79 research outputs found

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    A curvature-enhanced random walker segmentation method for detailed capture of 3D cell surface Membranes

    Get PDF
    High-resolution 3D microscopy is a fast advancing field and requires new techniques in image analysis to handle these new datasets. In this work, we focus on detailed 3D segmentation of Dictyostelium cells undergoing macropinocytosis captured on an iSPIM microscope. We propose a novel random walker-based method with a curvature-based enhancement term, with the aim of capturing fine protrusions, such as filopodia and deep invaginations, such as macropinocytotic cups, on the cell surface. We tested our method on both real and synthetic 3D image volumes, demonstrating that the inclusion of the curvature enhancement term can improve the segmentation of the aforementioned features. We show that our method performs better than other state of the art segmentation methods in 3D images of Dictyostelium cells, and performs competitively against CNN-based methods in two Cell Tracking Challenge datasets, demonstrating the ability to obtain accurate segmentations without the requirement of large training datasets. We also present an automated seeding method for microscopy data, which, combined with the curvature-enhanced random walker method, enables the segmentation of large time series with minimal input from the experimenter

    Computing Interpretable Representations of Cell Morphodynamics

    Get PDF
    Shape changes (morphodynamics) are one of the principal ways cells interact with their environments and perform key intrinsic behaviours like division. These dynamics arise from a myriad of complex signalling pathways that often organise with emergent simplicity to carry out critical functions including predation, collaboration and migration. A powerful method for analysis can therefore be to quantify this emergent structure, bypassing the low-level complexity. Enormous image datasets are now available to mine. However, it can be difficult to uncover interpretable representations of the global organisation of these heterogeneous dynamic processes. Here, such representations were developed for interpreting morphodynamics in two key areas: mode of action (MoA) comparison for drug discovery (developed using the economically devastating Asian soybean rust crop pathogen) and 3D migration of immune system T cells through extracellular matrices (ECMs). For MoA comparison, population development over a 2D space of shapes (morphospace) was described using two models with condition-dependent parameters: a top-down model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. A variety of landscapes were discovered, describing phenotype transitions during growth, and possible perturbations in the tip growth machinery that cause this variation were identified. For interpreting T cell migration, a new 3D shape descriptor that incorporates key polarisation information was developed, revealing low-dimensionality of shape, and the distinct morphodynamics of run-and-stop modes that emerge at minute timescales were mapped. Periodically oscillating morphodynamics that include retrograde deformation flows were found to underlie active translocation (run mode). Overall, it was found that highly interpretable representations could be uncovered while still leveraging the enormous discovery power of deep learning algorithms. The results show that whole-cell morphodynamics can be a convenient and powerful place to search for structure, with potentially life-saving applications in medicine and biocide discovery as well as immunotherapeutics.Open Acces

    Rolling contact fatigue failures in silicon nitride and their detection

    No full text
    The project investigates the feasibility of using sensor-based detection and processing systems to provide a reliable means of monitoring rolling contact fatigue (RCF) wear failures of silicon nitride in hybrid bearings. To fulfil this investigation, a decision was made early in the project to perform a series of hybrid rolling wear tests using a twin disc machine modified for use on hybrid bearing elements.The initial part of the thesis reviews the current understanding of the general wear mechanisms and RCF with a specific focus to determine the appropriate methods for their detection in hybrid bearings. The study focusses on vibration, electrostatic and acoustic emission (AE) techniques and reviews their associated sensing technologies currently deployed with a view of adapting them for use in hybrids. To provide a basis for the adaptation, an understanding of the current sensor data enhancement and feature extraction methods is presented based on a literature review.The second part describes the test equipment, its modifications and instrumentation required to capture and process the vibration, electrostatic and AE signals generated in hybrid elements. These were identified in an initial feasibility test performed on a standard twin disc machine. After a detailed description of the resulting equipment, the thesis describes the calibration tests aimed to provide base data for the development of the signal processing methods.The development of the signal processing techniques is described in detail for each of the sensor types. Time synchronous averaging (TSA) technique is used to identify the location of the signal sources along the surfaces of the specimens and the signals are enhanced by additional filtering techniques.The next part of the thesis describes the main hybrid rolling wear tests; it details the selection of the run parameters and the samples seeded with surface cracks to cover a variety of situations, the method of execution of each test run, and the techniques to analyse the results.The research establishes that two RCF fault types are produced in the silicon nitride rolling element reflecting essentially different mechanisms in their distinct and separate development; i) cracks, progressing into depth and denoted in this study as C-/Ring crack Complex (CRC) and ii) Flaking, progressing primarily on the surface by spalls. Additionally and not reported in the literature, an advanced stage of the CRC fault type composed of multiple and extensive c-cracks is interpreted as the result of induced sliding in these runs. In general, having reached an advanced stage, both CRC and Flaking faults produce significant wear in the steel counterface through abrasion, plastic deformation or 3-body abrasion in at least three possible ways, all of which are described in details

