41,675 research outputs found

    Mining Missing Hyperlinks from Human Navigation Traces: A Case Study of Wikipedia

    Full text link
    Hyperlinks are an essential feature of the World Wide Web. They are especially important for online encyclopedias such as Wikipedia: an article can often only be understood in the context of related articles, and hyperlinks make it easy to explore this context. But important links are often missing, and several methods have been proposed to alleviate this problem by learning a linking model based on the structure of the existing links. Here we propose a novel approach to identifying missing links in Wikipedia. We build on the fact that the ultimate purpose of Wikipedia links is to aid navigation. Rather than merely suggesting new links that are in tune with the structure of existing links, our method finds missing links that would immediately enhance Wikipedia's navigability. We leverage data sets of navigation paths collected through a Wikipedia-based human-computation game in which users must find a short path from a start to a target article by only clicking links encountered along the way. We harness human navigational traces to identify a set of candidates for missing links and then rank these candidates. Experiments show that our procedure identifies missing links of high quality

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    An Analysis of Using Expert Systems and Intelligent Agents for the Virtual Library Project at the Naval Surface Warfare Center-Carderock Division

    Get PDF
    The Virtual Library Project1 at the Naval Surface Warfare Center/Carderock Division (NSWC/CD) is being developed to facilitate the incorporation and use of library documents via the Internet. These documents typically relate to the design and manufacture of ships for the U.S. Navy Fleet. As such, the libraries will store documents that contain not only text but also images, graphs and design configurations. Because of the dynamic nature of digital documents, particularly those related to design, rapid and effective cataloging of these documents becomes challenging. We conducted a research study to analyze the use of expert systems and intelligent agents to support the function of cataloging digital documents. This chapter provides an overview of past research in the use of expert systems and intelligent agents for cataloging digital documents and discusses our recommendations based on NSWC/CD’s requirements

    Virtual environment trajectory analysis:a basis for navigational assistance and scene adaptivity

    Get PDF
    This paper describes the analysis and clustering of motion trajectories obtained while users navigate within a virtual environment (VE). It presents a neural network simulation that produces a set of five clusters which help to differentiate users on the basis of efficient and inefficient navigational strategies. The accuracy of classification carried out with a self-organising map algorithm was tested and improved to in excess of 85% by using learning vector quantisation. This paper considers how such user classifications could be utilised in the delivery of intelligent navigational support and the dynamic reconfiguration of scenes within such VEs. We explore how such intelligent assistance and system adaptivity could be delivered within a Multi-Agent Systems (MAS) context
    corecore