2,959 research outputs found

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    Application of Generalized Partial Volume Estimation for Mutual Information based Registration of High Resolution SAR and Optical Imagery

    Get PDF
    Mutual information (MI) has proven its effectiveness for automated multimodal image registration for numerous remote sensing applications like image fusion. We analyze MI performance with respect to joint histogram bin size and the employed joint histogramming technique. The affect of generalized partial volume estimation (GPVE) utilizing B-spline kernels with different histogram bin sizes on MI performance has been thoroughly explored for registration of high resolution SAR (TerraSAR-X) and optical (IKONOS-2) satellite images. Our experiments highlight possibility of an inconsistent MI behavior with different joint histogram bin size which gets reduced with an increase in order of B-spline kernel employed in GPVE. In general, bin size reduction and/or increasing B-spline order have a smoothing affect on MI surfaces and even the lowest order B-spline with a suitable histogram bin size can achieve same pixel level accuracy as achieved by the higher order kernels more consistently

    Integration of LIDAR and IFSAR for mapping

    Get PDF
    LiDAR and IfSAR data is now widely used for a number of applications, particularly those needing a digital elevation model. The data is often complementary to other data such as aerial imagery and high resolution satellite data. This paper will review the current data sources and the products and then look at the ways in which the data can be integrated for particular applications. The main platforms for LiDAR are either helicopter or fixed wing aircraft, often operating at low altitudes, a digital camera is frequently included on the platform, there is an interest in using other sensors such as 3 line cameras of hyperspectral scanners. IfSAR is used from satellite platforms, or from aircraft, the latter are more compatible with LiDAR for integration. The paper will examine the advantages and disadvantages of LiDAR and IfSAR for DEM generation and discuss the issues which still need to be dealt with. Examples of applications will be given and particularly those involving the integration of different types of data. Examples will be given from various sources and future trends examined

    Building change detection in Multitemporal very high resolution SAR images

    Get PDF

    Buildings Detection in VHR SAR Images Using Fully Convolution Neural Networks

    Get PDF
    This paper addresses the highly challenging problem of automatically detecting man-made structures especially buildings in very high resolution (VHR) synthetic aperture radar (SAR) images. In this context, the paper has two major contributions: Firstly, it presents a novel and generic workflow that initially classifies the spaceborne TomoSAR point clouds - generated by processing VHR SAR image stacks using advanced interferometric techniques known as SAR tomography (TomoSAR) - into buildings and non-buildings with the aid of auxiliary information (i.e., either using openly available 2-D building footprints or adopting an optical image classification scheme) and later back project the extracted building points onto the SAR imaging coordinates to produce automatic large-scale benchmark labelled (buildings/non-buildings) SAR datasets. Secondly, these labelled datasets (i.e., building masks) have been utilized to construct and train the state-of-the-art deep Fully Convolution Neural Networks with an additional Conditional Random Field represented as a Recurrent Neural Network to detect building regions in a single VHR SAR image. Such a cascaded formation has been successfully employed in computer vision and remote sensing fields for optical image classification but, to our knowledge, has not been applied to SAR images. The results of the building detection are illustrated and validated over a TerraSAR-X VHR spotlight SAR image covering approximately 39 km2 ^2 - almost the whole city of Berlin - with mean pixel accuracies of around 93.84%Comment: Accepted publication in IEEE TGR

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images

    Get PDF
    Improving the geo-localization of optical satellite images is an important pre-processing step for many remote sensing tasks like scene monitoring over time or the scene analysis after sudden events. These tasks often require the fusion of geo-referenced and precisely co-registered multi-sensor data. Images captured by high resolution synthetic aperture radar (SAR) satellites have an absolute geo-location accuracy within few decimeters. This renders SAR images interesting as a source for the geo-location improvement of optical images, whose geo-location accuracy is in the range of some meters. In this paper, we are investigating a deep learning based approach for the geo-localization accuracy improvement of optical satellite images through SAR reference data. Image registration between SAR and optical satellite images requires few but accurate and reliable matching points. To derive such matching points a neural network based on a Siamese network architecture was trained to learn the two dimensional spatial shift between optical and SAR image patches. The neural network was trained over TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe. The results of the proposed method confirm that accurate and reliable matching points are generated with a higher matching accuracy and precision than state-of-the-art approaches

    Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and hurricane harvey as a test case

    Get PDF
    This paper presents an automatic algorithm for mapping floods. Its main characteristic is that it can detect not only inundated bare soils, but also floodwater in urban areas. The synthetic aperture radar (SAR) observations of the flood that hit the city of Houston (Texas) following the landfall of Hurricane Harvey in 2017 are used to apply and validate the algorithm. The latter consists of a two-step approach that first uses the SAR data to identify buildings and then takes advantage of the Interferometric SAR coherence feature to detect the presence of floodwater in urbanized areas. The preliminary detection of buildings is a pre-requisite for focusing the analysis on the most risk-prone areas. Data provided by the Sentinel-1 mission acquired in both Strip Map and Interferometric Wide Swath modes were used, with a geometric resolution of 5 m and 20 m, respectively. Furthermore, the coherence-based algorithm takes full advantage of the Sentinel-1 mission's six-day repeat cycle, thereby providing an unprecedented possibility to develop an automatic, high-frequency algorithm for detecting floodwater in urban areas. The results for the Houston case study have been qualitatively evaluated through very-high-resolution optical images acquired almost simultaneously with SAR, crowdsourcing points derived by photointerpretation from Digital Globe and Federal Emergency Management Agency's (FEMA) inundation model over the area. For the first time the comparison with independent data shows that the proposed approach can map flooded urban areas with high accuracy using SAR data from the Sentinel-1 satellite mission

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms
    corecore