.179 | 3.493 | 3.393 | 2.193 | 3.871 | 3.427 | 1.927 | 2.760+0.733
dn normal | 3.212 | 3.362 | 3.0504| 2.163 | 3.159 | 3.454 | 2.727 | 2.460 | 3.374 | 3.087 | 3.005+0.425
learned| 1.500 | 3.250 | 1.5006| 0.750 | 1.2505| 3.250 | 1.250 | 5.750 | 2.000 | 3.750 | 2.425+1.550
Nint normal | 3.500 | 4.500 | 2.500 | 1.000 | 2.750 | 6.250 | 3.250 | 8.750 | 1.311 | 2.750 | 3.656+2.336
P learned| 1.250 | 2.223 | 1.809 | 0.604 | 0.901 | 2.016 | 0.957 | 1.707 | 2.250 | 1.663 | 1.538+0.579
dn normal | 1.559 | 2.168 | 1.500 | 0.854 | 1.350 | 2.340 | 0.913 | 1.894 | 2.057 | 1.516 | 1.615+0.503

Table 10.10: Effect of learned shape priors on the level sf4edliting necessary during interactive segmentatiogmthetic MS lesions in terms of the number of interactions

(Nint) and Hausdorff distancelf;) between contours before and after post-editing
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Model | Measure| Prior | User1| User2| User3| User4| User5| User6| User7| User8| User9| User 10 Mean
learned| 11.000| 16.500| 3.250 | 6.750 | 13.750| 14.500| 9.750 | 10.000| 7.750 | 9.250 | 10.250+3.926
Nint normal | 5.250 | 16.500| 3.750 | 9.750 | 16.750| 18.500| 19.000| 9.500 | 8.750 | 8.000 | 11.575+5.615
wan learned| 3.7186| 3.460 | 2.472 | 1.766 | 2.460 | 3.632 | 3.027 | 2.668 | 2.753 | 1.766 | 2.772+0.699
dn normal | 2.942 | 3.811 | 2.118 | 2.179 | 2.738 | 2.943 | 3.108 | 2.699 | 2.964 | 2.557 | 2.806+0.484
learned| 3.000 | 5.250 | 2.000 | 3.750 | 1.500 | 2.500 | 2.500 | 4.000 | 1.750 | 1.000 | 2.725+1.299
Nint normal | 4.000 | 6.250 | 2.750 | 4.500 | 3.750 | 4.250 | 4.750 | 8.000 | 1.750 | 2.750 | 4.275+1.808
P learned| 2.759 | 2.4104| 1.766 | 1.972 | 1.973 | 1.973 | 1.663 | 1.913 | 1.266 | 1.061 | 1.876+0.493
dn normal | 1.809 | 2.475| 1.663 | 2.121 | 1.914 | 1.913 | 2.266 | 1.516 | 2.505 | 1.604 | 1.979+0.352

Table 10.11: Effect of learned shape priors on the level st4edliting necessary during interactive segmentation Bf MS lesions in terms of the number of interactions

(Nint) and Hausdorff distancelf;) between contours before and after post-editing
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