601 research outputs found

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Listen, Think, and Understand

    Full text link
    The ability of artificial intelligence (AI) systems to perceive and comprehend audio signals is crucial for many applications. Although significant progress has been made in this area since the development of AudioSet, most existing models are designed to map audio inputs to pre-defined, discrete sound label sets. In contrast, humans possess the ability to not only classify sounds into general categories, but also to listen to the finer details of the sounds, explain the reason for the predictions, think about what the sound infers, and understand the scene and what action needs to be taken, if any. Such capabilities beyond perception are not yet present in existing audio models. On the other hand, modern large language models (LLMs) exhibit emerging reasoning ability but they lack audio perception capabilities. Therefore, we ask the question: can we build a model that has both audio perception and a reasoning ability? In this paper, we propose a new audio foundation model, called LTU (Listen, Think, and Understand). To train LTU, we created a new OpenAQA-5M dataset consisting of 1.9 million closed-ended and 3.7 million open-ended, diverse (audio, question, answer) tuples, and have used an autoregressive training framework with a perception-to-understanding curriculum. LTU demonstrates strong performance and generalization ability on conventional audio tasks such as classification and captioning. More importantly, it exhibits emerging audio reasoning and comprehension abilities that are absent in existing audio models. To the best of our knowledge, LTU is one of the first multimodal large language models that focus on general audio (rather than just speech) understanding.Comment: Accepted at ICLR 2024. Code, dataset, and models are available at https://github.com/YuanGongND/ltu. The interactive demo is at https://huggingface.co/spaces/yuangongfdu/lt

    Automatic detection of alarm sounds in a noisy hospital environment using model and non-model based approaches

    Get PDF
    Article publicat sense revisió per parells a ArxivIn the noisy acoustic environment of a Neonatal Intensive Care Unit (NICU) there is a variety of alarms, which are frequently triggered by the biomedical equipment. In this paper different approaches for automatic detection of those sound alarms are presented and compared: 1) a non-model-based approach that employs signal processing techniques; 2) a model-based approach based on neural networks; and 3) an approach that combines both non-model and model-based approaches. The performance of the developed detection systems that follow each of those approaches is assessed, analysed and compared both at the frame level and at the event level by using an audio database recorded in a real-world hospital environment.Preprin

    AI-based soundscape analysis: Jointly identifying sound sources and predicting annoyancea)

    Get PDF
    Soundscape studies typically attempt to capture the perception and understanding of sonic environments by surveying users. However, for long-term monitoring or assessing interventions, sound-signal-based approaches are required. To this end, most previous research focused on psycho-acoustic quantities or automatic sound recognition. Few attempts were made to include appraisal (e.g., in circumplex frameworks). This paper proposes an artificial intelligence (AI)-based dual-branch convolutional neural network with cross-attention-based fusion (DCNN-CaF) to analyze automatic soundscape characterization, including sound recognition and appraisal. Using the DeLTA dataset containing human-annotated sound source labels and perceived annoyance, the DCNN-CaF is proposed to perform sound source classification (SSC) and human-perceived annoyance rating prediction (ARP). Experimental findings indicate that (1) the proposed DCNN-CaF using loudness and Mel features outperforms the DCNN-CaF using only one of them. (2) The proposed DCNN-CaF with cross-attention fusion outperforms other typical AI-based models and soundscape-related traditional machine learning methods on the SSC and ARP tasks. (3) Correlation analysis reveals that the relationship between sound sources and annoyance is similar for humans and the proposed AI-based DCNN-CaF model. (4) Generalization tests show that the proposed model's ARP in the presence of model-unknown sound sources is consistent with expert expectations and can explain previous findings from the literature on soundscape augmentation

    AI-based soundscape analysis: Jointly identifying sound sources and predicting annoyance

    Full text link
    Soundscape studies typically attempt to capture the perception and understanding of sonic environments by surveying users. However, for long-term monitoring or assessing interventions, sound-signal-based approaches are required. To this end, most previous research focused on psycho-acoustic quantities or automatic sound recognition. Few attempts were made to include appraisal (e.g., in circumplex frameworks). This paper proposes an artificial intelligence (AI)-based dual-branch convolutional neural network with cross-attention-based fusion (DCNN-CaF) to analyze automatic soundscape characterization, including sound recognition and appraisal. Using the DeLTA dataset containing human-annotated sound source labels and perceived annoyance, the DCNN-CaF is proposed to perform sound source classification (SSC) and human-perceived annoyance rating prediction (ARP). Experimental findings indicate that (1) the proposed DCNN-CaF using loudness and Mel features outperforms the DCNN-CaF using only one of them. (2) The proposed DCNN-CaF with cross-attention fusion outperforms other typical AI-based models and soundscape-related traditional machine learning methods on the SSC and ARP tasks. (3) Correlation analysis reveals that the relationship between sound sources and annoyance is similar for humans and the proposed AI-based DCNN-CaF model. (4) Generalization tests show that the proposed model's ARP in the presence of model-unknown sound sources is consistent with expert expectations and can explain previous findings from the literature on sound-scape augmentation.Comment: The Journal of the Acoustical Society of America, 154 (5), 314
    corecore