    Expanding the applicability of magnetoencephalography

    Get PDF
    Magnetoencephalography (MEG) offers a unique way to non-invasively monitor the neural activity in the human brain. MEG is based on measuring the very weak magnetic fields generated by the electric currents in the active neurons. Such measurements allow, with certain limitations, estimating the underlying current distribution and thus the locations and time courses of the neural generators with an excellent temporal resolution. The aim of this Thesis was to advance MEG to certain realms that have been considered difficult or even impossible for it. Specifically, the included studies contributed to the modelling of the neural generators, detection of activity in the deep brain areas, analysis of oscillatory activity, and characterisation of neural states related to bistable perception. Estimating the sources of MEG signals is non-trivial as multiple current constellations can give rise to the same observed magnetic fields. As a new solution to this problem, we introduced an automatic Bayesian tracking algorithm that recovers the locations and time courses of a set of focal neural current sources from MEG data. The majority of MEG experiments have concentrated on brain signals originating in the neocortex due to the rapid decrease of the MEG signals as a function increasing source depth. Here, we demonstrated that neural activity deep in the brainstem can be detected and accurately localised by MEG in favourable conditions. We also explored the utility of stochastic resonance in varying the salience of a cognitive stimulus, and showed that the detection accuracy of visually-presented words correlated better with the amplitudes of the late than early responses. The temporal resolution provided by MEG was exploited in novel ways. We showed that oscillatory 20-Hz signals from the primary and secondary somatosensory cortex were transiently phase-locked in response to a stimulus, possibly signifying functional connectivity. We also introduced a frequency-tagging method employing dynamical noise to separate brain activations elicited by different parts of a visual scene: monitoring these rhythmic signals with MEG enabled us to probe the neural engagement in the early visual brain areas during bistable perception and thus to link subjective perceptual states to brain states

    Medical image enhancement

    Get PDF
    Each image acquired from a medical imaging system is often part of a two-dimensional (2-D) image set whose total presents a three-dimensional (3-D) object for diagnosis. Unfortunately, sometimes these images are of poor quality. These distortions cause an inadequate object-of-interest presentation, which can result in inaccurate image analysis. Blurring is considered a serious problem. Therefore, “deblurring” an image to obtain better quality is an important issue in medical image processing. In our research, the image is initially decomposed. Contrast improvement is achieved by modifying the coefficients obtained from the decomposed image. Small coefficient values represent subtle details and are amplified to improve the visibility of the corresponding details. The stronger image density variations make a major contribution to the overall dynamic range, and have large coefficient values. These values can be reduced without much information loss

    New algorithms for the analysis of live-cell images acquired in phase contrast microscopy

    Get PDF
    La dĂ©tection et la caractĂ©risation automatisĂ©e des cellules constituent un enjeu important dans de nombreux domaines de recherche tels que la cicatrisation, le dĂ©veloppement de l'embryon et des cellules souches, l’immunologie, l’oncologie, l'ingĂ©nierie tissulaire et la dĂ©couverte de nouveaux mĂ©dicaments. Étudier le comportement cellulaire in vitro par imagerie des cellules vivantes et par le criblage Ă  haut dĂ©bit implique des milliers d'images et de vastes quantitĂ©s de donnĂ©es. Des outils d'analyse automatisĂ©s reposant sur la vision numĂ©rique et les mĂ©thodes non-intrusives telles que la microscopie Ă  contraste de phase (PCM) sont nĂ©cessaires. Comme les images PCM sont difficiles Ă  analyser en raison du halo lumineux entourant les cellules et de la difficultĂ© Ă  distinguer les cellules individuelles, le but de ce projet Ă©tait de dĂ©velopper des algorithmes de traitement d'image PCM dans MatlabÂź afin d’en tirer de l’information reliĂ©e Ă  la morphologie cellulaire de maniĂšre automatisĂ©e. Pour dĂ©velopper ces algorithmes, des sĂ©ries d’images de myoblastes acquises en PCM ont Ă©tĂ© gĂ©nĂ©rĂ©es, en faisant croĂźtre les cellules dans un milieu avec sĂ©rum bovin (SSM) ou dans un milieu sans sĂ©rum (SFM) sur plusieurs passages. La surface recouverte par les cellules a Ă©tĂ© estimĂ©e en utilisant un filtre de plage de valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinĂ©tique de croissance cellulaire. Les rĂ©sultats ont montrĂ© que les cellules avaient des taux de croissance similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linĂ©aire avec le nombre de passages. La mĂ©thode de transformĂ©e par ondelette continue combinĂ©e Ă  l’analyse d'image multivariĂ©e (UWT-MIA) a Ă©tĂ© Ă©laborĂ©e afin d’estimer la distribution de caractĂ©ristiques morphologiques des cellules (axe majeur, axe mineur, orientation et rondeur). Une analyse multivariĂ©e rĂ©alisĂ©e sur l’ensemble de la base de donnĂ©es (environ 1 million d’images PCM) a montrĂ© d'une maniĂšre quantitative que les myoblastes cultivĂ©s dans le milieu SFM Ă©taient plus allongĂ©s et plus petits que ceux cultivĂ©s dans le milieu SSM. Les algorithmes dĂ©veloppĂ©s grĂące Ă  ce projet pourraient ĂȘtre utilisĂ©s sur d'autres phĂ©notypes cellulaires pour des applications de criblage Ă  haut dĂ©bit et de contrĂŽle de cultures cellulaires.Automated cell detection and characterization is important in many research fields such as wound healing, embryo development, immune system studies, cancer research, parasite spreading, tissue engineering, stem cell research and drug research and testing. Studying in vitro cellular behavior via live-cell imaging and high-throughput screening involves thousands of images and vast amounts of data, and automated analysis tools relying on machine vision methods and non-intrusive methods such as phase contrast microscopy (PCM) are a necessity. However, there are still some challenges to overcome, since PCM images are difficult to analyze because of the bright halo surrounding the cells and blurry cell-cell boundaries when they are touching. The goal of this project was to develop image processing algorithms to analyze PCM images in an automated fashion, capable of processing large datasets of images to extract information related to cellular viability and morphology. To develop these algorithms, a large dataset of myoblasts images acquired in live-cell imaging (in PCM) was created, growing the cells in either a serum-supplemented (SSM) or a serum-free (SFM) medium over several passages. As a result, algorithms capable of computing the cell-covered surface and cellular morphological features were programmed in MatlabÂź. The cell-covered surface was estimated using a range filter, a threshold and a minimum cut size in order to look at the cellular growth kinetics. Results showed that the cells were growing at similar paces for both media, but their growth rate was decreasing linearly with passage number. The undecimated wavelet transform multivariate image analysis (UWT-MIA) method was developed, and was used to estimate cellular morphological features distributions (major axis, minor axis, orientation and roundness distributions) on a very large PCM image dataset using the Gabor continuous wavelet transform. Multivariate data analysis performed on the whole database (around 1 million PCM images) showed in a quantitative manner that myoblasts grown in SFM were more elongated and smaller than cells grown in SSM. The algorithms developed through this project could be used in the future on other cellular phenotypes for high-throughput screening and cell culture control applications

    Automated Segmentation Of Structures Essential To Cell Movement

    Get PDF
    The study of cells is not only a key field in modern science, but has been an important area of study for hundreds of years. Despite this there is still a lot left unknown. As technology has progressed, so has our ability to photograph and film cells, but much of the processing of these images is still carried out by hand. This is not only difficult and time consuming, but is subject to opinion and error, and often not exactly reproducible. We are wishing to automate the process of segmenting cells, in order to provide biologists with that data they require to learn more about cells and their movement. This should be done in a quantitative and reproducible way. Crawling cells, such as those studied for this research, often need to move around the host body, such as the human or other mammal, in order to assist with growth, prevent disease, or to cure damage. To do this they employ other structures which protrude from the cell body to aid their motility. They use very fine hair like features (filopodia) to detect their surrounding, penetrate other cells, and determine direction. They then use thin, flat membranes (lamellipodia) to adhere both at the front and rear of the cell to pull and push forward in the direction of movement. These features are often extremely difficult to see by eye, making automation of their segmentation an awkward task. To do this, we need to use not only the information in the individual frames of video, but also information gained over time such as their movement between the frames. We firstly pre-process the images using an automated technique to correct for lighting variations in the footage. Our method is not only extremely efficient and reliable but works equally on different sizes and shapes of cell as well as frames with differing degrees of background coverage, from only one or two small cells in a frame to where the majority of the image is covered. This shading correction method was also tested on non-cellular images taken using the same kind of microscopy to show that it is suitable for all images rather than just those being studied in this work. This pre-processing allows us to make a simple segmentation of the main cell bodies, which on its own is suitable for cells which do not contain other thin structures. Using the cell bodies obtained from our pre-processing technique we then find the thinner membranes which are attached to the cell. Despite being a fully automated method, this was more accurate in two out of our three sets of videos than the most popular segmentation program using manual setting of parameters for each video individually. We improved upon this initial segmentation by incorporating the movement of the cell over time, using an iterative technique to compare the outcome of sequential frames. The result was that our segmentation was better than the manually parametrised segmentation program for every video. We then wished to find the hair like extensions and again used the information from our pre-processing stage. As these are so difficult to detect by eye we used the information of the movement to create candidate regions where these were believed to be located. Although these were usually not straight, we were able to build up small line segments in the candidate regions to recreate the features and detect the direction. This allowed us to identify all regions with filopodia present, and to separate them in order to find the required information such as the number, the length, what kind of clusters they grew in and the location compared to the direction of movement. No other method has been found which is able to detect these or segment them separately from the cell
    • 

    corecore